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Rajah@actuarialacuity.com

Abstract.
We introduce herein ideas surrounding curvature and its relation
to the Navier Stoke equations. We will show the link that exists
between the mechanism involved in the formulation of a solution to
such PDE’s and conditions necessary thereof, in the production of
a blow up solution.

Introduction.
The major concern surrounding the Navier Stoke Equations (NS), which we
remind the reader follows as:
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where (f,, po, uo) represent arbitrary initial forces, pressure and the initial
velocity vector field respectively, Is the possibility of there being blow up
solutions associated with (p, u) the functions obtained upon the solution of
the NS equations for the pressure and vlocity evolutions respectively.

A blow up solution occurs when the solution to a system of partial differen-
tial equations produces functions that are asymptotic over some region of its
domain. As these equations are of significance in fluid mechanics, smooth-
ness requires that such blow up solutions are impossible[1]. Understanding
what might cause such solutions is one part of understanding what it is that
might be required of the initial conditions, in order to produce such solu-
tions. Knowing this one can check whether such initial conditions are even
possible.

There are many works that are related to understanding generalized solu-
tions to such PDE’s[2][3]. Attempts at understanding 3D-case of (NS) in-
clude Solutions of the Navier-Stokes and Euler equations with initial condi-
tions (Cauchy problem) for 2D and 3D cases which were obtained in the con-
verging series form by analytical iterative method using Fourier and Laplace
transforms in a paper [4].

Our aim is to formulate the problem in a sense of what might be required
of the mechanical building blocks involved in the production of a blow up
solution. More clearly, we will lay foundations for the investigation into the



nature of such solutions via its mechanical association with curvature.

Outline

Many entangled factors come into play when considering the possibility of
a blow-up solution. The nature of fy(arbitrary body forces), the initial ve-
locity vector field and also the nature and setup of the PDE’s itself.

To investigate this , assume a blow up solution that we associate with ei-
ther of (p,u), the functions obtained upon the upon the solution of the NS
equations for the pressure and vlocity evolutions respectively. For this to be
the case, the following criterion is necessary.

Given a finite continuous region R := {r; € R™} over which either (p,u)
blows up, it is required that:

u(r1) —u(ra)
ﬁ > 6(’)") (2)

Vri,rj € ®71|® = uNP where P is a vertical plane through | hﬂm O(r) —
00.

Here, we associate ¢(r) with some minimal gradient s required of either
(p,u) over R.

The nature of such pressure and vector fields will naturally depend on its
initial form and its incremential change in the initial fields expressed in
terms of a t-variable. More specifically, the differential above pertains to ¢,
and as such the requirements will be of the form: (wug,wut) where it is the
t—component that the incremental change-requirement is relayed into.

A Logical Discourse
The behavior of such PDE’s can be described as follows:
Any magnitude M at ty adjoined to a differential %—;‘; in this case:

M = (u-V)u—(—ll)Vp—H/VQu—i-f) (3)

is expressed as a functional of the variable with respect to which the func-
tional is being differentiated, in this instance . The nature of the functional
F(t) (i.e. the solution at increment (¢ + §,¢)) depends solely on the magni-
tude of the change >, M. This magnitude we know is entangled with
F(i) of neighboring points z,x + dz. More specifically, the expression in-
volving u,,t that describes the variation over x,x + dx is incorporated into
the magnitudes over = + dz, x + dx + dx as well. It is this entanglement that
makes ascertaining the necessary curvatures required of (u°, f) in order for



the existence of a blow up solution difficult.

The mechanism associated with any differential is simple, it describes a dif-
ference as measured of functionals over neighboring points in some R € R"
via the use of a functional of the form F'(t). For instance, if the magnitudes
> v; 0" M were expressible via t as t* then the functional F(t) would roughly
be expressed as: ct>. What we are interested in is a blow up initiator point,
specifically one that results in a change that is expressed as some asymptotic
functional ﬁ

