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On the Detection of Pitch Marks Using a Robust

Multi-Phase Algorithm
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Abstract

A large number of methods for identifying glottal closure instants (GCIs) in
voiced speech have been proposed in recent years. In this paper, we propose
to take advantage of both glottal and speech signals in order to increase the
accuracy of detection of GCIs. All aspects of this particular issue, from deter-
mining speech polarity to handling a delay between glottal and corresponding
speech signal, are addressed. A robust multi-phase algorithm (MPA), which
combines different methods applied on both signals in a unique way, is pre-
sented. Within the process, a special attention is paid to determination of
speech waveform polarity, as it was found to be considerably influencing the
performance of the detection algorithms. Another feature of the proposed
method is that every detected GCI is given a confidence score, which allows
to locate potentially inaccurate GCI subsequences. The performance of the
proposed algorithm was tested and compared with other freely available GCI
detection algorithms. The MPA algorithm was found to be more robust in
terms of detection accuracy over various sets of sentences, languages and
phone classes. Finally, some pitfalls of the GCI detection are discussed.
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Figure 1: (a) short segment of voiced speech signal, (b) corresponding EGG waveform
with highlighted glottal closures.

1. Introduction

The modern pitch-synchronous methods of speech processing [1] rely on
the knowledge of moments of the glottal closures. These moments are called
glottal closure instants (GCIs) or pitch marks. Pitch mark can be defined
as the location of a speech signal amplitude extreme (peak or valley) that
corresponds to the moment of glottal closure. In Fig. 1 part (a), a segment of
voiced speech is shown, where the positions of pitch marks are depicted and
part (b) demonstrates the corresponding electroglottograph (EGG) signal,
in which positions of glottal closures are highlighted. The electroglottograph
is a device which enables non-invasive measurement of the time variation of
the contact between vocal cords without affecting speech production. For
more detailed information refer to [2]. It is obvious that pitch marks are
present only in voiced segments of speech as there is no vocal fold vibration
in unvoiced segments of an utterance.

Pitch marks are generally used in pitch-synchronous speech synthesis
methods (e.g. PSOLA, some kinds of sinusoidal synthesis, etc.) [3]-[6], where
they ensure that speech is synthesized in a consistent manner. The con-
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catenation of waveforms somewhere in between prominent amplitude events,
corresponding to fundamental frequency periods, is likely to result in per-
ceived phase discontinuities, which is a problem often mentioned in OLA-
based methods [7]. Also, no matter that units are concatenated in pitch-
synchronous way, inconsistent labeling (one with pitch marks assigned to
peaks and the second to valleys, or vice versa) leads to phase discontinuities.

Pitch marks can also be utilized in a number of speech analysis and
processing methods including the calculation of cycle-based analysis mea-
sures [8], pitch-synchronous speech enhancement [9], automatic phonetic
segmentation [10] or design of concatenation cost functions in unit selec-
tion speech synthesis [11]. Another application is in clinical diagnosis and
treatment of voice pathologies. Knowing positions of glottal closures, a very
accurate estimation of an f0 contour can be obtained and used in voice con-
version techniques [12], [13] or for intonation recognition [14].

However, the detection of glottal closure instants in speech has two ma-
jor drawbacks: it is not very robust if performed automatically, and time-
consuming if performed manually [15]. An alternative possibility is to mea-
sure the glottal activity directly using an electroglottograph (also called
laryngograph or EGG), as mentioned above, and derive positions of pitch
marks from its recordings.

It should be noted at this point that the current freely available pitch
marking algorithms are inclined to be error-prone even if glottal signals are
available, which is the case of many speech corpora intended for the purposes
of high-quality speech synthesis.

Besides EGG and speech signals, LPC residual signals, despite suffering
from some generally known imperfections, can also be used for pitch marking,
especially in cases when EGG recordings are not available. Let us remark,
however, that using the glottal signals, superior results can be expected since
they are not burdened by modifications that happen to a flow of speech in
the vocal tract.

In recent years, various methods of pitch marking have been proposed,
including the wavelet-based analysis [16]–[18], the application of nonlinear
system theory [19], threshold-based and/or peak picking methods [20]–[23],
and group delay methods [24]–[27]. This list of related works could be ex-
tended, but it is not limited to [28]–[31].

Before any pitch marking algorithm is employed, it needs to be decided
whether the pitch marks should be placed at peaks or at valleys of a speech
waveform. As discovered during our experiments, this decision is very impor-
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tant for the performance of a pitch marking algorithm in terms of its accuracy
and robustness. In [32] the problem of peak/valley decision making is solved
by comparing the f0 contour calculated using AMDF (Average Magnitude
Difference Function) and f0 contours derived from valley and peak-based
pitch mark sequences. The decision depends on the deviation between these
contours. This particular issue was also addressed in [33] or [34].

In Section 2, we propose a simple method for peak/valley decision making
based on a confrontation of peaks and valleys of a speech waveform [35].

The next step is to find accurate locations of pitch marks. As mentioned
above, extracting pitch marks from the EGG signals is much simpler than
using speech waveforms alone. In Section 3, we briefly describe a common
method to detect pitch marks, henceforth referred to as “the baseline al-
gorithm” (BLA), that was formerly used at our department, and which is
highly dependent on a quality of the EGG signals. Note that these signals
tend to suffer from imperfections caused, for example, by improper placement
of measuring electrodes on a speaker’s throat due to an inconvenient shape of
his/her larynx. Some imperfections may also occur during the production of
voiced fricatives when the pressure ratios in the vocal tract cause imperfect
closing of vocal cords, which is normally not observable in the speech signal
itself. The same phenomenon can be observed in aspirated speech segments
(see Fig. 6). Thus, the detection of pitch marks based on the EGG signals is
not always as straightforward as it may seem. We have observed some con-
siderable weaknesses of BLA resulting from such EGG signals imperfections,
which led us to the implementation of a new method described in this paper.

