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We investigate the estimation of a multidimensional regression function f from n observations of a α-mixing process (Y, X) with Y = f (X) + ξ, where X represents the design and ξ the noise. We focus our attention on wavelet methods. In most papers considering this problem either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of f in its construction) or it is supposed that ξ is bounded (excluding the Gaussian case). In this study we go far beyond this classical framework. Under no boundedness assumption on ξ, we construct adaptive term-by-term thresholding wavelet estimators enjoying powerful mean integrated squared error (MISE) properties. More precisely, we prove that they achieve "sharp" rates of convergence under the MISE over a wide class of functions f .

Introduction

The nonparametric multidimensional regression model with uniform design can be described as follows. Let (Y t , X t ) t∈Z be a strictly stationary random process defined on a probability space (Ω, A, P), where

Y t = f (X t ) + ξ t ,
(1.1)

f : [0, 1] d → R is the unknown regression function, d is a positive integer, X 1 follows the uniform distribution on [0, 1] d and (ξ t ) t∈Z is a strictly stationary centered random process independent of (X t ) t∈Z (the uniform distribution of X 1 will be discussed in Remark 4.4 below). Given n observations (Y 1 , X 1 ), . . . , (Y n , X n ) drawn from (Y t , X t ) t∈Z , we aim to estimate f globally on [0, 1] d . Applications of this nonparametric estimation problem can be found in numerous areas as economics, finance and signal processing. See, e.g., [START_REF] White | Nonlinear Regression with Dependent Observations[END_REF], [START_REF] Härdle | Applied Nonparametric Regression[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

The performance of an estimator f of f can be evaluated by the mean integrated squared error (MISE) defined by

R( f , f ) = E [0,1] d ( f (x) -f (x)) 2 dx ,
where E denotes the expectation. The smaller R( f , f ) is for a large class of f , the better f is.

Several nonparametric methods for f can be considered. In this study, we focus our attention on the wavelet methods because of their spatial adaptivity, computational efficiency and asymptotic optimality properties under the MISE. For exhaustive discussions of wavelets and their applications in nonparametric statistics, see, e.g., [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF], [START_REF] Vidakovic | Statistical Modeling by Wavelets[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]. We consider (1.1) under following general setting:

(i) (Y t , X t ) t∈Z is a dependent process following a α-mixing structure, (ii) Y 1 is not necessarily bounded (allowing a Gaussian distribution for ξ 1 ), (the precise definitions and more details are given in Section 2).

In order to clarify the interest of considering (i) and (ii), let us now present a brief review on the wavelet estimation of f under various dependence structures on the observations. In the common case where (Y 1 , X 1 ), . . . , (Y n , X n ) are i.i.d., various wavelet methods have been developed. The most famous of them can be found in, e.g., Donoho andJohnstone (1994, 1995), Donoho et al. (1995), Delyon and Jusitky (1996), [START_REF] Hall | Interpolation methods for nonlinear wavelet regression with irregularly spaced design[END_REF], [START_REF] Antoniadis | Random design wavelet curve smoothing[END_REF][START_REF] Antoniadis | Wavelet estimators in nonparametric regression: a comparative simulation study[END_REF][START_REF] Antoniadis | Wavelet thresholding for some classes of non-Gaussian noise[END_REF], [START_REF] Clyde | Empirical Bayes estimation in wavelet nonparametric regression[END_REF], [START_REF] Zhang | Nonlinear wavelet estimation of regression function with random design[END_REF], [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Cai | On block thresholding in wavelet regression: adaptivity, block size and threshold level[END_REF], Cai andBrown (1998, 1999), [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF], [START_REF] Chesneau | Regression with random design: a minimax study[END_REF], [START_REF] Pensky | Frequentist optimality of Bayes factor estimators in wavelet regression models[END_REF] and [START_REF] Bochkina | Minimax rates of convergence and optimality of Bayes factor wavelet regression estimators under pointwise risks[END_REF]. Relaxations of the independence assumption have been considered in several studies. If we focus our attention on the α-mixing dependence, which is reasonably weak and particularly interesting for (1.1) thanks to its applications in dynamic economic systems (see, e.g., [START_REF] White | Nonlinear Regression with Dependent Observations[END_REF] and [START_REF] Härdle | Applied Nonparametric Regression[END_REF]), recent wavelet methods and results can be found in, e.g., [START_REF] Masry | Wavelet-Based estimation of multivariate regression functions in besov spaces[END_REF], [START_REF] Patil | Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series[END_REF], [START_REF] Doosti | Wavelets for nonparametric stochastic regression with mixing stochastic process[END_REF], [START_REF] Doosti | Multivariate Stochastic Regression Estimation by Wavelets for Stationary Time Series[END_REF] and [START_REF] Chesneau | Adaptive wavelet regression in random design and general errors with weakly dependent data[END_REF]. However, in most of these studies, either the proposed wavelet estimator is not adaptive (i.e., its construction depends on the knowledge of the smoothness of f ) or it is supposed that ξ 1 is bounded. In fact, to the best of our knowledge, [START_REF] Chesneau | Adaptive wavelet regression in random design and general errors with weakly dependent data[END_REF] is the only work which deals with such an adaptive wavelet regression function estimation problem under (i) and (ii) (with d = 1). However, the construction of the proposed wavelet estimator deeply depends on a parameter θ related to the α-mixing dependence. Since θ is unknown a priori, this estimator can be considered as non adaptive.

In this paper we go far beyond this classical framework by providing theoretical contributions to the full adaptive wavelet estimation of f under (i) and (ii). We develop two adaptive wavelet estimators fδ and f * δ both using a term-by-term thresholding rule δ (as the hard thresholding rule or the soft thresholding rule, see, e.g., Donoho andJohnstone (1994, 1995) and Donoho et al. (1995)). We evaluate their performances under the MISE over a wide class of functions f : the Besov balls.

In a first part, under mild assumptions on (1.1), we show that the rate of convergence achieved by fδ is exactly the one of the standard term-by-term wavelet thresholding estimator for f in the classical i.i.d. framework. It corresponds to the optimal one in the minimax sense within a logarithmic term.

In a second part, with less assumptions on (1.1) (only moments of order 2 is required on ξ 1 ), we show that f * δ achieves the same rate of convergence to fδ up to a logarithmic term. Thus f * δ is somewhat less efficient than fδ in terms of MISE but can be used under very mild assumptions on (1.1). For proving our main theorems, we establish a general result on the performance of wavelet term-by-term thresholding estimators which may be of independent interest.

The rest of this work is organized as follows. Section 2 clarifies the assumptions on the model and introduces some notations. Section 3 describes the considered wavelet basis on [0, 1] d and the Besov balls. Section 4 is devoted to our adaptive wavelet estimators and their MISE properties over Besov balls. The technical proofs are postponed in Section 5.

Assumptions

We make the following assumptions on the model (1.1).

