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Abstract

We propose a novel algorithm for the separation of convolutive speech mixtures using
two-microphone recordings, based on the combination of independent component
analysis (ICA) and ideal binary mask (IBM), together with a post-filtering process
in the cepstral domain. The proposed algorithm consists of three steps. First, a
constrained convolutive ICA algorithm is applied to separate the source signals from
two-microphone recordings. In the second step, we estimate the IBM by comparing
the energy of corresponding time-frequency (T-F) units from the separated sources
obtained with the convolutive ICA algorithm. The last step is to reduce musical noise
caused by T-F masking using cepstral smoothing. The performance of the proposed
approach is evaluated using both reverberant mixtures generated using a simulated
room model and real recordings in terms of signal to noise ratio measurement. The
proposed algorithm offers considerably higher efficiency and improved speech quality
while producing similar separation performance compared with a recent approach.

Key words: Independent component analysis (ICA), convolutive mixtures, ideal
binary mask (IBM), estimated binary mask, cepstral smoothing, musical noise.

1 Introduction

1.1 Problem Description and Previous Work

The extraction of a target speech signal from a mixture of multiple signals is
classically referred to as the cocktail party problem (Cherry, 1953). Although
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it poses big challenges in many signal processing applications, human listen-
ers with normal hearing are generally very skillful in separating the target
speech from a complex auditory scene (Wang and Brown, 2006). Listeners
with hearing loss suffer from insufficient speech intelligibility in noisy environ-
ments (Dillon, 2001). Simply amplifying the input is not sufficient to increase
the intelligibility of the target speech as both the target and interfering signals
are amplified. Despite being studied for decades, the cocktail party problem
remains a scientific challenge that demands further research efforts (Wang
and Brown, 2006). Computational modelling and algorithmic solutions to this
problem are likely to have strong impact on several applications including
hearing aids and cochlear implants, human-machine interaction and robust
speech recognition in uncontrolled natural environments.

One promising technique to address this problem for convolutive mixtures 1 is
the framework of blind source separation (BSS) where the mixing process is
generally described as a linear convolutive model, and independent component
analysis (ICA) (Hyvarinen et al., 2001; Lee, 1998) can then be applied to
separate the convolutive mixtures either in the time domain (Cichocki and
Amari, 2002; Douglas and Sun, 2002; Douglas et al., 2007), in the transform
domain (Araki et al., 2003; Makino et al., 2005; Olsson and Hansen, 2006;
Rahbar and Reilly, 2005; He et al., 2007; Reju et al., 2010; Aissa-El-Bey et al.,
2007; Wang et al., 2005; Yoshioka et al., 2009; Han et al., 2009), or their
hybrid (Lambert and Bell, 1997; Lee et al., 1997), assuming the source signals
are statistically independent (Araki et al., 2003; Douglas et al., 2005; Makino
et al., 2005; Mitianondis and Davies, 2002; Nickel and Iyer, 2006; Olsson and
Hansen, 2006). The time-domain approaches attempt to extend instantaneous
ICA methods for the convolutive case. Upon convergence, these algorithms
can achieve good separation performance due to the accurate measurement of
statistical independence between the segregated signals (Makino et al., 2005).
However, the computational cost associated with the estimation of the filter
coefficients for the convolution operation can be very demanding, especially
when dealing with reverberant (or convolutive) mixtures using filters with long
time delays (Amari et al., 1997; Buchner et al., 2004; Douglas and Sun, 2002;
Matsuoka and Nakashima, 2001).

To reduce computational complexity, the frequency-domain approaches trans-
form the time-domain convolutive model into a number of complex-valued
instantaneous ICA problems, using the short-time Fourier transform (STFT)
(Araki et al., 2003; Mukai et al., 2004; Parra and Spence, 2000; Sawada et al.,
2003; Schobben and Sommen, 2002; Wang et al., 2005). Many well-established
instantaneous ICA algorithms can then be applied at each frequency bin. Nev-

1 In speech separation, the term“convolutive mixtures”refers to the signals received
by microphones that are from multiple speakers in an environment with surface
reflections from e.g. walls, ceilings and floors.
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ertheless, an important issue associated with this approach is the so-called per-
mutation problem (Sawada et al., 2004; Wang et al., 2004), i.e., the permuta-
tion of the source components at each frequency bin may not be consistent with
each other. As a result, the estimated source signals in the time domain (using
an inverse STFT transform) may still contain the interferences from the other
sources due to the inconsistent permutations across the frequency bands. Dif-
ferent methods have been developed to solve the permutation problem, such
as the filter length constraint approaches (Buchner et al., 2004; Parra and
Spence, 2000), the source localization or beamforming approaches (Sawada
et al., 2004; Soon et al., 1993), the method based on the physical behaviour of
the acoustic environment (Nesta et al., 2008) or coherent source spectral esti-
mation (Nesta et al., 2009), the approach for modeling frequency bins using the
generalized Gaussian distribution (Mazur and Mertins, 2009) and the method
based on the envelope correlation between the estimated source components
at the frequency bins (Murata et al., 2001).

Hybrid time-frequency (T-F) methods tend to exploit the advantages of both
time- and frequency-domain approaches, and consider the combination of the
two types of methods. In particular, the coefficients of the FIR filter are
typically updated in the frequency domain and the non-linear functions are
adopted in the time domain for evaluating the degree of independence be-
tween the source signals (Back and Tosi, 1994; Lee et al., 1997). In this case,
no permutation problem exists any more, as the independence of the source
signals is evaluated in the time domain. Nevertheless, a limitation with the hy-
brid approaches is the increased computational load induced by the back and
forth movement between the two domains at each iteration using the Discrete
Fourier transform (DFT) and inverse DFT (Makino et al., 2005).

Although the convolutive BSS problem, i.e. separating unknown sources from
their convolutive mixtures, has been studied extensively, the separation per-
formance of developed algorithms is still limited, and leaves much room for
further improvement. This is especially true when dealing with reverberant
and noisy mixtures. For example, in the frequency-domain approaches, if the
frame length for computing the STFT is long and the number of samples within
each window is small, the independence assumption may not hold any more
(Araki et al., 2003). On the other hand, a short size of the STFT frame may
not be adequate to cover the room reverberation, especially for mixtures with
long reverberations for which a long frame size is usually required for keeping
the permutations consistent across the frequency bands (see e.g., (Back and
Tosi, 1994; Lee et al., 1997)).