In Section 4, steps of a new robust algorithm based on several methods
of pitch tracking and pitch marking [36] are described. This algorithm works
in several phases, utilizes a dynamic programming routine to find the best
sequence of pitch marks and uses both the EGG and the corresponding speech
signals, taking advantage of feasible features of both. The novelty of this
algorithm lies within a unique combination of known approaches resulting in
a robust method characterized by high accuracy of the pitch mark detection
across various speakers, languages and recording conditions.

Section 5 serves to demonstrate the performance of the proposed method
in comparison to other freely available algorithms. In addition, the issue
of variance of delays between EGG and corresponding speech signals is also
addressed in that section.

Finally, in Section 6 we draw some conclusions and outline our plans for
future work.
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Figure 2: Polarity mismatch. In the upper part there is a segment of the Sentence1
(negative polarity), while in the lower part there is a segment cut from the Sentence2
(positive polarity).

2. POLARITY OF SPEECH SIGNAL

2.1. Motivation

During the development of our pitch marking algorithm, a large variation
was observed in its performance. We have discovered that this was to a great
extent due to a polarity mismatch present in our speech corpus [37]. This
mismatch is illustrated in Fig. 2, where speech segments extracted from two
sentences of different dominant polarity are shown. This observation led to
an idea to develop the peak/valley decision making method that is described
in the following subsection.

The reason why the performance of any pitch marking algorithm can be
affected by setting the wrong polarity is that there can be more than one
dominant signal amplitude extreme in the vicinity of a prospective location
of a pitch mark, which results in a “spurious” jitter. To make matters worse,
the local extreme which corresponds to the moment of glottal closure does not
need to be the one with the largest amplitude. The simplest way of avoiding
such an ambiguity is to determine the dominant polarity of a speech signal
before pitch marking itself because then there is, in most cases, only one or
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two at most dominant signal amplitudes to choose from when placing pitch
marks.

2.2. Peak/Valley Decision Making Method

As an input to the polarity detection algorithm, the maximum f0 of the
speaker needs to be estimated. Since the recordings contained in a speech
corpus for the concatenative speech synthesis are made by a single speaker,
this task can easily be accomplished manually. The estimate does not need
to be very accurate, because, as described below, it only serves to set the
signal in a vicinity of selected peaks to zero.

The proposed method can be summarized as follows. Firstly, the speech
waveform needs to be pre-processed. The aim of the pre-processing is to
reduce higher frequencies present in unvoiced segments and any extraneous
noise. This is accomplished by the low-pass filtering of the input speech
signal. The goal of this filtering is to remove high frequencies and preserve
the valleys and peaks in voiced segments (see Fig. 3), which is necessary for
later stages of the algorithm.

Having the pre-processed speech waveform, the next step of the proposed
method is to confront speech signal peaks and valleys. In this confrontation
we use both the pre-processed speech waveform (speech) and its absolute
value (abs speech):

abs speech = |speech| . (1)

The method can be summarized as follows:

1. Initialize counters peak count and valley count with zero values.

2. Find the global maximum of the abs speech. Denote its time coordinate
as tm.

3. If the position of this maximum corresponds to a position of a peak in
the speech, increment the counter peak count, otherwise the valley count
is incremented.

4. To remove other peaks in the vicinity of tm, set the value of abs speech
to zero in the range:

[tm − 2/3 ∗ T0, tm + 2/3 ∗ T0], (2)

where T0 = 1/f0 and f0 is the estimate of a speaker’s maximum value of
the fundamental frequency acquired manually. The signal is set to zero
within the given range to avoid selection of spurious signal amplitude
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Figure 3: Raw and pre-processed speech waveform. The dotted lines serve to illustrate
how noisy speech segments could influence the peak/valley decision. The signal amplitude
extremes in noisy frames, which exceed the upper line or decrease below the lower line,
would be erroneously counted, which would considerably affect the performance of the
algorithm.

extremes, which do not correspond to glottal closures, and to allow for
selection of neighbouring “true” peaks/valleys in the next iteration.

5. Repeat steps 2, 3 and 4 until the RMS energy value of the abs speech
is lower than thresh ∗ rms speech, where the rms speech is the RMS
energy value of the speech. The recommended value of the thresh
constant lies in the range [0.2, 0.7], the higher this value is the faster
the peak/valley decision is made.

In fact, the algorithm only compares signal peaks and valleys in terms
of their amplitudes. For the final peak/valley decision, we also calculate the
overall energy above e above and below zero e below of the signal speech.
These energy values are used as auxiliary predictors. If the peak count is
higher than the valley count and e above is higher than e below, peaks are
believed to be convenient for pitch marks placement and vice versa. In the
case that the values of the counters are not in accordance with the values of
energies, only the counters are used to make a decision. Such decisions are
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Table 1: Summary of experiment results. The values in the table are accuracies of au-
tomatic pitch marking in percentage. “Peak” means peak-based pitch marks, “Valley”
means valley-based pitch marks. The polarity of tested sentences was negative.

Peak Valley
CZ-M2 88.18 98.10
CZ-F 87.20 97.74
SK-F 88.21 97.19
GE-M 86.04 91.01

then marked as uncertain.