Assumptions on the noise

Let us recall that (ξ t ) t∈Z is a strictly stationary random process independent of (X t ) t∈Z such that E(ξ 1 ) = 0.

H1. We suppose that there exist three constants υ > 0, σ > 0 and ω > 0 such that, for any t ∈ R,

E(e tξ 1 ) ≤ ωe t 2 σ 2 /2 .
H2. We suppose that E(ξ 2 1 ) < ∞.

Obviously H1 allows a Gaussian distribution on ξ 1 and H1 implies H2.

Remark 2.1 It follows from H1 that

• for any p ≥ 1, we have E(|ξ 1 | p ) < ∞,
• for any λ > 0, we have

P(|ξ 1 | ≥ λ) ≤ 2ωe -λ 2 /(2σ 2 ) . (2.1)
α-mixing assumption H3. For any m ∈ Z, we define the m-th strongly mixing coefficient of (Y t , X t ) t∈Z by

α m = sup (A,B)∈F (Y,X) -∞,0 ×F (Y,X) m,∞ |P(A ∩ B) -P(A)P(B)| ,
where

F (Y,X) -∞,0 is the σ-algebra generated by . . . , (Y -1 , X -1 ), (Y 0 , X 0 ) and F (Y,X) m,∞ is the σ- algebra generated by (Y m , X m ), (Y m+1 , X m+1 ), . . ..
We suppose that there exist two constants γ > 0 and β > 0 such that, for any integer m ≥ 1,

α m ≤ γe -βm .
Further details on the α-mixing dependence can be found in, e.g., [START_REF] Bradley | Introduction to strong mixing conditions[END_REF], [START_REF] Doukhan | Mixing. Properties and Examples[END_REF] and [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF]. Applications on (1.1) under α-mixing dependence can be found in, e.g., [START_REF] White | Nonlinear Regression with Dependent Observations[END_REF], [START_REF] Härdle | Applied Nonparametric Regression[END_REF] and [START_REF] Lütkepohl | Multiple Time Series Analysis[END_REF].

Boundedness assumptions

H4. We suppose that there exists a constant K > 0 such that sup

x∈[0,1] d |f (x)| ≤ K.
H5. For any m ∈ {1, . . . , n}, let g (X 0 ,Xm) be the density of (X 0 , X m ). We suppose that there exists a constant L > 0 such that sup m∈{1,...,n} sup

(x,x * )∈[0,1] 2d g (X 0 ,Xm) (x, x * ) ≤ L.
(2.2)

These boundedness assumptions are standard for (1.1) under α-mixing dependence. See, e.g., [START_REF] Masry | Wavelet-Based estimation of multivariate regression functions in besov spaces[END_REF] and [START_REF] Patil | Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series[END_REF].

Preliminaries on wavelets

This section contains some facts about the wavelet tensor-product basis on [0, 1] d and the considered function space in terms of wavelet coefficients that will be used in the sequel.

3.1 Wavelet tensor-product basis on [0, 1] d

For any p ≥ 1, set

L p ([0, 1] d ) =    h : [0, 1] d → R; ||h|| p = [0,1] d |h(x)| p dx 1/p < ∞    .
For the purpose of this paper, we use a compactly supported wavelet-tensor product basis on [0, 1] d based on the Daubechies wavelets. Let N be a positive integer, φ be "father" Daubechies-type wavelet and ψ be a "mother" Daubechies-type wavelet of the family db2N .

In particular, mention that φ and ψ have compact supports (see [START_REF] Mallat | A wavelet tour of signal processing[END_REF]). Then, for any x = (x 1 , . . . , x d ) ∈ [0, 1] d we construct 2 d functions as follows:

• a scale function

Φ(x) = d u=1 φ(x u ) • 2 d -1 wavelet functions Ψ u (x) =              ψ(x u ) d v=1 v =u φ(x v ) when u ∈ {1, . . . , d}, v∈Au ψ(x v ) v ∈Au φ(x v ) when u ∈ {d + 1, . . . , 2 d -1},
where (A u ) u∈{d+1,...,2 d -1} forms the set of all non void subsets of {1, . . . , d} of cardinality greater or equal to 2.

We set

D j = {0, . . . , 2 j -1} d , for any j ≥ 0 and k = (k 1 , . . . , k d ) ∈ D j , Φ j,k (x) = 2 jd/2 Φ(2 j x 1 -k 1 , . . . , 2 j x d -k d )
and, for any u ∈ {1, . . . , 2 d -1},

Ψ j,k,u (x) = 2 jd/2 Ψ u (2 j x 1 -k 1 , . . . , 2 j x d -k d ).
Then there exists an integer τ such that the collection

B = {Φ τ,k , k ∈ D τ ; (Ψ j,k,u ) u∈{1,...,2 d -1} , j ∈ N -{0, . . . , τ -1}, k ∈ D j }
(with appropriated treatments at the boundaries) forms an orthonormal basis of L 2 ([0, 1] d ).

Let j * be an integer such that j * ≥ τ . A function h ∈ L 2 ([0, 1] d ) can be expanded into a wavelet series as

h(x) = k∈D j * c j * ,k Φ j * ,k (x) + 2 d -1 u=1 ∞ j=j * k∈D j d j,k,u Ψ j,k,u (x),
where

c j,k = [0,1] d h(x)Φ j,k (x)dx, d j,k,u = [0,1] d h(x)Ψ j,k,u (x)dx. (3.1)
The idea behind this wavelet representation is to decompose h into a set of wavelet approximation coefficients, i.e., {c j * ,k ; k ∈ D j * }, and wavelet detail coefficients, i.e., {d j,k,u ; j ≥ j * , k ∈ D j , u ∈ {1, . . . , 2 d -1}}. For further results and details about this wavelet basis on [0, 1] d , we refer the reader to [START_REF] Meyer | Wavelets and Operators[END_REF], [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Besov balls

Let M > 0, s ∈ (0, N ), p ≥ 1 and r ≥ 1. A function h ∈ L 2 ([0, 1] d ) belongs to the Besov balls B s p,r (M ) if and only if there exists a constant M * > 0 such that the associated wavelet coefficients (3.1) satisfy

  k∈Dτ |c τ,k | p   1/p +    ∞ j=τ   2 j(s+d(1/2-1/p))   2 d -1 u=1 k∈D j |d j,k,u | p   1/p    r    1/r ≤ M *
and with the usual modifications for p = ∞ or q = ∞.