A recent technique proposed in computational auditory scene analysis
(CASA), called ideal binary mask (IBM), has shown promising properties
in suppressing interference and improving intelligibility of target speech. IBM
is obtained by comparing the T-F representations of target speech and back-

3



  

ground interference, with 1 assigned to a T-F unit where the target energy is
stronger than the interference energy and 0 otherwise (Wang, 2005). The target
speech can then be obtained by applying the IBM to the T-F representation of
the mixture, together with an inverse transform. The IBM technique was origi-
nally proposed as a computational goal or performance benchmark of a CASA
system (Wang, 2005; Wang and Brown, 2006). Recent studies reveal that by
suppressing the interference signals from the mixtures, the IBM technique
can significantly improve the intelligibility of the target speech (Wang et al.,
2009). This simple yet effective approach offers great potential for improving
speech separation performance of ICA algorithms. Different from many ICA
approaches with linear models (Madhu et al., 2008), signals estimated in the
T-F plane have mostly non-overlapping supports for different speaker signals
and thus one can use IBM to extract the target speech from their mixture sig-
nal. The IBM is obtained by assuming both the target speech and interfering
signal are known a priori. However, in practice, only mixtures are available,
and the IBM must be estimated from the mixtures, which is a major computa-
tional challenge. Several CASA methods have been developed for this purpose,
see e.g., (Roman et al., 2003; Wang and Brown, 2006; Rodrigues and Yehia,
2009).

Recently Pedersen et al. (Pedersen et al., 2008) proposed to estimate the IBM
from intermediate separation results that are obtained by applying an ICA
algorithm to the mixtures. The limitation of the aforementioned CASA meth-
ods, i.e., having to estimate the IBM directly from the mixtures, is mitigated as
the IBM can now be estimated from the coarsely separated source signals ob-
tained by ICA algorithms. The estimated IBM can be further used to enhance
the separation quality of the coarsely separated source signals. Such a combi-
nation was shown to achieve good separation performance. However, both the
mixing model and separation algorithm considered in (Pedersen et al., 2008)
are instantaneous, which in practice may not be sufficient for real recordings.
Related work was proposed in (Sawada et al., 2006) where the target speech
is extracted from the mixture using ICA and time-frequency masking. How-
ever the errors introducted in the estimation of the binary T-F mask have not
been addressed. In this paper, we explore the combination of ICA and IBM
techniques for the separation of convolutive speech mixtures by using a convo-
lutive mixing model and a convolutive separation algorithm. To deal with the
estimation errors of the binary mask, we employ a cepstrum based processing
method.

1.2 Overview of Proposed Method

In our proposed algorithm, we first apply a constrained convolutive ICA algo-
rithm (Wang et al., 2005) to the microphone recordings. As is common with
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many other existing ICA algorithms, the separated target speech from this
step still contains a considerable amount of interference from other sources.
The performance steadily degrades with an increase of reverberation time. In
order to reduce the interference within the target speech, we estimate the IBM
by comparing the energy of the corresponding T-F units from the outputs of
the convolutive ICA algorithm, and then apply the estimated IBM to the orig-
inal mixtures to obtain the target speech and interfering sources. As will be
confirmed in our experiments, this process considerably improves the separa-
tion performance by reducing the interference to a much lower level. However,
a typical problem with the binary T-F masking is the introduction of errors in
the estimation of the masks. The errors may result in some isolated T-F units,
causing fluctuating musical noise (Araki et al., 2005; Madhu et al., 2008).

In this paper, we propose to reduce such noise by further processing the esti-
mated IBM using cepstral smoothing (Madhu et al., 2008). More specifically,
we transform the binary mask into the cepstral domain, and smooth the trans-
formed mask over time frames using the overlap-and-add technique. In the
cepstrum domain, it is easier to distinguish between the unwanted isolated
random peaks and mask patterns resulting from the spectral structure of the
segregated speech. Therefore, different levels of smoothing can be applied to
the binary T-F mask in different frequency ranges. The smoothed mask, after
being transformed back into the T-F plane, is then applied to the outputs of
the previous step in order to reduce the musical noise.

Our proposed approach is essentially a multistage algorithm, as depicted by
a block diagram in Figure 1 for two microphone mixtures. In the first stage,
convolutive speech mixtures x1(n) and x2(n) are processed by the constrained
convolutive ICA algorithm in (Wang et al., 2005), where n represents the
discrete time index. The resultant estimated source signals of this stage are
denoted as y1(n) and y2(n). In the second stage, the T-F representations of
y1(n) and y2(n) are used to estimate the IBM, and the resultant masks are
denoted by M

f
1(k,m) and M

f
2(k,m), where k represents the frequency index,

and m is the time frame index. The final stage is to perform smoothing of
the estimated IBM in the cepstral domain to reduce the musical noise. The

smoothed version of the estimated IBM is denoted byM
f

1(k,m) andM
f

2(k,m),
as shown in Figure 1. Finally, the smoothed masks (after being converted
back to the spectral domain) are applied to the outputs of the previous step,
followed by an inverse T-F transform to obtain the estimated source signals
in the time domain. The details of each step are described in the following
sections. A preliminary version of this work was presented in (Jan et al., 2009).

The remainder of the paper is organised as follows. The convolutive ICA ap-
proach and its utilization in the first stage of our proposed method is presented
in Section 2. Section 3 describes in detail the second stage of the algorithm,
i.e., how to estimate the IBM from the outputs of the convolutive ICA algo-
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Fig. 1. Block diagram of the proposed multistage approach. In the first stage, a convolutive ICA algorithm

(denoted as ”Conv ICA”) is applied to the mixture signals xj(n) (j = 1, 2) to obtain the coarsely separated

signals yi(n) (i = 1, 2). In the second stage, yi(n) is first normalised (denoted as ”Norm”) to obtain ỹi(n),

which is then transformed to Ỹi(k,m) using the STFT followed by the estimation of the binary masks

M
f
i
(k,m). In the third stage, cepstral smoothing is applied to the estimated masks M

f
i
(k,m) and the

smoothed masks M
f

i(k,m) are then used to enhance the separated speech signals obtained from the second

stage.

rithm. Musical noise reduction using cepstral smoothing, i.e., the final stage of
the proposed algorithm, is explained in Section 4. Section 5 thouroughly evalu-
ates the proposed method and compares it with two recent methods (Pedersen
et al., 2008) and (Wang et al., 2005). Further discussions about the results and
some conclusions are given in Section 6.