2.3. Evaluation of Peak/Valley Decision Making Method

Rather than experiments, some results of a practical utilization of the
proposed method are presented in the first part of this subsection. The
method was employed to check and unify the polarity of the newly recorded
speech corpus [37]. The corpus was built specially for the purposes of unit-
selection text-to-speech synthesis as it consists of a large number of both
phonetically and prosodically rich sentences, their recordings (both speech
and glottal signals) and both orthographic and phonetic annotations (totally,
12,277 utterances were recorded, almost 18hours of speech excluding pauses).
More details about the corpus can be found in [37]. The results were more
than satisfactory — 98.14% correct decisions, 1.36% correct but uncertain
decisions and only 0.5% errors.

In addition, an experiment was designed to measure how the peak/valley
decision influences a performance of a pitch marking algorithm. For this pur-
pose we used the MPA algorithm described in Section 4; nevertheless, the
other methods listed in Section 5.2 behave similarly regarding wrong polar-
ity selection for pitch marking. The accuracy of the algorithm was tested
with respect to the polarity of pitch mark positions — either peaks (local
maxima) or valleys (local minima) of speech waveforms. The experiment
was conducted in three languages — Czech (CZ-M2 male and CZ-F female),
Slovak (SK-F) and German (GE-M). In 8 sentences, 2 of each set, the pitch
marks were placed manually by the authors (see Sec. 5.1 for more details) re-
sulting in a set containing about 7,000 reference pitch marks. The sentences
were randomly selected from corpora recorded for the purposes of concate-
native speech synthesis. In each sentence the pitch marks were placed at
peaks and valleys separately. Hence, we obtained two pitch mark sequences
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Figure 4: Block diagram of the baseline pitch mark detection algorithm.

— peak-based pitch marks and valley-based — for each sentence. Note that
the polarity of all sentences used in this experiment was the same and it was
negative (i.e. valleys are more appropriate for pitch marks placement).

The summary of the results can be seen in Tab. 1. The average loss of
accuracy if the pitch marks were placed with incorrect polarity setting (i.e.
placing to peaks when the overall polarity of speech signals was negative) was
8.6%. The accuracy was measured using the equation (7), which is explained
in Section 5.3.

3. BASELINE ALGORITHM AND TASKS TO TACKLE

In the first part of this section we describe a fast and simple pitch marking
algorithm based on the thresholding of the difference function applied to the
glottal signals, henceforth referred to as Baseline Algorithm (BLA). In the
second part, we outline its main weaknesses, which were the motivation for
the development of a new algorithm, described in the next section.

3.1. Description of the Baseline Algorithm

As glottal (EGG) signal (capturing the vocal fold vibration during speak-
ing) is very suitable for the purposes of GCI detection, it is often used as
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the input of the pitch marking systems. Despite its useful properties, it is
desirable to highlight its features with some preprocessing. In our system,
the difference of the glottal signal is used as the input of the pitch marking
algorithm. The difference signal emphasizes the moments of glottal closures
since it reflects the rate of changes of the status of the vocal cords. There are
usually large sharp negative peaks in the difference signal which correspond
to the moments of glottal closures. Moreover, using the difference signal,
phenomena caused by improper vertical placing of the electrodes across the
neck (not centered on the larynx) are also reduced.

The core of the baseline algorithm is in a thresholding of the difference
signal which, in fact, removes slow changes of the status of the vocal cords.
All positive values and values lower than a given threshold (the global RMS
value of the difference signal in our case) are set to zero. All nonzero values
in the thresholded signal form then a set of candidates for the pitch marks
placement.

The next procedure performs pitch mark smoothing. It examines the
pitch mark candidates in the thresholded signal and tries to avoid doubling
and halving pitch mark placements by removing the pitch mark candidates
within one pitch period (i.e. the candidates which are too close to each
other), “isolated” candidates (surrounded by regions of unvoiced speech) and
possibly also by inserting pitch marks which were removed incorrectly by
previous thresholding. After the pitch marks smoothing stage, the nonzero
samples that remain in the “smoothed” signal correspond to the positions of
GCI in the glottal signal.

The last step of the baseline algorithm takes into account a time shift
between glottal and speech signal (see Fig. 7), which appears due to the
difference in positions where these signals are acquired. While the glottal
signal is measured using electrodes placed around the speaker’s larynx, the
speech signal is acquired by a microphone positioned in front of his/her lips.
The delay tends to vary with speakers and depends on how far the speaker
is from the microphone and on the velocity of the air flow going through the
vocal tract, i.e. on the speaker’s vocal tract dimensions.

To obtain the positions of pitch marks, which is crucial for concatenative
speech synthesis systems, the GCIs detected in glottal signal need to be
shifted into speech. This shift needs to be consistent across all utterances to
avoid phase mismatches at concatenation points at synthesis runtime, and
that is why signal peaks or valleys are reasonable choices. Many methods
consider this shift between glottal and speech signal static but the opposite
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is the case. In the previous versions of our pitch mark detection system, an
average static shift of 500µs was performed to cope with the time lag but
it resulted in phase mismatches at concatenation points. In the BLA, the
performance of which is presented in this paper, a range for searching for an
extreme in the speech signal was set as 〈ts, ts + 0.3T0〉, where T0 is the local
estimate of a fundamental pitch period and ts is the time of the detected GCI.
More details about the baseline pitch mark detection algorithm, excluding
dynamic shift, can be found in [38]. The scheme of the BLA is shown in
Fig. 4.

3.2. Tasks to tackle

As the BLA proved to be very sensitive to a quality of the glottal sig-
nals, a more robust algorithm had to be developed. We illustrate the main
weaknesses of the BLA in the following paragraphs.