For a particular choice of parameters s, p and r, these sets contain Sobolev and Hölder balls as well as function classes of significant spatial inhomogeneity (such as the Bump Algebra and Bounded Variations balls). Details about Besov balls can be found in, e.g., [START_REF] Devore | Interpolation of Besov spaces[END_REF], [START_REF] Meyer | Wavelets and Operators[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

Wavelet estimators and results

Introduction

We consider the model (1.1) and we adopt the notations introduced in Sections 2 and 3. We expand the unknown regression function f as

f (x) = k∈D j 0 c j 0 ,k Φ j 0 ,k (x) + 2 d -1 u=1 ∞ j=j 0 k∈D j d j,k,u Ψ j,k,u (x), (4.1)
where

j 0 ≥ τ , c j,k = [0,1] d f (x)Φ j,k (x)dx and d j,k,u = [0,1] d f (x)Ψ j,k,u (x)dx.
In the next section, we will construct two different wavelet estimators for f according to the two following lists of assumptions:

List 1: H1, H3, H4 and H5, List 2: H2, H3 and H4.

Wavelet estimator I and result

Suppose that H1, H3, H4 and H5 hold. We define the hard thresholding estimator fδ by fδ (x) =

k∈D j 0 ĉj 0 ,k Φ j 0 ,k (x) + 2 d -1 u=1 j 1 j=j 0 k∈D j δ( dj,k,u , κλ n )Ψ j,k,u (x), (4.2)
where j 0 ≥ τ is an integer satisfying

1 2 (ln n) 2 < 2 j 0 d ≤ (ln n) 2 ,
ĉj,k and dj,k,u are the empirical wavelet coefficients estimators of c j,k and d j,k,u , i.e.,

ĉj,k = 1 n n i=1 Y i Φ j,k (X i ), dj,k,u = 1 n n i=1 Y i Ψ j,k,u (X i ), (4.3) δ : R × (0, ∞) → R is a term-by-term thresholding rule satisfying: there exists a constant C > 0 such that, for any (u, v, λ) ∈ R 2 × (0, ∞), |δ(v, λ) -u| ≤ C(min(|u|, λ) + |v -u|1 {|v-u|>λ/2} ) (4.4)
κ is a large enough constant,

λ n = ln n n (4.5)
and j 1 is an integer satisfying

1 2 n (ln n) 4 < 2 j 1 d ≤ n (ln n) 4 .
Remark 4.1 The estimators ĉj,k and dj,k,u (4.3) are unbiased. Indeed the independence of X 1 and ξ 1 , and E(ξ 1 ) = 0 imply that

E(ĉ j,k ) = E(Y 1 Φ j,k (X 1 )) = E(f (X 1 )Φ j,k (X 1 )) = [0,1] d f (x)Φ j,k (x)dx = c j,k .
Similarly we prove that E( dj,k,u ) = d j,k,u .

Remark 4.2 Among the thresholding rules δ satisfying (4.4), there are

• the hard thresholding rule defined by δ(v, λ) = v1 {|v|≥λ} , where 1 denotes the indicator function,

• the soft thresholding rule defined by δ(v, λ) = sign(v) max(|v| -λ, 0), where sign denotes the sign function.

The technical details can be found in (Delyon and Jusitky, 1996, Lemma 1).

The idea behind the term-by-term thresholding rule δ in fδ is to only estimate the "large" wavelet coefficients of f (and to remove the others). The reason is that wavelet coefficients having small absolute value are considered to encode mostly noise whereas the important information of f is encoded by the coefficients having large absolute value. This term-byterm selection gives to fδ an extraordinary local adaptability in handling discontinuities. For further details on such estimators in various statistical framework, we refer the reader to, e.g., Donoho andJohnstone (1994, 1995), Donoho et al. (1995), Delyon and Jusitky (1996), [START_REF] Antoniadis | Random design wavelet curve smoothing[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

The considered threshold λ n (4.5) corresponds to the universal one determined in the standard Gaussian i.i.d. case (see Donoho andJohnstone (1994, 1995)).

It is important to underline that fδ is adaptive; its construction does not depend on the smoothness of f . Theorem 4.1 below explores the performance of fδ under the MISE over Besov balls. .

The proof of Theorem 4.1 is based on a general result on the performance of the wavelet term-by-term thresholding estimators (see Theorem 5.1 below) and some statistical properties on (4.3) (see Proposition 5.1 below).

The rate of convergence (ln n/n) 2s/(2s+d) is the near optimal one (in the minimax sense) for the standard Gaussian i.i.d. case (see, e.g., [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Tsybakov | Introduction à l'estimation non-paramétrique[END_REF]). "Near" is due to the extra logarithmic term (ln n) 2s/(2s+d) . Also, following the terminology of [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF], note that this rate of convergence is attained over both the homogeneous zone of the Besov balls (corresponding to p ≥ 2) and the inhomogeneous zone (corresponding to p ∈ [1, 2)). This shows that the performance of fδ is unaffected by the presence of discontinuities in f .

In view of Theorem 4.1, it is natural to address the following question: is it possible to construct an adaptive wavelet estimator reaching the two following objectives:

• relax some assumptions on the model,

• attain a suitable rate of convergence, i.e., as close as possible to the optimal one n -2s/( 2s+d) .

An answer is provided in the next section.

Wavelet estimator II and result

Suppose that H2, H3 and H4 hold (only moments of order 2 are required on ξ 1 and we have no a priori assumption on (2.2)). We define the hard thresholding estimator f * δ by

f * δ (x) = k∈D j 0 ĉ * j 0 ,k Φ j 0 ,k (x) + 2 d -1 u=1 j 1 j=j 0 k∈D j δ( d * j,k,u , κλ n )Ψ j,k,u (x), (4.6) 
where j 0 = τ , ĉ * j,k and d * j,k,u are the wavelet coefficients estimators of c j,k and d j,k,u defined by ĉ *

j,k = 1 n n i=1 A i,j,k , d * j,k,u = 1 n n i=1 B i,j,k,u , (4.7) 
where

A i,j,k = Y i Φ j,k (X i )1 |Y i Φ j,k (X i )|≤ √ n ln n , B i,j,k,u = Y i Ψ j,k,u (X i )1 |Y i Ψ j,k,u (X i )|≤ √ n ln n , κ is a large enough constant, λ n = ln n √ n ,
δ : R × (0, ∞) → R is a term-by-term thresholding rule satisfying (4.4) and j 1 is an integer such that

1 2 n (ln n) 2 < 2 j 1 d ≤ n (ln n) 2 .
The role of the thresholding selection in (4.7) is to remove the large |Y i |. This allows us to replace H1 by the less restrictive assumption H2. Such an observations thresholding technique has already used in various contexts of wavelet regression function estimation in Delyon and Jusitky (1996), [START_REF] Chesneau | Adaptive wavelet estimation of a function in an indirect regression model[END_REF], [START_REF] Chesneau | Adaptive wavelet regression in random design and general errors with weakly dependent data[END_REF] and [START_REF] Chesneau | Nonparametric Wavelet Regression Based on Biased Data[END_REF].

Again, let us mention that f * δ is adaptive. Theorem 4.2 below investigates the performance of f * δ under the MISE over Besov balls. 

R( f * δ , f ) ≤ C (ln n) 2 n 2s/(2s+d)
.