2 BSS of Convolutive Mixtures in the Frequency Domain

In a cocktail party environment, N speech signals are recorded by M micro-
phones, which can be described mathematically by a linear convolutive model

xj(n) =
N
∑

i=1

P
∑

p=1

hji(p)si(n− p + 1) (j = 1, ...,M) (1)

where si and xj are the source and mixture signals respectively, hji is a P -
point room impulse response (Gaubitch, 1979) from source si to microphone
xj . The BSS problem for convolutive mixtures in the time domain is converted
to multiple instantaneous problems in the frequency domain by applying the
short time Fourier transform (STFT) to equation (1), see e.g. (Smaragdis,
1998; Parra and Spence, 2000; Sawada et al., 2004, 2007; Rahbar and Reilly,
2005; Araki et al., 2003; He et al., 2007; Reju et al., 2010; Aissa-El-Bey et al.,
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2007; Wang et al., 2005; Yoshioka et al., 2009; Han et al., 2009), and using
matrix notations, as follows

X(k,m) = H(k)S(k,m) (2)

where X(k,m) = [X1(k,m), ..., XM(k,m)]T with its elements Xj(k,m) be-
ing the T-F representations of the microphone signals xj(n), S(k,m) =
[S1(k,m), ..., SN(k,m)]T whose elements Si(k,m) are the T-F representations
of the source signals si(n), and [·]T denotes vector transpose. The mixing ma-
trix H(k) is assumed to be invertible and time invariant. In this study we
consider a two-input two-output system, i.e., N = M = 2.

To find the sources, we can apply an unmixing filter W(k) to the mixtures,
also shown in Figure 2

Y(k,m) = W(k)X(k,m) (3)

where Y(k,m) = [Y1(k,m), Y2(k,m)]T represents the estimated
source signals in the T-F domain and W(k) is denoted as
[[W11(k),W12(k)]

T , [W21(k),W22(k)]
T ]T , which can be estimated based

on the assumption of independence. Many algorithms have been developed for
this purpose (Araki et al., 2004, 2003, 2007; Cichocki and Amari, 2002; Parra
and Spence, 2000; Sawada et al., 2007). In this work we use a constrained
convolutive ICA approach in (Wang et al., 2005) for the estimation of W(k).
Applying an inverse STFT (ISTFT), Y(k,m) can be converted back to the
time domain denoted as

y(n) = ISTFT(Y(k,m)) (4)

where y(n) = [y1(n), y2(n)]
T denotes the estimated source signals in the time

domain. This inverse transform is for the purpose of applying a scaling op-
eration to the estimated sources, as explained in the next section. Similar to
many existing ICA approaches, e.g., (Parra and Spence, 2000), however, the
separation performance of (Wang et al., 2005), especially the quality of the
separated speech, is still limited due to the existence of a certain amount of
interference within the separated speech. The performance further degrades
with an increase of the reverberation time (RT ). Such degradation is caused
partly by the tradeoff between the filter length used in the convolutive model
and the frame length of the STFT within the frequency-domain algorithms.
For a high reverberation condition, an unmixing filter with long time delays
is usually preferred for covering sufficiently the late reflections. On the other
hand, the frequency domain operation usually requires the frame length of
the STFT to be significantly greater than the length of the unmixing filter,
in order to keep the permutation ambiguities across the frequency bands to a
minimum. The filter length constraint may be relaxed when other techniques,
such as beamforming and source envelope correlations (Murata et al., 2001;
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Fig. 2. Block diagram showing the first stage

of the proposed approach. The mixture signals

xj(n) (j = 1, 2) are first transformed into the

T-F domain using the discrete STFT. The re-

sultant T-F representation Xj(k,m), as the in-

put to a frequency-domain BSS algorithm, is

then used to estimate the unmixing filter Wij(k)

(i, j = 1, 2) in the frequency domain, and

Yi(k,m) is the T-F representation of the sepa-

rated signals. Applying an inverse T-F transform

to Yi(k,m), we can obtain the signals in the time

domain yi(n) in this stage.

Fig. 3. Flow chart showing the second stage

of the proposed method. The separated signals

from the first stage i.e., yi(n) (i = 1, 2) are scaled

to ỹi(n), which are transformed to the T-F do-

main Ỹi(k,m) using the STFT. The final step

is to estimate the binary masks M
f
i
(k,m) from

Ỹi(k,m).

Sawada et al., 2004; Soon et al., 1993), are used for solving the permutation
problem; however the performance of such techniques deteriorates consider-
ably for highly reverberant acoustic conditions. To improve the quality of the
separated speech signals, we consider further applying the IBM technique, as
detailed in the next section.

3 Combining Convolutive ICA and Binary Masking

In order to explain the connection of this stage with the previous stage, a flow
chart is shown in Figure 3. The two outputs y1(n) and y2(n) obtained from
the first stage are used here to estimate the binary masks. Since these outputs
are arbitrarily scaled, it is necessary to reduce the scaling ambiguity using
normalisation, given as follows

ỹi(n) =
yi(n)

max(yi)
i = 1, 2 (5)

where max denotes the maximum element of its vector argument yi =
[yi(1), ..., yi(L)]

T , and L is the length of the signal. After this, we transform
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the two normalized outputs into the T-F domain using the STFT

Ỹi(k,m) = STFT(ỹi(n)) i = 1, 2 (6)

Without the scaling operation, the processing by (4), (5) and (6) can be omited
within the algorithm. By comparing the energy of each T-F unit of the above
two spectrograms, the two binary masks are estimated as (Wang, 2008)

M
f
1 (k,m) =







1 if | Ỹ1(k,m) |> τ | Ỹ2(k,m) |,

0 otherwise ∀k,m.
(7)

M
f
2 (k,m) =







1 if | Ỹ2(k,m) |> τ | Ỹ1(k,m) |,

0 otherwise ∀k,m.
(8)

where τ is a threshhold for controlling the sparseness of the mask, and τ = 1
has been used in our experiment. The masks are then applied to the T-F
representation of the original two-microphone recordings in order to recover
the source signals, as follows

Y
f
i (k,m) = M

f
i (k,m)Xi(k,m) i = 1, 2 (9)

The source signals in the time domain are recovered for the purpose of pitch
estimation in the next section, using the inverse STFT (ISTFT).

yti(n) = ISTFT(Y f
i (k,m)) i = 1, 2 (10)

As observed in our experiments, the estimated IBM considerably improves
the separation performance by reducing the interference to a much lower level,
leading to the separated speech signals with improved quality over the outputs
obtained in Section 2. However, a typical problem with the binary T-F masking
is the introduction of errors in the estimation of the masks causing fluctuating
musical noise (Madhu et al., 2008; Araki et al., 2005). To mitigate this problem,
we employ a cepstral smoothing technique (Madhu et al., 2008) as detailed in
the next section.