3.2.1. False Peaks in the Course of Difference Function

Fig. 5 shows a section of the glottal signal accompanied by the corre-
sponding thresholded difference function. The false peaks in the course of
the thresholded difference function and the corresponding edges in the course
of the glottal signal are highlighted by solid boxes. Unfortunately, these false
peaks cannot be removed by thresholding because it would lead to the re-
moval of correct peaks in the segments of low amplitude glottal signal as
well. This failure causes placement of spurious pitch marks.

3.2.2. Imperfect Closing of Vocal Cords

Another problem of the method based on difference function is demon-
strated in Fig. 6. It is quite obvious that pitch marks should be placed in
all speech signal valleys in the shown voiced section. Examining the glot-
tal signal and the corresponding thresholded difference function, we can see
that no pitch mark candidates are generated in the second half of the section
shown in the figure. This course of EGG waveform is due to the imperfect
closing of vocal cords, as mentioned in Section 1.

3.2.3. Shift between Glottal and Speech Signal

As stated above, there is a time shift between glottal and speech sig-
nals varying with speakers (to be precise, their vocal tract dimension), and
the placement of the measuring equipment. Some additional shift may be
introduced by mastering (a process of speech signal enhancement based on
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Figure 5: (a) EGG waveform, (b) Thresholded difference of EGG waveform. Solid boxes
serve to highlight false peaks in thresholded difference function which are caused by im-
perfection of EGG signal.

filtering) of recorded signals. The typical value of the delay is less than 1 ms,
according to our experiments, but sometimes much longer delays may be ob-
served (see the right part of Fig. 7 and Tab. 6), which the BLA is not able
to handle.

4. A ROBUST MULTI-PHASE PITCH MARK DETECTION AL-
GORITHM

In this section we describe the design of a new algorithm for pitch mark-
ing — a robust multi-phase pitch mark detection algorithm (MPA). This
algorithm is based on a unique combination of several known approaches, re-
sulting in a more robust and consistent method, which seems to outperform
other available pitch marking algorithms (see Sec. 5.4). The main idea is to
utilize both glottal and speech signal for pitch marking. The scheme of the
MPA is shown in Fig. 8.
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Figure 6: (a) Speech waveform with pitch marks, (b) EGG waveform, (c) Thresholded
difference of EGG waveform. In part (a), the missing pitch marks are highlighted by
dotted lines. In part (b), the imperfect closing of vocal cords is demonstrated in EGG
waveform (aspirated speech in this case).

4.1. Voicing estimation

The very first step of the proposed method is the estimation of voicing.
The voicing contour is very important for the placement of pitch marks in
segments where no edges are found in the glottal waveform (see Fig. 6). In
such segments, the speech waveform is used to find a sequence of prospective
pitch mark candidates. We make use of two voicing contours in further steps
of the algorithm. One is obtained directly from the glottal waveform and one
from the filtered speech waveform.

The two voicing contours are used as a base to define a confidence mea-
sure. There is a high confidence in pitch marks placement in locations which
are voiced according to both of these contours. If any frame is marked as
voiced according to only one of the voicing contours, the confidence is lower.
The least, but still some, confidence is obtained for frames which are voiced
only according to the EGG based contour. It is obvious that there is no
confidence in placing pitch marks in frames which are marked as unvoiced
in both contours. The advantage of having two voicing contours obtained
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Figure 7: (a) Speech waveform with pitch marks, (b) Thresholded difference of EGG
waveform. Delays between speech and glottal waveform can vary in a large range. In the
left part there is almost no delay, while in the right part the time lag is about 5 ms.

in different ways is also that the voicing estimation method can fail in some
frames and thus it is more robust to use both EGG and speech waveform for
estimation, but separately.

For the EGG based frame voicing classification we use values of short-time
energy function, zero-crossing function and YIN algorithm [39] as predictors.
To obtain a voicing contour based on the speech waveform, the YIN algorithm
is used solely. Both voicing contours are evaluated on short-time basis, the
window length is 20 ms and the overlap is a half of the window length. One
of the useful features of the YIN method is that each estimate is given a
confidence and we take advantage of it in both voicing and f0 estimation,
which is the next step of our algorithm.

4.2. Fundamental frequency estimation

Having obtained the voicing contour, the next step is to estimate the f0

contour. We have decided to utilize the YIN algorithm [39] for this pur-
pose, as one of its features is that the f0 estimate for each frame is given a
confidence, so that uncertain estimates can be subsequently removed from
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Figure 8: Block diagram of the multi-phase pitch mark detection algorithm.

the contour. The YIN algorithm is based on the well-known autocorrelation
method which is modified in order to enhance its performance. In our im-
plementation, a glottal waveform is used as the input, because it does not
contain higher frequencies.

In the frames where the YIN algorithm gives uncertain results the thresh-
olded difference function of glottal signal is utilized. The f0 estimate is found
as an inverse of the median value of differences between peaks of the differ-
ence function. This estimation is used only if the number of peaks in a given
frame is higher than a minimum number nmin (this value depends on the
frame length and the expected f0 range — for f0 ≈ 200 Hz we use nmin = 4).

Sometimes both of these approaches fail even if the given frame is voiced.
In this case, the f0 estimate is found by interpolation using f0 values in the
neighbouring frames.
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4.3. Generation of pitch mark candidates

Having the estimates of both pitch and voicing contours, we continue with
the generation of pitch mark candidates. In this phase, two approaches are
applied to obtain a set of pitch marks candidates containing three candidate
positions for each prospective pitch mark.