The proof of Theorem 4.2 is based on a general result on the performance of the wavelet term-by-term thresholding estimators (see Theorem 5.1 below) and some statistical properties on (4.7) (see Proposition 5.2 below). Theorem 4.1 improves (Chesneau, 2012, Theorem 1) in terms of rates of convergence and provides an extension to the multidimensional setting.

Remark 4.3 Obviously the assumptions H1 and H2 includes the bounded noise. If ξ is bounded, the only interest of Theorem 4.2, and a fortiori f * δ , is to relax H5.

Remark 4.4 Our work can be extended to any compactly supported regression function f and any random design X 1 having a known density g bounded from below over the support of f (including

X 1 (Ω) = R d ).
In this case, it suffices to adapt the considered wavelet basis to the support of f and to replace Y i by Y i /g(X i ) in the definitions of fδ and f * δ (more precisely, in (4.3) and (4.7)) to be able to prove Theorems 4.1 and 4.2. Some technical ingredients can be found in (Chesneau et al., 2013, Proof of Proposition 2).

When g is unknown, a possible approach following the idea of Patil and Truong ( 2001) is to consider f g = fδ (or f * δ ) to estimate f g, then estimate the unknown density g by a term-by-term wavelet thresholding estimator ĝ (as the one in [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]) and finally consider f † = f g/ĝ. This estimator is particularly appropriated if we work with (1.1) in an autoregressive framework (see, e.g., [START_REF] Delouille | Nonparametric stochastic regression with design-adapted wavelets[END_REF] and [START_REF] Doosti | Two dimensional wavelets for nonlinear autoregressive models with an application in dynamical system[END_REF]). However, we do not claim it to be near optimal in the minimax sense.

Conclusion and discussion

This paper provides some theoretical contributions to the adaptive wavelet estimation of a multidimensional regression function from the α-mixing sequence (Y t , X t ) t∈Z defined by (1.1). Two different wavelet term-by-term thresholding estimators fδ and f * δ are constructed. Under very mild assumptions on (1.1) (including unbounded Y 1 (and ξ 1 ) and no a priori knowledge on the distribution of ξ 1 ), we determine their rates of convergence under the MISE over Besov balls B s p,r (M ). To be more specific, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ (d/p, N )}, we prove that

Result

Assumptions Estimator Rate of convergence Theorem 4.1 H1, H3, H4, H5 fδ (4.2) (ln n/n) 2s/(2s+d) Theorem 4.2 H2, H3, H4

f * δ (4.6) ((ln n) 2 /n) 2s/(2s+d)
Since n -2s/(2s+d) is the optimal rate of convergence (in the minimax sense) in the standard i.i.d. framework, these results show the good performances of fδ and f * δ . Let us now discuss several aspects of our study.

• Some useful assumptions in Theorem 4.1 are relaxed in Theorem 4.2 and the rate of convergence attained by f * δ is close to the one of fδ (up to the logarithmic term (ln n) 2s/(2s+d) ).

• Stricto sensu fδ is more efficient to f * δ . Moreover the construction of f * δ is more complicated to the one of fδ due to the presence of the thresholding in (4.7). This could be an obstacle from a practical point of view.

Possible perspectives of this work are to

• determine the optimal lower bound for (1.1) under the α-mixing dependence,

• consider a random design X 1 with unknown density or/and unbounded,

• relax the exponential decay assumption of α m in H3,

• improve the rates of convergence by perhaps using a group thresholding rule (see, e.g., [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF][START_REF] Cai | On block thresholding in wavelet regression: adaptivity, block size and threshold level[END_REF]).

All these aspects needs further investigations that we leave for a future work.

Proofs

In the following, the quantity C denotes a generic constant that does not depend on j, k and n. Its value may change from one term to another.

A general result

Theorem 5.1 below is derived from (Kerkyacharian and Picard, 2000, Theorem 3.1) and (Delyon and Jusitky, 1996, Theorem 1). The main contributions of this result is to provide more flexibility on the choices of j 0 and j 1 (which will be crucial in our dependent framework) and to clarified the minimal assumptions on the wavelet coefficients estimators to ensure a "suitable" rate of convergence for the corresponding wavelet term-by-term thresholding estimator (see (a) and (b) in Theorem 5.1). This result may be of independent interest.

Theorem 5.1 Let us consider a (general) nonparametric model where an unknown function f ∈ L 2 ([0, 1] d ) needs to be estimated from n observations of a random process defined on a probability space (Ω, A, P). Using its wavelet series expansion (4.1), we define the hard thresholding estimator f δ by

f δ (x) = k∈D j 0 ĉ j 0 ,k Φ j 0 ,k (x) + 2 d -1 u=1 j 1 j=j 0 k∈D j δ( d j,k,u , κλ n )Ψ j,k,u (x),
where j 0 ≥ τ is an integer such that

1 2 2 τ d (ln n) ν < 2 j 0 d ≤ 2 τ d (ln n) ν ,
with ν ≥ 0, ĉ j 0 ,k and d j,k,u are wavelet coefficients estimators of c j 0 ,k and d j,k,u respectively, κ is a large enough constant, λ n is a threshold, δ : R × (0, ∞) → R is a term-by-term thresholding satisfying (4.4) and j 1 is an integer such that

1 2 1 λ 2 n (ln n) ≤ 2 j 1 d ≤ 1 λ 2 n (ln n) , with ≥ 0. It is understood that lim n→∞ (ln n) max(ν, ) λ 2(1-υ) n = 0
for any υ ∈ (0, 1). We suppose that ν, ĉ j,k , d j,k,u , κ, λ n and satisfy the following inequalities: (a) there exists a constant C > 0 such that, for any k ∈ D j ,

E((ĉ j 0 ,k -c j 0 ,k ) 2 ) ≤ Cλ 2 n .
(b) there exists a constant C > 0 such that, for any j ∈ {j 0 , . . . , j 1 }, k ∈ D j and u ∈ {1, . . . , 2 d -1},

P | d j,k,u -d j,k,u | ≥ κ 2 λ n ≤ C λ 8 n n ,
where n is such that

E(( d j,k,u -d j,k,u ) 4 ) ≤ n .
Furthermore we suppose that f ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ (d/p, N )}. Then there exists a constant C > 0 such that 2s+d) .

R( f δ , f ) ≤ C λ 2 n 2s/(
Proof of Theorem 5.1. The orthonormality of the considered wavelet basis yields

R( f δ , f ) = R 1 + R 2 + R 3 , (5.1)
where

R 1 = k∈D j 0 E (ĉ j 0 ,k -c j 0 ,k ) 2 , R 2 = 2 d -1 u=1 j 1 j=j 0 k∈D j E (δ( d j,k,u , κλ n ) -d j,k,u ) 2 and R 3 = 2 d -1 u=1 ∞ j=j 1 +1 k∈D j d 2 j,k,u .
Bound for R 1 : By (a) we have 2s+d) .