4 Cepstral Smoothing of the Binary Mask

The basic idea is to apply different levels of smoothing to the estimated binary
mask across different frequency bands. Essentially, the levels of smoothing
are determined based on the speech production mechanism. To this end, the
estimated IBM is first transformed into the cepstral domain, and the different
smoothing levels are then applied to the transformed mask. The smoothed
mask is further converted back to the spectral domain. Through this method,
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the musical artifacts within the signals can be reduced, and at the same time,
the broadband structure and pitch information of the speech signal are well
preserved (Madhu et al., 2008; Oppenheim and Schafer, 1975), without being
noticeably affected by the smoothing operation. Representing the binary masks
of (7) and (8) in the cepstrum domain we have

M c
i (l, m) = DFT−1{ln(Mf

i (k,m)) |k=0,..,K−1} (11)

where l and k are the quefrency bin index and the frequency bin index respec-
tively (Madhu et al., 2008). DFT represents the discrete Fourier transform,
ln denotes the natural logarithm operator and K is the length of the DFT.
After applying smoothing, the resultant smoothed mask is given as

M
s

i (l, m) = γlM
s

i (l, m− 1) + (1− γl)M
c
i (l, m) i = 1, 2 (12)

where γl is a parameter for controlling the smoothing level, and is selected
according to the different values of l

γl =















γenv if l ∈ {0, ..., lenv},

γpitch if l = lpitch,

γpeak if l ∈ {(lenv + 1), ..., K} \ lpitch

(13)

where 0 ≤ γenv < γpitch < γpeak ≤ 1, lenv is the quefrency bin in-
dex that represents the spectral envelope of the mask Mf(k,m) defined as
[Mf

1 (k,m),Mf
2 (k,m)]T , and lpitch is the quefrency bin index showing the struc-

ture of the pitch harmonics in Mf(k,m). The principle employed for this range
of γl is illustrated as follows. Mc(l, m)=[M c

1(l, m),M c
2(l, m)]T , l ∈ {0, .., lenv},

basically represents the spectral envelope of the mask Mf(k,m). In this region
the value selected for γl is relatively low to avoid distortion in the envelope.
Similarly low smoothing is applied if l is equal to lpitch, so that the harmonic
structure of the signal is maintained. The symbol “\” is used to exclude lpitch
from the quefrency range (lenv + 1), ..., K. High smoothing is applied in this
last range in order to reduce the artifacts without harming the pitch infor-
mation and structure of the spectral envelope. Different from (Madhu et al.,
2008), we calculate pitch frequency by using the segregated speech signal ob-
tained in Section 3. Specifically pitch frequency can be computed as

lpitch = argmaxl{Y
c(l, m) | llow ≤ l ≤ lhigh}, (14)

where Y c(l, m) is the cepstrum domain representation of the segregated speech
signal yt(n) obtained in (10). Note that we have omitted the subscript i in
symbols γl, l and Y c(l, m) within (13) and (14) for notational convenience.
The range llow, lhigh is chosen so that it can accommodate pitch frequencies of
human speech in the range of 50 to 500 Hz. The final smoothed version of the
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Table 1
The proposed multistage algorithm

1) Initialize the parameters, such as M , N , overlapfactor, and read the speech mixtures into x(n).
2) Convert x(n) to the T-F representation X(k,m) using STFT, and apply the constrained convolutive ICA algorithm
in (Wang et al., 2005) to the mixture X(k,m) for estimating W(k). Obtain Y(k,m) according to (3).
3) Use (4), (5) and (6) to calculate Ỹi(k,m).

4) Estimate M
f
i
(k,m) according to (7) and (8), where i = 1, 2.

5) Compute Y
f
i
(k,m) based on (9) and yt

i
(n) using (10). Compute the cepstrum domain representation of yt

i
(n), i.e.,

Y c(l, m).
6) Calculate Mc

i
(l, m) in terms of (11).

7) Use (12) to calculate M
s

i (l,m), where γl is chosen according to (13), and l = lpitch is determined by (14).

8) Compute M
f

i (k,m) based on (15), and Y
f

i (k,m) according to (16).

9) Apply the ISTFT to Y
f

i (k,m) to obtain the separated signals in the time domain.

spectral mask is given as

M
f

i (k,m) = exp(DFT{M
s

i (l, m) |l=0,...,K−1}), (15)

This smoothed mask is then applied to the segregated speech signals of Section
3, as follows

Y
f

i (k,m) = M
f

i (k,m)Y f
i (k,m) i = 1, 2 (16)

By further applying the ISTFT to Y
f

i (k,m), we can then obtain the separated
source signals in the time domain. According to the explanation in the above
sections, we summarize our algorithm in Table I.

5 Results and Comparisons

In this section, we evaluate the performance of the proposed method using
simulations. The algorithm is applied to both artificially mixed signals and
real room recordings.

5.1 Experimental setup and evaluation metrics

A pool of 12 different speech signals has been used in the experiments. These
speech signals were uttered by six male and six female speakers with 11 differ-
ent languages (Pedersen et al., 2008). All the signals have the same loudness
level. The Hamming window is used with an overlap factor set to 0.75. The
duration of the speech signal is 5 seconds with a sampling rate of 10 KHz. The
rest of the parameters are set as: lenv=8, llow=16, lhigh=120, γenv=0, γpitch=0.4,
and γpeak=0.8. Performance indices used in evaluation include signal to noise
ratio (SNR), the percentage of energy loss (PEL) and the percentage of noise
residue (PNR) (Hu and Wang, 2004; Pedersen et al., 2008). The expressions
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of PEL and PNR are given below

PEL =

∑

n(e
t
1(n))

2

∑

n(I t(n))2
(17)

PNR =

∑

n(e
t
2(n))

2

∑

n(yt(n))2
(18)

where yt(n) and I t(n) represent the estimated signal and the signal resyn-
thesized after applying the ideal binary mask (Pedersen et al., 2008). et1(n)
stands for the signal present in I t(n) but absent in yt(n) while et2(n) shows
the signal present in yt(n) but absent in I t(n). SNRi is the ratio of the desired
signal to the interfering signal taken from the mixture. SNRo is the ratio of
the desired signal resynthesized from the ideal binary mask to the difference
of the desired resynthesized signal and the estimated signal (Pedersen et al.,
2008). Notations mSNRi, mSNRo and ∆SNR are also used in the evaluation
where mSNRi and mSNRo are the average results for fifty random tests and
∆SNR=mSNRo−mSNRi. All the SNR measurements are given in decibels
(dB) in the subsequent experiments.