4.3.1. Modified difference function method

We use the modified BLA to generate a sequence of “difference” can-
didates. The modification consists in pitch mark smoothing (see Sec. 3.1)
when the pitch contour estimated in the previous phase is taken into ac-
count instead of applying general thresholds for detection of “doubled” and
“isolated” candidates. This allows us to partially solve the problems of false
peaks described in Sec. 3.2.1.

Since there is also the problem of missing candidates (see Sec. 3.2.2),
the voicing contours and the low-pass-filtered speech signal are used to add
missing candidates into the “difference” sequence. The objective of filtering is
to avoid generating candidates in unvoiced speech segments. The procedure
of generating additional candidates can be summarized as follows:

1. The first and the last candidate is found in every subsequence of “dif-
ference” candidates. These subsequences are separated by unvoiced
intervals.

2. To find the prospective successor of the last candidate in the given
subsequence, the search region defined as

[c(i) + 0.8T
(i)
0 , c(i) + 1.4T

(i)
0 ], (3)

is explored, where c(i) is the last candidate in a subsequence and T
(i)
0

is the local estimate of the pitch period.

3. If there is a peak in this region, the amplitude of which is higher than
the voiced threshold thrv, it is added into the candidate sequence. This
procedure is repeated until all peaks to the right of the last candidate
are found. In the same way, all predecessors of the first candidate in
the subsequence can be found.

The constants 0.8 and 1.4 (step 2) were found by a grid search mechanism
maximizing the overall accuracy (7) on the half of the testing set presented in
this paper and their incorporation was motivated by a need to handle minor
imperfections in the local pitch period estimates and also jitter. In Fig. 9,
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Figure 9: Distribution of the ratios of lengths of consecutive pitch periods. The diffPeriod
was defined as diffPeriod=pi+1/pi, where pi is the length of the i-th pitch period.

the distribution of ratios of all consecutive pitch periods extracted from the
manually labeled data is shown, explaining partly why these particular values
were found to be the best.

The value of constant thrv depends on the voicing state of the frame in
which the candidate is to be placed, as described in Sec. 4.1. Based on the
manually placed pitch marks we found the optimal range for this threshold
as thrv ∈ 〈0.35 ∗ RMS, 1.1 ∗ RMS〉.

4.3.2. Simple pitch marking method

To generate two more candidates for each final pitch mark, we use the
Simple Pitch Marking Method (SPM) [32]. In the case that there are two
local extremes of the speech signal in a region where one final pitch mark is
to be placed, and the lower one reaches at least 80% of the amplitude of the
higher one, both of them are used as candidates. Otherwise, only the highest
one is used as a doubled candidate.

The advantage of this simple method is that all prospective pitch mark
positions are marked. If we put “difference” candidates and candidates ob-
tained by SPM together, we have a set of candidates in which the final pitch
mark sequence can be found. Note that we have at least three candidate
positions for each final pitch mark (either three single, or one doubled and
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one single, or, very rarely, one tripled).

4.4. Finding of the final pitch mark sequence

Before we start searching for the final sequence, all candidates need to be
given a score. The scoring of candidates is based on two characteristics of
pitch marks: the amplitude of speech signal at pitch mark position should be
large (amplitude score) and the sequence of pitch marks should correspond
to the estimated f0 contour (position score).

We define a relative amplitude measure of each candidate i in a search
region j as:

s̄i(j) =
hi(j)

hmax
, (4)

where hi(j) is the amplitude of the candidate and hmax is the absolute value
of the local extreme in the search region. This measure is then normalized
[32] so that the sum of amplitude scores of candidates in a given search region
is equal to 1.

The position score of two candidates is defined in the same way as de-
scribed in [32]

t̄(i, j) =
1

1 + |f0 − fs

d
| , (5)

where f0 is the local estimate of fundamental frequency; fs is the sampling
rate and d is the distance between candidates in samples. Using this measure
the position score of the candidate j1 in search region i and candidate j2 in
search region i + 1 can be defined [32], as follows :

ti(j1, j2) =
t̄i(j1, j2)
3∑

k=1

t̄i(j1, k)

. (6)

The total candidate score is then defined as the sum of its amplitude score,
position score and the amplitude score of its successor. It means that each
candidate in the search region has three scores as it has three prospective
successors. The amplitude scores of the successors are included because of
the presence of “doubled” candidates. In the case that two candidates are
placed at the same position, their amplitude scores are the same. Their final
score would be then affected only by position scores towards their successors,
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which is sensitive to values of f0 taken from the overall contour. Including the
amplitude scores of successors leads to higher robustness of the final score.
Once the sequence of candidates is scored, the final sequence with the highest
total score is searched for by means of dynamic programming, similarly as
in [32].

4.5. Post-processing

Occasionally, some errors in the final pitch mark sequence may occur.
This is because we use the sequence of “difference” candidates to determine
search regions for final pitch marks, which may result in “doubled” and
“missing” errors.

Fortunately, the detection of these errors is very simple. We use two
thresholds to find these errors in pitch mark sequence, “doubled” threshold
thrd = 0.5 and “missing” threshold thrm = 1.5. If the distance between
two successive pitch marks is higher than thrm · f0 or less than thrd · f0, the
missing or doubled error is detected respectively.

4.6. Scoring of the final sequence

The advantage of the proposed algorithm is that, along with the final
pitch mark sequence, a score sequence is generated as well. Consequently,
we have some information about how the final pitch mark sequence was
generated and which pitch marks are likely to be uncertain.