R 1 ≤ C2 j 0 d λ 2 n ≤ C(ln n) ν λ 2 n ≤ C λ 2 n 2s/(
(5.2)

Bound for R 2 : The feature of the term-by-term thresholding δ (i.e., (4.4)) yields

R 2 ≤ C(R 2,1 + R 2,2 ), (5.3) where R 2,1 = 2 d -1 u=1 j 1 j=j 0 k∈D j (min(|d j,k,u |, κλ n )) 2 and R 2,2 = 2 d -1 u=1 j 1 j=j 0 k∈D j E | d j,k,u -d j,k,u | 2 1 {| d j,k,u -d j,k,u |≥κλn/2} .
Bound for R 2,1 : Let j 2 an integer satisfying

1 2 1 λ 2 n 1/(2s+d) < 2 j 2 ≤ 1 λ 2 n 1/(2s+d)
.

First of all, let us consider the case p ≥ 2. Since f ∈ B s p,r (M ) ⊆ B s 2,∞ (M ), we have 2s+d) .

R 2,1 = 2 d -1 u=1 j 2 j=j 0 k∈D j (min(|d j,k,u |, κλ n )) 2 + 2 d -1 u=1 j 1 j=j 2 +1 k∈D j (min(|d j,k,u |, κλ n )) 2 ≤ 2 d -1 u=1 j 2 j=j 0 k∈D j κ 2 λ 2 n + 2 d -1 u=1 j 1 j=j 2 +1 k∈D j d 2 j,k,u ≤ C   λ 2 n j 2 j=τ 2 jd + ∞ j=j 2 +1 2 -2js   ≤ C λ 2 n 2 j 2 d + 2 -2j 2 s ≤ C λ 2 n 2s/(
Let us now explore the case p ∈ [1, 2). The facts that f ∈ B s p,r (M ) with s > d/p and (2s 2s+d) .

+ d)(2 -p)/2 + (s + d(1/2 -1/p))p = 2s lead to R 2,1 = 2 d -1 u=1 j 2 j=j 0 k∈D j (min(|d j,k,u |, κλ n )) 2 + 2 d -1 u=1 j 1 j=j 2 +1 k∈D j (min(|d j,k,u |, κλ n )) 2-p+p ≤ 2 d -1 u=1 j 2 j=j 0 k∈D j κ 2 λ 2 n + 2 d -1 u=1 j 1 j=j 2 +1 k∈D j |d j,k,u | p (κλ n ) 2-p ≤ C   λ 2 n j 2 j=τ 2 jd + (λ 2 n ) (2-p)/2 ∞ j=j 2 +1 2 -j(s+d(1/2-1/p))p   ≤ C λ 2 n 2 j 2 d + (λ 2 n ) (2-p)/2 2 -j 2 (s+d(1/2-1/p))p ≤ C λ 2 n 2s/(
Therefore, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ (d/p, N )}, we have 2s+d) .

R 2,1 ≤ C λ 2 n 2s/(
(5.4)

Bound for R 2,2 : It follows from the Cauchy-Schwarz inequality and (b) that 2s+d) . (5.5) Putting (5.3), (5.4) and (5.5) together, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ (d/p, N )}, we obtain 2s+d) .

R 2,2 ≤ C 2 d -1 u=1 j 1 j=j 0 k∈D j E ( d j,k,u -d j,k,u ) 4 P | d j,k,u -d j,k,u | > κλ n /2 ≤ Cλ 4 n j 1 j=τ 2 jd ≤ Cλ 4 n 2 j 1 d ≤ Cλ 4 n 1 λ 2 n (ln n) ≤ Cλ 2 n ≤ C λ 2 n 2s/(
R 2 ≤ C λ 2 n 2s/(
(5.6) 2s+d) .

Bound for R 3 : In the case p ≥ 2, we have f ∈ B s p,r (M ) ⊆ B s 2,∞ (M ) which implies that R 3 ≤ C ∞ j=j 1 +1 2 -2js ≤ C2 -2j 1 s ≤ C λ 2 n (ln n) 2s/d ≤ C λ 2 n 2s/(
On the other hand, when p

∈ [1, 2), we have f ∈ B s p,r (M ) ⊆ B s+d(1/2-1/p) 2,∞ (M ). Observing that s > d/p leads to (s + d(1/2 -1/p))/d > s/(2s + d), we have R 3 ≤ C ∞ j=j 1 +1 2 -2j(s+d(1/2-1/p)) ≤ C2 -2j 1 (s+d(1/2-1/p)) ≤ C λ 2 n (ln n) 2(s+d(1/2-1/p))/d ≤ C λ 2 n 2s/(2s+d) .
Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > d/p}, we have 2s+d) .

R 3 ≤ C λ 2 n 2s/(
(5.7)

Combining (5.1), (5.2), (5.6) and (5.7), we arrive at, for r ≥ 1, {p ≥ 2 and s > 0} or

{p ∈ [1, 2) and s > d/p}, R( f δ , f ) ≤ C λ 2 n 2s/(2s+d) .
The proof of Theorem 5.1 is completed.

Proof of Theorem 4.1

The proof of Theorem 4.1 is a consequence of Theorem 5.1 above and Proposition 5.1 below. To be more specific, Proposition 5.1 shows that (a) and (b) of Theorem 5.1 are satisfied under the following configuration:

• ν = 2, • ĉ j 0 ,k = ĉj 0 ,k and d j,k,u = dj,k,u from (4.3), • λ n = ln n/n,
• κ is a large enough constant,

• = 3.
and

W i,j,k = Y i Φ j,k (X i )1 A c i -E Y 1 Φ j,k (X 1 )1 A c i .
It follows from these decompositions and the inequality (

x + y) 2 ≤ 2(x 2 + y 2 ), (x, y) ∈ R 2 , that E((ĉ j,k -c j,k ) 2 ) = 1 n 2 E   n i=1 U i,j,k 2   = 1 n 2 E   n i=1 V i,j,k + n i=1 W i,j,k 2   ≤ 2 n 2   E   n i=1 V i,j,k 2   + E   n i=1 W i,j,k 2     = 2 n 2 (S + T ), (5.8) 
where

S = V n i=1 Y i Φ j,k (X i )1 A i , T = V n i=1 Y i Φ j,k (X i )1 A c i .
Bound for S: Let us now introduce a result which will be useful in the rest of study.