5.2 A separation example

To show the performance of the proposed method for interference suppression,
we present an example of applying the algorithm to the separation of two
speech mixtures obtained by mixing two sources from the pool described in
the above section using the simulated room model (Gaubitch, 1979), with
RT set to 100 msec. The spectrograms of the two source signals are shown
in Figure 4(a) and (b), and the two mixture signals in Figure 5(a) and (b).
For the computation of the spectrograms, the FFT frame length was set to
2048 (i.e., 204.8 msec), and the window length (or frame shift) was fixed
to 512 giving, 75% overlap between neighboring windows. Other parameters
were the same as those specified in the above section. Figure 6(a) and (b)
show the spectrograms of the output signals obtained from the first stage of
the proposed algorithm. The results obtained from the second stage of the
proposed algorithm are shown in Figure 7(a) and (b), and from the third
stage in Figure 8(a) and (b). For the convenience of comparison, some T-
F regions within the spectrograms are highlighted to show the performance
improvement for interference suppression at each stage. In particular, we show
three regions in one of the two source signals, which are marked as A, B and
C for the original one (i.e. the source signal before the mixing operation) and
as Ai, Bi and Ci for the separated one (i.e. the source signals estimated from
the mixtures), where i = 1, 2, 3 is the stage index. Similarly three regions in
the other source which are marked as D, E and F for the original one and as
Di, Ei and Fi for the separated one after each stage of the algorithm. From
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(a) (b)

Fig. 4. Spectrograms of the two original speech signals used in the separation ex-
ample. Three areas in each are highlighted for purposes of comparison with Figures
6-8.

the highlighted regions, we can observe that the interference within one source
that comes from the other is reduced gradually after the processing of each
stage. Compared with the output of the first stage, the interference within
the estimated sources from the output of the third stage has been reduced
significantly.
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Fig. 5. Spectrograms of the mixture signals that were generated by using the sim-
ulated room model with RT set to 100 msec. Both signals in (a) and (b) are the
mixtures of two speech sources but with different attenuation and time delays.

5.3 Objective evaluation

First, we evaluate the performance of the proposed algorithm for the sepa-
ration of convolutive mixtures that were generated artificially by using the
simulated room model (Gaubitch, 1979), for which the RT can be specified
explicitly and flexibly. We wish to assess the robustness of the proposed al-
gorithm to the changes of the key parameters used in the algorithm, such as
the window length and the FFT frame length, as well as to evaluate the per-
formance variations against different conditions for generating the mixtures,
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(a) (b)

Fig. 6. Spectrograms of the separated speech sources obtained from the output of the
first stage of the proposed algorithm, i.e., by applying the constrained convolutive
ICA algorithm. It can be observed that a considerable amount of interference from
the other source still exists in the highlighted regions.

(a) (b)

Fig. 7. Spectrograms of the separated speech sources obtained from the output of the
second stage of the proposed algorithm, i.e., by applying the estimated IBM. The
interferences in the highlighted regions have been considerably reduced as compared
with those in Figure 6.

(a) (b)

Fig. 8. Spectrograms of the separated speech sources obtained from the output of
the third stage of the proposed algorithm, i.e., by applying cepstral smoothing to
the estimated IBM. The interferences in the highlighted regions have been further
reduced as compared with those in Figures 6 and 7.
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such as the reverberation time and the noise level. In each of the subsequent
experiments, we change only one parameter, i.e., the one that we intend to
test, but keep all the other parameters fixed (as those already specified in Sec-
tion 5.1). For each of these evaluations, the results obtained were the averaged
performance of the results for 50 different convolutive mixtures, with each
consisting of two speech sources randomly picked up from a pool of 12 speech
signals (Pedersen et al., 2008). In the experiments, we observed that ∆SNR
measured from the output of the third stage is slightly lower (hence negligi-
ble) than that measured from the output of the second stage of the proposed
algorithm, although subjective listening tests suggest that the quality of the
separated speech has been improved (as shown in Section 5.4). For this reason,
the results of mSNRo shown in this section are measured from the output of
the second stage (as shown in our preliminary work (Jan et al., 2009)). How-
ever, more comprehensive results for mSNRo measured at each stage of the
proposed algorithm are given in Section 5.5. Analysis of variance (ANOVA)
based statistical significance evaluation ((Hoel, 1976), chapter 11) of the per-
formance difference between the second and third stage of the algorithm is
also given in Section 5.5.

In the first experiment, the window length was varied from 256 to 2048 sam-
ples, while the other parameters were set identical to those in Section 5.1 and
5.2. The results are given in Table 2. It can be seen that the highest ∆SNR is
obtained for the window length of 512. Therefore, the window length equal to
512 samples was used in the following experiments.

In the second experiment, the FFT frame length was changed from 512 to
2048. The average results for different FFT frame lengths are given in Table
3. It can be seen that by increasing the FFT frame length from 512 to 2048
samples, the performance of the proposed algorithm in terms of SNR, PEL
and PNR is all improved. The best performance is obtained at 2048. Hence,
the FFT frame length used for the subsequent experiments was fixed to 2048
samples.

In the third experiment, we change the reverberation time of the simulated
room when generating the mixtures. The average results in terms of PEL,
PNR and ∆SNR for the various RT s are summarized in Table 4, where the
unit for RT is msec. A noticeable trend in this table is that the performance
degrades gradually with an increase of RT , which is not unexpected due to
the increasing sound reflections for higher room reverberations.

In the fourth experiment, we consider different levels of microphone noise by
adding white noise to the mixtures, where the noise level was calculated with
respect to the level of the mixtures, with a weaker noise corresponding to a
smaller number (Pedersen et al., 2008). The average ∆SNR values for different
noise levels are given in Table 5. It can be observed that the performance of
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Fig. 9. Separation performance measured by mSNRo with different values of γenv.
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Fig. 10. Separation performance measured by mSNRo with different values of γpitch.

the algorithm decreases as the noise level is increased, and similar to (Pedersen
et al., 2008), the algorithm can tolerate the noise levels up to -20 dB.

Lastly, we evaluate the performance of the proposed algorithm (without con-
sidering noise) by varying the values of γenv, γpitch and γpeak with the other
parameters fixed as: RT =100 msec, window length=512, and NFFT=2048.
The values of γenv , γpitch and γpeak as discussed in section 4, were chosen in
the range [0, 0.9]. The results measured by mSNRo are given in Figures 9, 10
and 11 respectively. From Figure 9, it is observed that mSNRo after the third
stage increases slowly for γenv ranging from 0 to 0.4 and then starts decreas-
ing. Figure 10 shows a very slight increase in mSNRo when γpitch is between 0
and 0.5 followed by a very slight decrease. In Figure 11, mSNRo first increases
slowly when γpeak varies from 0 to 0.4 and then a sharp decrease is observed
when γpeak is between 0.5 and 0.9. These experiments show that the separa-
tion performance varies to some extent when different values for γenv, γpitch
and γpeak are used.
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Fig. 11. Separation performance measured by mSNRo with different values of γpeak.