In any one instance should the incremental change be expressible as some
asymptotic functional, then let us consider the ramifications under the con-
ditions as outlined for the NS above. Should such a change result (with all
previous changes expressible as non asymptotic changes), then as explained
above, this change (expressed in terms of the variable t) would incorporate
itself into the PDE for use in the evaluation in its next evaluation. Consider
then the many ways in which this can happen if all the terms that such an
increment k adjoins to is non asymptotic, for instance polynomial like (by
this we mean that the values associated with such polynomial like terms
when differentiated w.r.t t over any interval yields non asymptotic results.).
We can expect M to involve terms of the form : D(p1k + p2k) + psk + k, for
some differential D, involving its previous non-asymptotic changes (perhaps
polynomial like) p;. As differentials express change , using simple algebraic
techniques, one can deduce that for expressions such as the one associated
with M above, the change will in he next increment be asymptotic, and
for the same reasons, this will be true of all further increments; unless new
parameters (asymptotic in nature) associated with (f,, po, #o) occur.

To reiterate, any non-reciprocal (for instance) polynomial like F'(¢) adjoined
with u® will again result (logically speaking) in another polynomial like ex-
pression expressing the difference over neighboring points. This can be seen
more clearly if one notices that there are only so many ways in which one
can adjoin a polynomial like F'(¢) to u®, and once accomplished, a difference,
which is essentially what a differential is, is incapable of reducing polynomial
expressions to reciprocal ones. Thus it is easy to see that blow up solutions
can only occur in such constructions if ), 0" M at some point is specifically
of the general magnitude of the form S := {}}|t € R € R". knowing the
magnitudes of M(z) — M(z + dz) i.e. specifically of u® f, one can ascer-
tain the general nature of the functional F'(¢). Logically, this will tell us a
lot about whether a blow up ripple boundary of points having differences
in the proportion of ﬁ exists, and if so we need only notice that in such



setups, since differences of the form : u, P(t) 4+ .. — uxﬁ can never result
in polynomial forms which indicates that at such ripples blow up solutions
are possible.

” At present, all known methods for obtaining global smooth solutions to
a (deterministic) nonlinear PDE Cauchy problem require either:

1)Exact and explicit solutions (or at least an exact, explicit transforma-
tion to a significantly simpler PDE or ODE);

2)Perturbative hypotheses (e.g. small data, data close to a special solution,
or more generally a hypothesis which involves an e somewhere); or

3)One or more globally controlled quantities (such as the total energy) which
are both coercive and either critical or subcritical.” [5]

Argument in a nutshell.

A mechanistic approach involves analysis of the nature and actual intrinsic
method by which a functional solution in (t) of a PDE is formed. As we saw
from our previous discourse, over every interval (¢,t + €), a functional F'(t)
is adjoined to Ppg(X,t,)|X forming a new functional which expresses the
change AtQ), for some changing quantity (). We need a clear understanding
how exactly this happens will be the task that follows. Our intensions are
precisely to show that a solution formed at each interval! (under certain
conditions) leads again to a solution, which when convoluted into the con-
stituents of M will again lead to a non-asymptotic solution over the next
interval, having properties similar to those of its preceeding solution.

Given an arbitraty initial velocity field up = z(¢)i + y(¢)j + 2(t)k.
We have

Ou

The variable ¢, is used in conjunction with constants k; and iy to produce
a function, that when differentiated produces M at t, or over the interval
(t, t+9).

This is done by arithmetically convoluting (¢, k;, @p), written : (i) @ t ® k;.
An example of this is : x(t) + ti + y(t)/tj + z(t)2tk.

Given that at ¢ = 0 the field @ is uniform and not asymptotic over any re-
gion, (and this is the crux of the matter) we have then that at the boundry
(t =0), %, yields a non-asymptotic gradient, then the convolution of the
variable ¢ into (@p) ® t ® k;, need not be in such a manner that produces a

Linfinitesimally small



field which when differentiated, yields an asymptotic difference.

It is almost certain then, that terms such as #V# forming the constituents
of M will not be asymptotic, thus M, evaluated over the next immediate
interval (¢ + 0,¢ + 29) used for the evaluation of %—‘t‘ over this interval which
inturn is used to find the convolution : (@) ® t ® k;, will again produce a
non-asymptotic %—‘;, (tp) @t k;, respectively over (t+0,t+20). Since ¢ here
is arbitrary, this argument is everywhere applicable.

The nature of the possible convolutions (i) ® t ® k; lie within a field, and
it is the study of this field, that will be the focus of a followup arrticle.
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