Lemma 5.1 Let p ≥ 1. Consider (1.1). Suppose that E(|ξ 1 | p ) < ∞ and H4 holds. Then

• there exists a constant C > 0 such that, for any j ≥ τ and k ∈ D j ,

E (|Y 1 Φ j,k (X 1 )| p ) ≤ C2 jd(p/2-1) .
• there exists a constant C > 0 such that, for any j ≥ τ , k ∈ D j and u ∈ {1, . . . , 2 d -1},

E (|Y 1 Ψ j,k,u (X 1 )| p ) ≤ C2 jd(p/2-1) . Using the inequality ( m i=1 a i ) 2 ≤ m m i=1 a 2 i , a = (a 1 , . . . , a m ) ∈ R m , Lemma 5.1 with p = 4 (thanks to H1 implying E(|ξ 1 | p ) < ∞ for p ≥ 1) and 2 jd ≤ n, we arrive at S ≤ E   n i=1 Y i Φ j,k (X i )1 A i 2   ≤ n 2 E (Y 1 Φ j,k (X 1 )) 2 1 A 1 ≤ n 2 E ((Y 1 Φ j,k (X 1 )) 4 ) P(A 1 ) ≤ Cn 2 2 jd/2 P(A 1 )
≤ Cn 5/2 P(A 1 ). Now, using H4, H1 (implying (2.1)) and taking κ * large enough, we obtain

P(A 1 ) ≤ P(|ξ 1 | ≥ κ * √ ln n -K) ≤ P |ξ 1 | ≥ κ * 2 √ ln n ≤ 2ωe -κ 2 * ln n/(8σ 2 ) = 2ωn -κ 2 * /(8σ 2 ) ≤ C 1 n 3 .
Hence S ≤ Cn 5/2 1 n 3/2 = Cn.

(5.9)

Bound for T : Observe that (5.10) where

T ≤ T 1 + T 2 ,
T 1 = nV Y 1 Φ j,k (X 1 )1 A c 1 and T 2 = n v=2 v-1 =1 C ov Y v Φ j,k (X v )1 A c v , Y Φ j,k (X )1 A c .
Bound for T 1 : Lemma 5.1 with p = 2 yields

T 1 ≤ nE (Y 1 Φ j,k (X 1 )) 2 1 A c 1 ≤ nE (Y 1 Φ j,k (X 1 )) 2 ≤ Cn.
(5.11)

Bound for T 2 : The stationarity of (Y t , X t ) t∈Z and 2 jd ≤ n imply that

T 2 = n m=1 (n -m)C ov Y 0 Φ j,k (X 0 )1 A c 0 , Y m Φ j,k (X m )1 A c m ≤ n n m=1 C ov Y 0 Φ j,k (X 0 )1 A c 0 , Y m Φ j,k (X m )1 A c m = n(T 2,1 + T 2,2
), (5.12)

where

T 2,1 = [ln n/β]-1 m=1 C ov Y 0 Φ j,k (X 0 )1 A c 0 , Y m Φ j,k (X m )1 A c m , T 2,2 = n m=[ln n/β] C ov Y 0 Φ j,k (X 0 )1 A c 0 , Y m Φ j,k (X m )1 A c m
and [ln n/β] is the integer part of ln n/β (where β is the one in H3).

Bound for T 2,1 : First of all, for any m ∈ {1, . . . , n}, let h (Y 0 ,X 0 ,Ym,Xm) be the density of (Y 0 , X 0 , Y m , X m ) and h (Y 0 ,X 0 ) the density of (Y 0 , X 0 ). We set

θ m (y, x, y * , x * ) = h (Y 0 ,X 0 ,Ym,Xm) (y, x, y * , x * ) -h (Y 0 ,X 0 ) (y, x)h (Y 0 ,X 0 ) (y * , x * ), (y, x, y * , x * ) ∈ R × [0, 1] d × R × [0, 1] d .
(5.13)

For any (x, x * ) ∈ [0, 1] 2d , since the density of X 0 is 1 over [0, 1] d and using H5, we have

∞ -∞ ∞ -∞ |θ m (y, x, y * , x * )|dydy * ≤ ∞ -∞ ∞ -∞ h (Y 0 ,X 0 ,Ym,Xm) (y, x, y * , x * )dydy * + ∞ -∞ h (Y 0 ,X 0 ) (y, x)dy 2 = g (X 0 ,Xm) (x, x * ) + 1 ≤ L + 1. (5.14)
By a standard covariance equality, the definition of (5.13), (5.14) and Lemma 5.1 with p = 1, we obtain

C ov Y 0 Φ j,k (X 0 )1 A c 0 , Y m Φ j,k (X m )1 A c m = κ * √ ln n -κ * √ ln n [0,1] d κ * √ ln n -κ * √ ln n [0,1] d θ m (y, x, y * , x * ) (yΦ j,k (x)y * Φ j,k (x * )) dydxdy * dx * ≤ [0,1] d [0,1] d κ * √ ln n -κ * √ ln n κ * √ ln n -κ * √ ln n |y||y * ||θ m (y, x, y * , x * )|dydy * |Φ j,k (x)||Φ j,k (x * )|dxdx * ≤ κ 2 * ln n [0,1] d [0,1] d ∞ -∞ ∞ -∞ |θ m (y, x, y * , x * )|dydy * |Φ j,k (x)||Φ j,k (x * )|dxdx * ≤ C ln n [0,1] d |Φ j,k (x)|dx 2 ≤ C ln n2 -jd . Therefore, since 2 jd ≥ (1/2)(ln n) 2 , T 2,1 ≤ C(ln n) 2 2 -jd ≤ C.
(5.15)

Bound for T 2,2 : By the Davydov inequality (see Lemma 5.3 in Appendix with p = q = 4), Lemma 5.1 with p = 4, 2 jd ≤ n and H3, we have

C ov Y 0 Φ j,k (X 0 )1 A c 0 , Y m Φ j,k (X m )1 A c m ≤ C √ α m E (Y 0 Φ j,k (X 0 )) 4 1 A c 0 ≤ C √ α m E (Y 0 Φ j,k (X 0 )) 4 ≤ C √ α m 2 jd/2 ≤ Ce -βm/2 √ n.
The previous inequality implies that

T 2,2 ≤ C √ n n m=[ln n/β] e -βm/2 ≤ C √ ne -ln n/2 ≤ C.
(5.16)

Combining (5.12), (5.15) and (5.16), we arrive at

T 2 ≤ n(T 2,1 + T 2,2 ) ≤ Cn.
(5.17)

Putting (5.10), (5.11) and (5.17) together, we have

T ≤ T 1 + T 2 ≤ Cn.
(5.18)

Finally, (5.8), (5.9) and (5.18) lead to

E((ĉ j,k -c j,k ) 2 ) ≤ 2 n 2 (S + T ) ≤ C 1 n 2 n ≤ C 1 n .
This ends the proof of (i).

(ii

) Using E(Y 1 Ψ j,k,u (X 1 )) = d j,k,u the inequality ( m i=1 a i ) 4 ≤ m 3 m i=1 a 4 i , a = (a 1 , . . . , a m ) ∈ R m ,
the Hölder inequality, Lemma 5.1 with p = 4 and 2 jd ≤ n, we obtain

E(( dj,k,u -d j,k,u ) 4 ) = 1 n 4 E   n i=1 (Y i Ψ j,k,u (X i )) -E(Y 1 Ψ j,k,u (X 1 )) 4   ≤ C 1 n 4 n 4 E (Y 1 Ψ j,k,u (X 1 )) 4 ≤ C2 jd ≤ Cn.
The proof of (ii) is completed.