Table 2
Separation Results for Different Window Lengths

Window PEL PNR mSNRi mSNRo ∆SNR

Length

256 9.10 15.30 1.10 7.11 6.01

512 8.60 14.48 1.10 7.44 6.34

1024 9.30 14.70 1.10 7.11 6.01

2048 10.92 15.92 1.12 6.32 5.20

Table 3
Separation Results for Different FFT Frame lengths

NFFT PEL PNR mSNRi mSNRo ∆SNR

512 9.06 14.96 1.10 7.17 6.06

1024 8.65 14.53 1.10 7.40 6.30

2048 8.60 14.48 1.10 7.44 6.34

Table 4
Separation Results for Different RT

RT PEL PNR mSNRi mSNRo ∆SNR

40 2.16 2.24 1.13 13.22 12.08

60 3.79 4.12 1.15 10.94 9.79

80 5.50 8.30 1.14 9.42 8.27

100 8.60 14.48 1.10 7.44 6.34

120 10.99 19.53 1.03 6.30 5.26

140 13.36 24.14 0.94 5.48 4.53

150 13.86 25.38 0.90 5.29 4.39

5.4 Listening tests

As mentioned in the above section that ∆SNR measured from the output of
the third stage of the proposed algorithm appears to be slightly lower than
that measured from the output of the second stage of the proposed algorithm
(see more results and detailed analysis in the next section). This suggests that
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Table 5
Separation Results for Different Noise Levels

Noise PEL PNR mSNRi mSNRo ∆SNR

-40 dB 8.60 14.48 1.10 7.45 6.34

-30 dB 8.60 14.48 1.10 7.44 6.34

-20 dB 8.62 14.52 1.10 7.43 6.33

-10 dB 9.46 16.49 1.09 6.91 5.81

Table 6
MOS Obtained From Subjective Listening Tests

RT MOS before MOS after MOS for Pedersen ANOVA based statistical significance

smoothing smoothing et al. evaluation of MOS before & after smoothing

F-value Fcrit p-value

50 3.26 3.90 3.01 5.0948 4.1960 0.0320

100 2.12 2.62 2.29 4.7094 4.1960 0.0386

150 1.87 2.39 2.02 5.0995 4.1960 0.0319

200 1.09 2.07 1.82 50.2059 4.1960 0.0000

cepstral smoothing actually does not improve the objective performance in
terms of SNR measurement (see also (Wang, 2008)). Nevertheless, our infor-
mal listening tests seem to contradict the SNR measurements and confirm
that the cepstral smoothing does improve the quality of the separated speech,
especially for the musical noise removal. To show this, we conducted subjec-
tive listening tests by recruiting 15 participants with normal hearing. Each of
these listeners was asked to give an integer score ranging from 1 (musical noise
clearly audible) to 5 (noise not audible) for the final segregated speech signals,
as suggested in (Araki et al., 2005). During these tests, each participant was
asked to listen to 2 groups of separated speech signals obtained in the experi-
ments where RT was set to 50, 100, 150 and 200 msec respectively, with one
group containing y1 and the other group containing y2. A total of 8 groups of
speech signals were evaluated subjectively by these participants. Each group
was composed of 3 speech signals, i.e. the estimated source obtained from the
output of the second stage, the one from the third stage, and the source signal
estimated by Pedersen et al.’s method. Note that the listeners had no prior
knowledge on which signal was obtained from which algorithm. This ensures a
fair comparison between the algorithms. The mixtures used in these tests were
generated by the simulated room model with RT equal to 50, 100, 150 and
200 msec, respectively. The scores given by the listener are provided on the
basis of how clean the separated signals from the two stages are in comparison
to each other, or how much musical noise is present in the separated signals.
A signal with less musical noise is cleaner, and hence is given a higher mean
opinion score (MOS) (Araki et al., 2005). The average results of MOS for the
15 listeners are given in Table 6. It indicates that using cepstral smoothing
gives higher MOS, suggesting the improved quality of the separated speech.
To examine whether the improvement in MOS after smoothing is statistically
significant, we perform one-way ANOVA based F-test (Hoel, 1976) for the
MOS obtained before and after smoothing. The results are given in Table 6.
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Table 7
MOS Obtained From Subjective Listening Tests For Different Window Lengths

For RT=100 msec

Window MOS before MOS after MOS for ANOVA based statistical significance

Length smoothing smoothing Pedersen et al. evaluation of MOS before & after smoothing

F-value Fcrit p-value

256 2.35 3.70 2.57 64.4233 4.0980 0.00000

512 2.70 3.65 2.90 16.5277 4.0980 0.00023

1024 2.60 3.65 2.81 24.1470 4.0980 0.00001

2048 2.40 3.10 2.64 7.0000 4.0980 0.0118

For RT=200 msec

Window MOS before MOS after MOS for ANOVA based statistical significance

Length smoothing smoothing Pedersen et al. evaluation of MOS before & after smoothing

F-value Fcrit p-value

256 1.70 2.80 1.94 16.7810 4.0980 0.00021

512 1.75 2.70 2.04 21.5016 4.0980 0.00004

1024 1.75 2.65 2.01 15.1626 4.0980 0.00038

2048 1.55 2.35 1.78 15.6903 4.0980 0.00031

Table 8
MOS Obtained From Subjective Listening Tests For Different FFT Frame Lengths

For RT=100 msec

NFFT MOS before MOS after MOS for ANOVA based statistical significance

smoothing smoothing Pedersen et al. evaluation of MOS before & after smoothing

F-value Fcrit p-value

512 3.30 4.10 2.88 17.3714 4.0980 0.00017

1024 3.20 4.15 2.87 17.3646 4.0980 0.00017

2048 2.70 3.65 2.90 16.5277 4.0980 0.00023

For RT=200 msec

NFFT MOS before MOS after MOS for ANOVA based statistical significance

smoothing smoothing Pedersen et al. evaluation of MOS before & after smoothing

F-value Fcrit p-value

512 2.05 2.80 1.89 8.8509 4.0980 0.00510

1024 1.75 2.50 1.96 10.3012 4.0980 0.00270

2048 1.75 2.70 2.04 21.5016 4.0980 0.00004

The critical value (Fcrit) is the number that the test statistic must overcome to
reject the test. The p-value stands for the probability of a more extreme (pos-
itive or negative) result than what we actually achieved, given that the null
hypothesis is true. F-value can be defined as the ratio of the variance of the
group means to the mean of the within group variances. All the F-tests in this
work have been carried out at 5% significance level. If F < Fcrit and p-value is
greater than 0.05 (5% significance level), then the given results are statistically
insignificant. It can be observed that the p-values obtained for all the cases of
RT in Table 6 are smaller than 0.05, suggesting that the improvement in all
the four cases is statistically significant.
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Table 9
MOS Obtained From Subjective Listening Tests For Different Noise Levels