The final pitch mark score is derived from the amplitude candidate score.
We raise this value by 5% if the final pitch mark comes from the original
“difference” candidates sequence (i.e. sequence found only on the base of the
glottal waveform). If the final pitch mark is placed in the voiced speech seg-
ment according to the speech based voicing contour (see Fig. 8), we raise its
confidence by 10%. These raised percentage values were set experimentally.

To address the second demand on the pitch mark position (i.e. position
with regards to its neighbours), we use the position candidate score. We
separately score the distance between the final pitch mark and its predecessor
and the distance between the final pitch mark and its successor.

5. EXPERIMENTS

In this section we present the results of experiments which were con-
ducted to test the performance of the proposed method. The aim of these
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experiments was to find a quantitative assessment of the performance of the
proposed algorithm in comparison with some other, freely available, methods.

We have also done an experiment to find optimal time shifts for transitions
between GCIs and selected amplitude extremes (peaks or valleys) in speech
signal waveforms. The results are presented in paragraph 5.4.4.

5.1. Test material

To find out how the proposed algorithm performs across various lan-
guages, recording conditions and pitch ranges, we have conducted an ex-
periment using nine sets of sentences spoken by various speakers — Czech
female (CZ-F), Czech male (CZ-M1, CZ-M2), German male (GE-M), Eng-
lish male (EN-M), French female (FR-F), and Slovak female (SK-F). In ad-
dition, a set of sentences which contained “tasks to tackle” described in
Section 3.2 (CZ-TT), and a set of sentences uttered in a happy speaking
style (HA-F) were tested. The set of happy speaking style sentences was
included because the dynamics of their f0 contours is higher when compared
to neutral sentences, which may make the pitch marking task more difficult.
Each of the sets contained ten sentences, except CZ-TT, which contained
only three sentences. Note that the sentences used for the evaluation of the
peak/valley decision making method described in Sec. Sec:PeakValleyEval
were taken from these sets.

All these sentences were labeled manually with pitch marks being a refer-
ence for our experiments. The total number of manually placed pitch marks
was 51,200 in 83 sentences containing natural distribution of all phoneme
categories. To ensure that the manually placed pitch mark sequences were
unbiased, the pitch marks in three of those sentences were placed indepen-
dently by two experts. The average discordance was only 4 pitch marks per
sentence (including operations shift, insert and delete — see Sec. 5.3).

5.2. Methods tested

In our experiments we have compared the proposed algorithm (MPA), the
baseline algorithm (BLA) described in Section 3.1, the program pitchmark

implemented in Edinburgh Speech Tools Library1 (EST), Speech Filing Sys-
tem2 (SFS), and Praat [23].

1http://www.cstr.ed.ac.uk/projects/speech tools
2http://www.phon.ucl.ac.uk/resource/sfs
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Table 2: Description of the Praat methods used for pitch marking.
Input signal Sound to Pitch Pitch to PointProcess Label

EGG To Pitch... To PointProcess (peaks) PIP-G
Speech To Pitch... To PointProcess (peaks) PIP-S
Speech To Pitch... To PointProcess (cc) PIC-S
Speech To Pitch (cc)... To PointProcess (peaks) PCP-S

SFS was tested in three ways. First, we found the instants of glottal
closures in EGG waveform and moved these instants into positions of speech
signal extremes in the same way as in BLA (SFS-G). Another set of pitch
marks was found only on the base of knowledge of speech waveform and f0

contour derived from glottal waveform (SFS-S). The last but not least SFS
set of pitch marks (SFS-HQ) was determined using the HQTx program, the
output of which was aligned with speech.

In the Praat system there are various methods to create a “Pitch Ob-
ject” from a selected “Sound Object”. Although the method “Sound: To
Pitch...” is preferred for speech signals, we have also tested the others. A
“Pitch Object” can then be converted into “PointProcess” to find locations
of high amplitude using methods “Sound&Pitch: To PointProcess (cc)” or
“Sound&Pitch: To PointProcess (peaks)”. The latter method gives more
variable periods [23]. In this paper we present only the results of the best
four combinations (see Table 2). The performance of other methods was
found significantly worse in our experiments.

5.3. Performance measure

To compare a sequence of manually detected pitch marks (SR) with a se-
quence of automatically detected pitch marks (ST ), a dynamic-programming
algorithm (modified Levenshtein distance of sequences of time instants) was
employed. This algorithm searches for the minimum number of transforma-
tions needed to derive the sequence SR from the sequence ST . The transfor-
mations considered are substitution (S), deletion (D) and insertion (I) [38].
The accuracy of automatic pitch mark detection is defined as follows:

Accuracy =
NR − NS − ND − NI

NR
× 100[%], (7)

where NR is the number of pitch marks in the reference sequence SR, NS

is the number of substitutions, ND is the number of deletions and NI is

21



  

Table 3: Summary of the experiment results on Czech language. “Acc” means accuracy
and the values of ND, NI and NS are in cases per sentence.
CZ-M1 Acc[%] ND NI NS CZ-F Acc[%] ND NI NS

EST 85.41 54.4 3.6 9.1 EST 84.07 97.2 7.4 13.7
BLA 94.78 1.5 17.0 4.4 BLA 94.76 1.4 25.9 6.4
SFS-G 96.28 7.0 7.9 2.6 SFS-G 90.59 8.8 22.7 14.6
SFS-S 77.57 106.7 13.5 4.4 SFS-S 87.07 99.7 18.7 8
SFS-HQ 91.16 36.2 1.4 5.3 SFS-HQ 83.37 60.0 3.8 20.95
PIP-G 89.81 38.8 1.7 9.3 PIP-G 89.86 68.7 2.3 11.9
PIP-S 89.39 33.8 10.0 3.8 PIP-S 90.59 22.6 13.7 9.8
PIC-S 88.74 23.3 18.7 7.4 PIC-S 87.28 26.8 21.6 28.0
PCP-S 88.67 35.0 9.7 5.7 PCP-S 91.34 43.5 13.4 9.4
MPA 96.19 5.4 5.0 4.6 MPA 97.39 7.9 5.1 5.7