Remark 5.1 This bound can be improved using more sophisticated moment inequalities for α-mixing processes (as [START_REF] Yang | Maximal moment inequality for partial sums of strong mixing sequences and application[END_REF], Theorem 2.2)). However, the obtained bound in (ii) is enough for the rest of our study.

(iii) Since E(Y 1 Ψ j,k,u (X 1 )) = d j,k,u , we have dj,k,u -d j,k,u = 1 n n i=1 P i,j,k,u , where P i,j,k,u = Y i Ψ j,k,u (X i ) -E(Y 1 Ψ j,k,u (X 1 )).

Considering again the event

A i = |Y i | ≥ κ * √ ln n
, where κ * denotes a constant which will be chosen later, we can split P i,j,k,u as (5.19) where

P i,j,k,u = Q i,j,k,u + R i,j,k,u , where Q i,j,k,u = Y i Ψ j,k,u (X i )1 A i -E (Y 1 Ψ j,k,u (X 1 )1 A i ) and R i,j,k,u = Y i Ψ j,k,u (X i )1 A c i -E Y 1 Ψ j,k,u (X 1 )1 A c i . Therefore P | dj,k,u -d j,k,u | ≥ κ 2 λ n ≤ I 1 + I 2 ,
I 1 = P 1 n n i=1 Q i,j,k,u ≥ κ 4 λ n , I 2 = P 1 n n i=1 R i,j,k,u ≥ κ 4 λ n .
Bound for I 1 : The Markov inequality, the Cauchy-Schwarz inequality and Lemma 5.1 with p = 2 yield

I 1 ≤ 4 κnλ n E n i=1 Q i,j,k,u ≤ C √ nE(|Q 1,j,k,u |) ≤ C √ nE (|Y 1 Ψ j,k,u (X 1 )| 1 A 1 ) ≤ C √ n E (Y 1 Ψ j,k,u (X 1 )) 2 P(A 1 ) ≤ C √ n P(A 1 ).
Now, using H4, H1 (implying (2.1)) and taking κ * large enough, we obtain

P(A 1 ) ≤ P(|ξ 1 | ≥ κ * √ ln n -K) ≤ P |ξ 1 | ≥ κ * 2 √ ln n ≤ 2ωe -κ 2 * ln n/(8σ 2 ) = 2ωn -κ 2 * /(8σ 2 ) ≤ C 1 n 11 .
Hence

I 1 ≤ C √ n 1 n 11/2 ≤ C 1 n 5 .
(5.20)

Bound for I 2 : We will bound I 2 via the Bernstein inequality for α-mixing process described in Lemma 5.4 (see Appendix).

We have E(R 1,j,k,u ) = 0 and, since

|Y 1 |1 A c 1 ≤ κ * √ ln n and |Ψ j,k,u (x)| ≤ C2 jd/2 ≤ C √ n/(ln n) 2 , |R i,j,k,u | ≤ C √ ln n sup x∈[0,1] d |Ψ j,k,u (x)| ≤ C √ ln n √ n (ln n) 2 = C n (ln n) 3 .
Using arguments similar to the proofs of the bounds for T 1 and T 2,1 in (i), for any l ≤ C ln n, since 2 jd ≥ (ln n) 2 , we have

V l i=1 R i,j,k,u = V l i=1 Y i Ψ j,k,u (X i )1 A c i ≤ C(l + l 2 ln n2 -jd ) ≤ Cl. Hence D m = max l∈{1,...,2m} V l i=1 R i,j,k,u ≤ Cm. Lemma 5.4 applied with the α-mixing random variables R 1,j,k,u , . . . , R n,j,k,u , λ = κλ n /4, λ n = ln n/n, m = [u ln n] with u > 0 chosen later, M = C n/(ln n) 3 and H3 gives I 2 ≤ C exp -C κ 2 λ 2 n n D m /m + κλ n mM + M λ n ne -βm ≤ C exp -C κ 2 ln n
1 + κ ln n/nu ln n n/(ln n) 3 + n/(ln n) 3 ln n/n ne -βu ln n ≤ C n -Cκ 2 /(1+κu) + n 2-βu .

Therefore, taking u = √ κ (for instance) and κ large enough, we have

I 2 ≤ C 1 n 5 .
(5.21)

It follows from (5.19), (5.20) and (5.21) that

P | dj,k,u -d j,k,u | ≥ κ 2 λ n ≤ I 1 + I 2 ≤ C 1 n 5 .
This completes the proof of (iii).

This ends the proof of Proposition 5.1.

Bound for T 1 : The covariance inequality: C ov (U, V ) ≤ E(U 2 ), where U and V are identically distributed random variables admitting moments of order 2, and Lemma 5.1 with p = 2 lead to

T 1 ≤ C [ln n/β]-1 m=1 E (A 0,j,k ) 2 ≤ C ln nE (Y 0 Φ j,k (X 0 )) 2 ≤ C ln n.
(5.25)

Bound for T 2 : By the Davydov inequality (see Lemma 5.3 in Appendix with p = q = 4), the Hölder inequality, (A 0,j,k ) 4 ≤ n(Y 0 Φ j,k (X 0 )) 2 , Lemma 5.1 with p = 2 and H3, we have

|C ov (A 0,j,k , A m,j,k )| ≤ C √ α m E ((A 0,j,k ) 4 ) ≤ C √ α m √ n E ((Y 0 Φ j,k (X 0 )) 2 ) ≤ Ce -βm/2 √ n.
Owing to the previous inequality, we arrive at This ends the proof of (i). Moreover, proceeding as in the proof of (i) but with Ψ j,k,u instead of Φ j,k , we obtain

T 2 ≤ C √ n
E(( d * j,k,u -d j,k,u ) 2 ) ≤ C (ln n) 2 n . Therefore E(( d * j,k,u -d j,k,u ) 4 ) ≤ C n (ln n) 2 E(( d * j,k,u -d j,k,u ) 2 ) ≤ C n (ln n) 2 (ln n) 2 n ≤ C.
This finishes the proof of (ii).

Therefore, taking u = √ κ (for instance) and κ large enough, we have

P 1 n n i=1 W i,j,k,u ≥ κ 4 λ n ≤ C 1 n 4 .
(5.29)

It follows from (5.28) and (5.29) that

P | dj,k,u -d j,k,u | ≥ κ 2 λ n ≤ C 1 n 4 .
This completes the proof of (iii).

This ends the proof of Proposition 5.2.