For RT=100 msec

Noise MOS before MOS after MOS for ANOVA based statistical significance

smoothing smoothing Pedersen et al. evaluation of MOS before & after smoothing

F-value Fcrit p-value

-40 dB 3.30 4.20 2.84 15.8660 4.0980 0.00029

-30 dB 3.20 4.15 2.70 19.3211 4.0980 0.00008

-20 dB 2.70 3.70 2.09 14.3939 4.0980 0.00051

-10 dB 1.80 2.55 1.84 10.6079 4.0980 0.00240

For RT=200 msec

Noise MOS before MOS after MOS for ANOVA based statistical significance

smoothing smoothing Pedersen et al. evaluation of MOS before & after smoothing

F-value Fcrit p-value

-40 dB 2.00 2.80 2.01 16.0000 4.0980 0.00028

-30 dB 2.15 2.85 1.93 12.3311 4.0980 0.00120

-20 dB 1.70 2.50 1.76 18.4242 4.0980 0.00011

-10 dB 1.30 1.90 1.49 9.7714 4.0980 0.0034

Additional listening tests have been carried out using the speech signals ran-
domly selected from the experimental results employed for the objective eval-
uation of the proposed method. We have recruited 20 volunteers to participate
the subjective listening tests, including the 15 listeners mentioned earlier. The
results have been evaluated for different window lengths in Table 7, for dif-
ferent FFT frame lengths in Table 8 and for different noise levels in Table
9. The RT has been set to 100 and 200 msec, respectively. The criteria used
in Table 6 for the MOS have also been employed here. The results given in
Table 7 show that for different window lengths at RT = 100 and 200 msec,
cepstral smoothing offers higher MOS scores, indicating that the quality of the
segregated speech signal has been improved. A similar trend can be observed
in Table 8 and 9 where using cepstral smoothing achieves a higher MOS. In
all cases the differences of MOS before and after smoothing are statistically
significant.

5.5 Comparison to other methods

In this section, we compare the proposed multistage method with two related
approaches in (Pedersen et al., 2008) and (Wang et al., 2005). In (Wang et al.,
2005) speech signals were separated from convolutive mixtures by exploit-
ing the second order non-stationarity of the sources in the frequency domain,
where the cross-power spectrum based cost function and a penalty function
have been employed to convert the separation problem into a joint diagonal-
ization problem with unconstrained optimization. Pedersen et al.’s method
combines an instantaneous ICA algorithm with the binary T-F masking for
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Table 10
Comparison results for Different Window Lengths

Window mSNRi mSNRo after mSNRo after mSNRo after ANOVA test for the difference

Length the 1st stage the 2nd stage the 3rd stage between the SNRos from the

2nd and 3rd stage

F-value Fcrit p-value

256 1.10 2.98 7.11 6.81 0.9085 3.9380 0.3429

512 1.10 3.02 7.44 6.59 7.6412 3.9380 0.0068

1024 1.10 3.01 7.11 6.09 11.4642 3.9380 0.0010

2048 1.12 2.95 6.32 5.32 12.8289 3.9380 0.0005

Table 11
Comparison results for Different FFT Frame Lengths

NFFT mSNRi mSNRo after mSNRo after mSNRo after ANOVA test for the difference

the 1st stage the 2nd stage the 3rd stage between the SNRos from the

2nd and 3rd stage

F-value Fcrit p-value

512 1.10 3.01 7.17 6.46 5.8298 3.9380 0.0176

1024 1.10 3.02 7.40 6.57 7.4946 3.9380 0.0074

2048 1.10 3.02 7.44 6.59 7.6412 3.9380 0.0068

underdetermined blind source separation, where the outputs of the ICA algo-
rithm were used to estimate the binary mask in an iterative way to extract
multiple speech sources from two mixtures.

Comparison between the proposed method and the method in (Wang et al.,
2005) is essentially equivalent to the comparison between the outputs from
the third (and/or second stage) and those from the first stage, as the method
in (Wang et al., 2005) is employed in the first stage of the proposed approach.
Therefore, without performing additional experiments, we show more results
that were obtained from the experiments already conducted in Section 5.3. In
parallel with the results shown in Tables 2, 3, 4, and 5, we show the comparison
results in terms of mSNRo in Tables 10 for different window lengths, 11 for
different FFT frame lengths, 12 for different RT values and 13 for different
noise levels. All the results were measured based on 50 random tests. Note that
mSNRo obtained after the first stage of the proposed method is approximately
calculated. This is because, according to the definition of SNRo in Section 5.1,
the masked output signals should be used for the calculation of output SNR,
while the obtained signal from the output of the first stage (Wang et al., 2005)
is not a masked signal. The results in Table 10 clearly indicate that the output
SNR has been improved at the second and third stage in comparison to the
first stage for different window lengths. The objective results from the third
stage in terms of mSNRo measurement are slightly worse than those of the
second stage, due to the smoothing operation. According to our subjective
listening tests in the previous section, the quality of the speech source from
the third stage is actually improved, due to the reduced level of audible musical
noise.
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Table 12
Comparison results for Different RT

RT mSNRi mSNRo after mSNRo after mSNRo after ANOVA test for the difference

the 1st stage the 2nd stage the 3rd stage between the SNRos from the

2nd and 3rd stage

F-value Fcrit p-value

40 1.13 3.70 13.22 9.44 100.2190 3.9380 0.0000

60 1.15 3.47 10.94 8.48 40.4630 3.9380 0.0000

80 1.14 3.36 9.42 7.75 23.1972 3.9380 0.0000

100 1.10 3.02 7.44 6.59 7.6412 3.9380 0.0068

120 1.03 2.70 6.30 5.82 3.7015 3.9380 0.0573

140 0.94 2.47 5.48 5.23 0.9266 3.9380 0.3381

150 0.90 2.42 5.29 5.11 0.5210 3.9380 0.4721

Table 13
Comparison results for Different Noise Levels

Noise mSNRi mSNRo after mSNRo after mSNRo after ANOVA test for the difference

the 1st stage the 2nd stage the 3rd stage between the SNRos from the

2nd and 3rd stage

F-value Fcrit p-value

-40 dB 1.10 3.02 7.45 6.60 7.6297 3.9380 0.0069

-30 dB 1.10 3.02 7.44 6.60 7.6186 3.9380 0.0069

-20 dB 1.10 3.02 7.43 6.59 7.5950 3.9380 0.0070

-10 dB 1.09 3.06 6.91 6.09 8.2232 3.9380 0.0051

Table 11 compares the results of the proposed method and the method in
(Wang et al., 2005) for different FFT frame lengths, where the window length
was fixed to 512, the overlap factor and RT remained the same as those used
for Table 10. From this table, we can also observe the improved performance
of the proposed method in terms of SNR measurements, as compared with the
method in (Wang et al., 2005). Subjective listening tests also show that our
results have considerably improved quality over those in (Wang et al., 2005) for
different FFT frame lengths, which are consistent with the SNR measurements.
In Table 12, comparison has been made for different values of RT , where the
window length and the overlap factor were identical to those used in Table 11,
and the FFT frame length was the same as that in 10. The results show that
the output SNR decreases with an increase in RT , and the proposed method
has better performance in terms of the averaged output SNR. Specifically,
when RT equals to 100 msec, mSNRo of the third stage is approximately 4 dB
higher than that of the first stage. The improvement is more prominant when
RT is relatively low. In Table 13 we performed experiments by considering
the microphone noise in the mixture, as discussed already in Table 5. In this
table, RT was set to 100 msec, and other parameters were the same as those
in Table 12. It can be observed that the proposed method performs better
than the method in (Wang et al., 2005) for the separation of noisy mixtures.
Specifically, comparing mSNRo between the first and third stages, we see that
there is about 3 dB improvement for noise level at -10 dB, and 3.6 dB for noise
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Table 14
Comparison of Separation Performance and Computational Cost Between the Proposed Method and Ped-
ersen Et AL.’s method

Algorithm PEL PNR ∆SNR Total Time Run time

time per test memory requirement 2

Proposed 30.56 9.73 2.50 40min 0.8min 223.28 MB

Pedersen et al. 17.14 49.33 2.64 700min 14min 255.17 MB

.