CZ-M2 Acc[%] ND NI NS CZ-TT Acc[%] ND NI NS

EST 88.03 87.6 5.5 11.5 EST 73.25 79.7 20.7 35.7
BLA 94.48 3.93 19.2 7.7 BLA 93.28 0.7 13.4 8
SFS-G 97.97 7.1 16.7 11.3 SFS-G 54.45 8.3 32 177.7
SFS-S 80.81 97.5 19.3 7.0 SFS-S 69.15 49.7 33.3 74.7
SFS-HQ 94.37 51.4 2.8 14.5 SFS-HQ 54.67 70.3 14.7 150
PIP-G 94.14 54.9 2.9 10.4 PIP-G 91.90 29 1 19.3
PIP-S 92.67 39.7 13.4 8.9 PIP-S 90.59 34 3.7 12
PIC-S 90.39 22.3 20.9 29.2 PIC-S 58.06 19.7 9.7 165
PCP-S 93.37 38.6 11.7 8.3 PCP-S 93.01 26 3 7
MPA 98.02 7.6 4.0 4.8 MPA 98.42 2.3 2.7 5

the number of insertions involved in the comparison process. If a distance
between a pitch mark in SR and ST is lower than 10% of a local pitch period,
no penalty is given. The value 10% seems to be reasonable since the results
presented in [1] suggest that such a pitch marks misplacement does not affect
the quality of synthetic speech (speaking about PSOLA-based synthesis).

5.4. Experiment Results

5.4.1. Overall accuracy comparison

The results of our experiments performed on neutral sentences across
various languages and speakers are summarized in Tab. 3 and Tab. 4. In
Tab. 5, the results obtained on sentences uttered in a happy speaking style
are shown. For clarity, we also present a box and whisker plot, see Fig. 10,
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showing the comparison of the overall performance of all the tested methods
across all sentences. Since the notch of the MPA plot does not overlap with
any other, there is a strong evidence [40] that the MPA outperforms other
algorithms under evaluation in terms of the overall accuracy (7).

It is also obvious from the tables that the MPA algorithm is more accurate
than other methods on all sets except the CZ-M1 and the FR-F, where
the SFS-G and the BLA methods, respectively, give slightly better results.
Nevertheless, the difference in performance between these two methods and
the MPA algorithm is not statistically significant on these sets. The results
suggest that the MPA algorithm is very robust as its lowest performance was
93.25% on French data.

Regarding the set of sentences uttered in a happy speaking style, we
had expected somewhat inferior performance of all the methods due to the
higher dynamics of the f0 contours but this hypothesis was supported by
the obtained results only in part. Surprisingly, the performance of methods
PIP-G, PIP-S and PCP-S was slightly better than on neutral sentences.

The obtained accuracies of methods SFS-G and SFS-HQ are also notable
as the performance of these methods was significantly deteriorated by the
nature of the sentences. Nevertheless, we have found that their performance
can be improved by setting a larger range for searching amplitude extremes
in the glottal-to-speech synchronization phase.

Regarding the gender of a speaker, MPA tends to give similar results in
terms of accuracy even if the EGG signals of male and female speakers are
different. However, no definite conclusion can be drawn as our results are
language-biased.

5.4.2. Accuracy across various phoneme categories

In order to see how the proposed method works across various phone
categories, we defined seven phone classes for testing — vowels, diphthongs,
plosives, fricatives, affricates, nasals and others. All the tested methods were
inclined to follow the same accuracy trend where the nasals was the class
with the highest obtained accuracies reaching 99.5%, whereas the affricates
and the plosives were found to be the most difficult classes for labeling with
pitch marks. The worst performance of the MPA algorithm was observed on
affricates falling to 72%. Note that the performance of the other methods
was even worse on this set, which might be explained by the noisiness and
the instability of these sounds.
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Table 4: Summary of the experiment results obtained for German, English, French and
Slovak. “Acc” means accuracy and the values of ND, NI and NS are in cases per sentence.
GE-M Acc[%] ND NI NS FR-F Acc[%] ND NI NS

EST 85.91 76.6 4.5 11.1 EST 87.89 77.6 6.2 15.5
BLA 86.97 3.7 22.4 6.2 BLA 93.83 3.8 19.7 13.9
SFS-G 92.26 7.2 14.4 11.1 SFS-G 88.63 12.6 14.9 18.0
SFS-S 83.97 83.9 16.8 6.1 SFS-S 73.74 78.1 18.8 27.6
SFS-HQ 93.23 43.9 2.2 11.7 SFS-HQ 89.59 42.4 4.0 14.8
PIP-G 89.77 45.0 4.2 10.4 PIP-G 91.78 43.6 4.3 13.6
PIP-S 86.74 36.4 13.7 8.0 PIP-S 91.69 33.8 13.8 12.0
PIC-S 87.49 20.7 21.1 23.4 PIC-S 65.70 20.7 21.6 56.8
PCP-S 85.41 37.1 11.6 7.4 PCP-S 92.64 38.7 11.9 9.6
MPA 94.25 8.2 4.1 4.2 MPA 93.25 8.7 3.8 11.6