Proof of the auxiliary results

Proof of Lemma 5.1. Owing to E(|ξ 1 | p ) < ∞, H4, the inequality |x + y| p ≤ 2 p-1 (|x| p + |y| p ), (x, y) ∈ R 2 , p ≥ 1, the independence between X 1 and ξ 1 and the change of variables y = 2 j x -k, we obtain The proof of the other point is similar; it is enough to replace Φ j,k by Ψ j,k,u . This ends the proof of Lemma 5.1.

Proof of Lemma 5.2. Since E (Y 1 Φ j,k (X 1 )) = c j,k , we have

c j,k = E(A 1,j,k ) + E Y 1 Φ j,k (X 1 )1 |Y 1 Φ j,k (X 1 )|> √ n ln n . Therefore |c * j,k -c j,k | ≤ 1 n n i=1 (A i,j,k -E(A 1,j,k )) + E |Y 1 Φ j,k (X 1 )|1 |Y 1 Φ j,k (X 1 )|> √ n ln n
.

Theorem 4. 1

 1 Let us consider the model (1.1) under H1, H3, H4 and H5. Let fδ be (4.2). Suppose that f ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ (d/p, N )}. Then there exists a constant C > 0 such that R( fδ , f ) ≤ C ln n n 2s/(2s+d)

Theorem 4. 2

 2 Let us consider the regression model (1.1) under H2, H3 and H4. Let f * δ be (4.6). Suppose that f ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ (d/p, N )}. Then there exists a constant C > 0 such that

  24), (5.25) and (5.26), we obtainT ≤ n(T 1 + T 2 ) ≤ Cn ln n.(5.27) Finally, putting (5.22), (5.23) and (5.27) together, we haveE((ĉ * j,k -c j,k ) 2 ) ≤ C 1 n 2 S + T + n(ln n) 2 ≤ C (ln n) 2 n .

(

  ii) Using |d j,k,u | ≤ C (since f ∈ L 2 ([0, 1] d )) and |B i,j,k,u | ≤ √ n/ ln n, we have | d * j,k,u -d j,k,u | ≤ | d * j,k,u | + |d j,k,u | ≤

E

  (|Y 1 Φ j,k (X 1 )| p ) ≤ CE ((K p + |ξ 1 | p )|Φ j,k (X 1 )| p ) = C(K p + E(|ξ 1 | p ))E (|Φ j,k (X 1 )| p ) ≤ C [0,1] d |Φ j,k (x)| p dx = C2 jdp/2 [0,1] |φ(2 j x -k)| p dx d ≤ C2 jd(p/2-1) .

Proposition 5.1 Suppose that H1, H3, H4 and H5 hold. Let ĉj,k and dj,k,u be defined by (4.3), and

Then (i) there exists a constant C > 0 such that, for any j satisfying (1/2)(ln n) 2 ≤ 2 jd ≤ n and k ∈ D j ,

(ii) there exists a constant C > 0 such that, for any j satisfying 2 jd ≤ n, k ∈ D j and u ∈ {1, . . . , 2 d -1}, E(( dj,k,u -d j,k,u ) 4 ) ≤ Cn (= n ) .

(iii) for κ > 0 large enough, there exists a constant C > 0 such that, for any j satisfying

Proof of Proposition 5.1. The technical ingredients in our proof are suitable covariance decompositions, a covariance inequality for α-mixing processes (see Lemma 5.3 in Appendix) and a Bernstein-type exponential inequality for α-mixing processes (see Lemma 5.4 in Appendix).

Considering the event

, where κ * denotes a constant which will be chosen later, we can split U i,j,k as

The proof of Theorem 4.2 is a consequence of Theorem 5.1 above and Proposition 5.2 below. To be more specific, Proposition 5.2 shows that (a) and (b) of Theorem 5.1 can be applied under the following configuration:

• κ is a large enough constant,

Proposition 5.2 Suppose that H2, H3 and H4 hold. Let ĉ * j,k and d * j,k,u be defined by (4.7), and

Then (i) there exists a constant C > 0 such that, for any j satisfying 2 jd ≤ n and k ∈ D j ,

(ii) there exists a constant C > 0 such that, for any j such that

(iii) for κ > 0 large enough, there exists a constant C > 0 such that, for any j satisfying

Proof of Proposition 5.2. Again the technical tools in our proof are suitable covariance decompositions, a covariance inequality for α-mixing processes (see Lemma 5.3 in Appendix) and a Bernstein-type exponential inequality for α-mixing processes (see Lemma 5.4 in Appendix).

The following result will be useful in the sequel.

Lemma 5.2 Let ĉ * j,k and d * j,k,u be defined by (4.7). Suppose that H2 and H4 hold. Then

• there exists a constant C > 0 such that, for any j ≥ τ and k ∈ D j ,

• there exists a constant C > 0 such that, for any j ≥ τ , k ∈ D j and u ∈ {1, . . . ,

(i) Lemma 5.2 and the inequality (

where

Bound for S: It follows from Lemma 5.1 with p = 2 that

(5.23)

Bound for T : The stationarity of (Y t , X t ) t∈Z implies that

where

and [ln n/β] is the integer part of ln n/β (where β is the one in H3).

(iii) For any j ≥ τ , k ∈ D j and u ∈ {1, . . . , 2 d -1}, set

Lemma 5.2 and λ n = ln n/ √ n imply that, for κ large enough,

(5.28)

We will bound this probability term via the Bernstein inequality for α-mixing process (see Lemma 5.4 in Appendix)

We have E(W 1,j,k,u ) = 0 and, since

Similar arguments to the proofs of the bounds of S and T in

Hence

Lemma 5.4 applied with the α-mixing random variables W 1,j,k,u , . . . , W n,j,k,u , λ = κλ n /4, λ n = ln n/ √ n, m = [u ln n] with u > 0 chosen later, M = C √ n/ ln n and H3 gives

Let us now bound the last term. The Markov inequality and Lemma 5.1 with p = 2 yield

that ends the proof of the first point. The proof of the second point is identical; it is enough to replace Φ j,k by Ψ j,k,u . Lemma 5.2 is proved.

Appendix

In this section we give some preliminary lemmas which have been used in the proofs of our main results.

Lemma 5.3 [START_REF] Davydov | The invariance principle for stationary processes[END_REF]) Let (A t ) t∈Z be a stationary α-mixing process with mixing coefficient α m , m ≥ 0, and h and k be two measurable functions. Let p > 0 and q > 0 satisfying 1/p + 1/q < 1, such that E(|h(A 0 )| p ) and E(|k(A 0 )| q ) exist. Then there exists a constant C > 0 such that

Lemma 5.4 [START_REF] Liebscher | Estimation of the density and the regression function under mixing conditions[END_REF]) Let (A t ) t∈Z be a stationary process with the m-th strongly mixing coefficient α m , m ≥ 0, n be a positive integer, h : R → C be a measurable function and, for any t ∈ Z, U t = h(A t ). We assume that E(U 1 ) = 0 and there exists a constant