2Note that the results also include the memory required for the matlab software

level at -30 dB. The results discussed above show that our proposed method
outperforms the method in (Wang et al., 2005) in terms of SNR measurements.

To determine whether the relatively small differences of mSNRo between the
second and third stage of the proposed method are statistically significant, we
perform one-way ANOVA based F-test (Hoel, 1976) as described in Section
5.4. The testing results are given in Table 10, 11, 12 and 13. To explain how
the F-test was applied to the results, we take the case of NFFT equal to 512
(in Table XI) as an example, where mSNRo after the second and third stage is
7.17 dB and 6.46 dB respectively. Both mSNRos were calculated by averaging
50 individual SNRos obtained from the 50 random tests. Each group of 50
SNRos forms a vector, and hence two vectors can be formed from the second
and third stage. The F-value was then computed from these two vectors, which
is 5.8298. The F-values in other cases and tables were computed in the same
way. From the results in these tables, we can observe that in many testing cases
the differences of mSNRo between the second and third stage of the proposed
algorithm, although small, are statistically significant whereas in some cases
the differences are insignificant.

The performance of the proposed method is also compared with the algorithm
in (Pedersen et al., 2008) in terms of both computational complexity and
separation quality. The separation quality is measured objectively using SNR
measurement as in the above experiments, and subjectively by listening tests.
To make this comparison, we use the real room recordings that were obtained
in (Pedersen et al., 2008). The real recordings were made in a reverberant room
with RT = 400 msec. Two omnidirectional microphones vertically placed and
closely spaced are used for the recordings. Different loudspeaker positions are
used to measure the room impulse responses. Details about the recordings
can be found in (Pedersen et al., 2008) and are not given here. Clean speech
signals from the pool of 12 speakers were convolved with the room impulses
to generate the source signals (Pedersen et al., 2008). The specifications of
the computing facilities that were used to perform the experiments include In-
tel(R) Xeon(TM) 3.00GHz CPU and 31.48 GB memory. The results are given
in Table 14. The results show that our proposed algorithm is 18 times faster
than the Pedersen et al. method. Their method requires 700 minutes for 50
random tests and 14 minutes per test. In contrast our proposed method is
much faster and requires 40 minutes for 50 tests and 0.8 minutes per test. The
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time computational complexity of both methods was also approximately calcu-
lated. The order of complexity of our proposed method is O(I3(MFKlogK +
M))+O(I3KMN(2N+M))+O(MNI3K)+O(FKlogK)+O(NKF )+O(L),
where F is the number of frames 3 , L is the length of the signal, and I3 de-
notes the required number of iterations for the constrained convolutive ICA
algorithm (Wang et al., 2005) to converge. Similarly the complexity of the
Pedersen et al. method is O(FKlogKI2) + O(NKFI2) +O(NMI1I2), where
I1 is the iteration number for the INFORMAX algorithm (used as a first stage
in their method) to converge, while I2 denotes the total number of iterations
for the Pedersen et al. method to segregate the speech mixtures. Although the
results for ∆SNR are comparable, listening tests given in Table 6 suggest that
our results have a better quality than those in (Pedersen et al., 2008). Some
demos are available on the website (Wang, 2010) for both real and artificial
recordings.

6 Conclusion

The proposed approach consists of three major steps. A convolutive ICA al-
gorithm (Wang et al., 2005) is first applied in order to take into account the
reverberant mixing environments based on a convolutive unmixing model. Bi-
nary T-F masking is used in the second step for improving the SNR of the
separated speech signal, due to its effectiveness in rejecting the energy of in-
terference by assigning zeros to the T-F units in the masking matrix in which
the energy of the interference is stronger than the target speech. The artifacts
(musical noise) due to the error in the estimation of the binary mask in the seg-
regated speech signals are further reduced by applying the cepstral smoothing
technique. Compared with smoothing directly in the spectral domain, cesp-
tral smoothing has the advantage of preserving the harmonic structure of the
separated speech signal while reducing the musical noise to a lower level by
smoothing out the unwanted isolated random peaks.

In comparison to (Wang et al., 2005), the considerable improvement achieved
by the proposed method in terms of both objective measurements using SNR
and subjective listening tests is mainly due to the introduction of the binary
T-F masking operation and the cepstral smoothing. The binary masking con-
tributed mostly to the improvement of interference cancellation, and cepstral
smoothing further improves the perceptual quality of the separated speech. For
a reverberation time of 100 msec, the proposed algorithm achieves approxi-
mately 4 dB SNR gain over a typical convolutive ICA algorithm in (Wang
et al., 2005). Compared with (Wang et al., 2005), the computational complex-
ity of the proposed algorithm is higher due to the additional processing of

3 If there is no overlap between adjacent frames then F ·K ≈ L.
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IBM and cepstral smoothing. It is however still computationally efficient as
FFT and its inverse are used for the transforms in all the steps.

Note the difference between our proposed method and Pedersen et al.’s method
(Pedersen et al., 2008) despite a similar combination of an ICA algorithm with
the IBM technique. First, our proposed algorithm directly addresses the con-
volutive BSS model based on the frequency-domain approach, while Pedersen
et al.’s method is based on an instantaneous model and an instantaneous ICA
algorithm, even though their algorithm has also been tested for convolutive
mixtures. Second, the algorithm in (Pedersen et al., 2008) is iterative, which is
computationally demanding. Moreover, we have introduced cepstral smooth-
ing, which has the advantage of reducing the musical artifacts caused by the
IBM technique.

In future work we plan to extend the proposed algorithm to underdeter-
mined cases. Another important issue is how to deal with highly reverber-
ant speech mixtures. One could analyze reverberation effects and reduce such
effects present in the microphone signal before applying the ICA and IBM
approaches. This issue will be addressed in our subsequent research.
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