EN-M Acc[%] ND NI NS SK-F Acc[%] ND NI NS

EST 70.90 82.2 3.8 10.1 EST 93.50 66.6 8.5 14.6
BLA 89.76 4.1 19.5 9.7 BLA 95.72 3.0 21.4 12.4
SFS-G 86.87 8.0 13.1 12.2 SFS-G 94.34 13.5 20.3 46.0
SFS-S 80.09 77.5 15.6 8.4 SFS-S 83.92 73.9 20.7 29.3
SFS-HQ 89.21 41.5 1.9 11.0 SFS-HQ 95.48 63.7 34.1 23.8
PIP-G 86.64 44.6 3.8 10.0 PIP-G 90.06 44.1 4.3 14.6
PIP-S 85.72 35.9 12.2 7.6 PIP-S 91.62 34.7 12.3 12.5
PIC-S 82.31 21.1 19.0 22.9 PIC-S 78.45 22.2 19.4 71.8
PCP-S 80.93 40.6 10.2 7.5 PCP-S 92.23 37.2 11.0 10.6
MPA 94.73 8.6 3.7 4.4 MPA 97.30 8.8 4.5 9.5

5.4.3. Accuracy vs. pitch range evaluation

Since the pitch range of the input signals is an important factor in the
evaluation of any pitch marking algorithm, we present the performance of
the four best methods with respect to the pitch range of the speakers, see
Fig. 11. The pitch range was defined as follows:

f0Range = 4 ∗ std (allF0es) , (8)

where allF0es is a vector of all local f0 estimates for a given speaker calcu-
lated from three consecutive manually placed pitch marks. It is obvious that
the performance of the MPA is very stable.
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Figure 10: Overall performance of all the tested algorithms. The displayed values are
the accuracies obtained from all the tested sentences, including the happy set. For most
of the methods, these sentences were displayed as outliers since their performance was
considerably worse on this data.

Table 5: Summary of the experiment results on sentences uttered in a happy speaking
style. “Acc” means accuracy and the values of ND, NI and NS are in cases per sentence.

HA-F Acc[%] ND NI NS

EST 84.81 69.4 8.8 11.6
BLA 91.48 3.3 19.3 14.0

SFS-G 30.4 14.1 17.7 51.6
SFS-S 80.74 73.3 19.3 25.6

SFS-HQ 12.08 56.8 24.3 70.3
PIP-G 92.04 40.3 3.9 14.2
PIP-S 92.91 30.9 12.9 12.1
PIC-S 75.00 18.7 20.2 60.1
PCP-S 93.25 35.0 11.3 10.0
MPA 97.26 8.0 3.8 10.6

5.4.4. Time shifts between EGG and speech

For the experiments with time shifts between EGG and speech waveforms
we have used the SFS-G method. We have found a sequence of GCIs for each
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Figure 11: Overall performance of the four best methods with respect to the f0 range of
the speaker. Note that the largest f0 range was observed for the HA-F set.

sentence and searched for the optimal range of time shift for the transition
from GCIs to amplitudes of a speech waveform.

The results, summarized in Tab. 6, suggest that a delay between EGG
and speech signals depends on the speaker and, obviously, on the placement
of the measuring equipment. A surprising result has been obtained for the
set CZ-M1, where the time shift was about three times longer than in other
sets. It is also worth pointing out the comparison between results obtained
on sets CZ-F and HA-F. These two sets contain utterances spoken by the
same speaker, the only difference is the presence of portrayed happy emotion
in the latter set.

6. CONCLUSIONS & FUTURE WORK

We have presented a robust multi-phase algorithm (MPA) which takes
advantage of feasible features of both glottal and speech signals for pitch
marking. The novelty of the proposed method consists in a unique combi-
nation of known methods resulting in a very robust and tunable algorithm,
as well as in the utilization of two knowledge sources for pitch marking.
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Table 6: Average optimal time shifts between EGG and speech
Set Mean shift[ms] Std

CZ-M1 2.39 0.48
CZ-M2 0.81 0.56
CZ–F 0.69 0.41
DE-M 0.72 0.72
EN-M 0.75 0.49
FR-F 1.39 0.45
SK-F 0.99 0.46
HA-F 1.78 0.66

Its performance was tested by experiments and compared with other freely
available pitch marking algorithms. According to our experiments, the MPA
algorithm seems to be more robust in terms of pitch marks placement accu-
racy over various sets of sentences, languages and phone classes than other
methods. We have also conducted an experiment on a set of sentences ut-
tered in a happy speaking style characterized by high f0 range and dynamics.
In contrast to the SFS-G method, which performed well on other sets and
failed on these sentences, the performance of MPA was still rather stable.
As the proposed MPA algorithm seems to be robust enough, it has been
incorporated into our speech synthesis system [22].

Since the initial step of the pitch marking should be a speech polarity
decision due to its importance for the performance of any pitch marking
algorithm, we have also addressed this particular issue and proposed a simple
method of peak/valley decision making.

The future work will focus on the optimization of the parameters involved
in the MPA algorithm. The results presented in this paper were obtained
under the general default parameter setting. All parameters, however, may
be tuned automatically using the manually pitch marked data. The idea is
to have task oriented sets of parameters, which would allow accurate pitch
marking across various languages and also emotional states of speakers.
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[38] J. Matoušek, J. Psutka, and J. Kr̊uta, Design of speech corpus for text-
to-speech synthesis, in Proc. EUROSPEECH, Aalborg, Denmark, 2001,
pp. 2047–2050.
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