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Abstract

We investigate the wavelet estimation of a multidimensional regression function f
from n observations of a α-mixing process (Y,X), where Y = f(X) + ξ, X represents
the design and ξ denotes the noise. In most papers considering this problem either the
proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the
smoothness of f in its construction) or it is supposed that the noise is bounded (exclud-
ing the Gaussian case). In this paper we go far beyond this classical framework. Under
no boundedness assumption on the noise, we construct two kinds of adaptive term-by-
term thresholding wavelet estimators enjoying powerful mean integrated squared error
(MISE) properties. More precisely, we prove that they achieve ”sharp” rates of conver-
gence under the MISE over a wide class of functions f . ”Sharp” in the sense that they
coincide with the optimal rate of convergence in the standard i.i.d. case up to extra
logarithmic terms.

Key words and phrases: Nonparametric regression, α-mixing dependence, Adaptive
estimation, Wavelet methods, Rates of convergence.
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1 Introduction

The nonparametric multidimensional regression model with uniform design can be described
as follows. Let (Yt, Xt)t∈Z be a strictly stationary random process defined on a probability
space (Ω,A,P), where

Yt = f(Xt) + ξt, (1.1)

f : [0, 1]d → R is the unknown regression function, d is a positive integer, X1 follows the
uniform distribution on [0, 1]d and (ξt)t∈Z is a strictly stationary centered random process
independent of (Xt)t∈Z. Given n observations (Y1, X1), . . . , (Yn, Xn) drawn from (Yt, Xt)t∈Z,
we aim to estimate f globally on [0, 1]d. The performance of an estimator f̂ of f can be
evaluated by the mean integrated squared error (MISE) defined by

R(f̂ , f) = E

(

∫

[0,1]d
(f̂(x)− f(x))2dx

)

,

where E denotes the expectation. The smaller R(f̂ , f) is for a large class of f , the better
f̂ is.

In this study, we focus our attention on the wavelet methods because of their spatial
adaptivity, computational efficiency and asymptotic optimality properties under the MISE.
For exhaustive discussions of wavelets and their applications in nonparametric statistics,
see, e.g., Antoniadis (1997), Vidakovic (1999) and Härdle et al. (1998). We consider (1.1)
under following general setting:

(i) (Yt, Xt)t∈Z is a dependent process following a α-mixing structure,

(ii) Y1 is not necessarily bounded (allowing a Gaussian distribution for ξ1),

(the precise definitions and more details are given in Section 2). In order to clarify the
interest of considering (i) and (ii), let us now present a brief review on the wavelet esti-
mation of f under various dependence structures on the observations. In the common case
where (Y1, X1), . . . , (Yn, Xn) are i.i.d., various wavelet methods have been developed. The
most famous of them can be found in, e.g., Donoho and Johnstone (1994, 1995), Donoho
et al. (1995), Delyon and Jusitky (1996), Hall and Turlach (1997), Antoniadis et al. (1997,
2001, 2002), Clyde and George (1999), Zhang and Zheng (1999), Cai (1999, 2002), Cai
and Brown (1998, 1999), Kerkyacharian and Picard (2004), Chesneau (2007), Pensky and
Sapatinas (2007) and Bochkina and Sapatinas (2009). Relaxations of the independence as-
sumption have been considered in several studies. If we focus our attention on the α-mixing
dependence, which is reasonably weak and particularly interesting for (1.1) thanks to its ap-
plications in dynamic economic systems (see, e.g., Härdle (1990) and White and Domowitz
(1984)), recent wavelet methods and results can be found in, e.g., Masry (2000), Patil and
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Truong (2001), Doosti et al. (2008), Doosti and Niroumand (2009) and Chesneau (2012).
However, in most of these studies, either the proposed wavelet estimator is not adaptive
(i.e., its construction depends on the knowledge of the smoothness of f) or it is supposed
that ξ1 is bounded. In fact, to the best of our knowledge Chesneau (2012) is the only work
which deals with such an adaptive wavelet regression function estimation problem under (i)
and (ii) (with d = 1). However, the construction of the proposed wavelet estimator deeply
depends on a parameter θ related to the α-mixing dependence. Since θ is unknown a priori,
this estimator can be considered as non adaptive.

In this paper we go far beyond this classical framework by providing theoretical con-
tributions to the full adaptive wavelet estimation of f under (i) and (ii). We develop two
adaptive wavelet estimators f̂δ and f̂∗δ both using a term-by-term thresholding rule δ (as
the hard thresholding rule or the soft thresholding rule). We evaluate their performances
under the MISE over a wide class of functions f : the Besov balls. In a first part, under mild
assumptions on (1.1), we show that the rate of convergence achieved by f̂δ is exactly the
one of the standard term-by-term wavelet thresholding estimator for f in the classical i.i.d.
framework. It corresponds to the optimal one in the minimax sense within a logarithmic
term. In a second part, with less assumptions on (1.1) (only moments of order 2 is required
on ξ1), we show that f̂∗δ achieves the same rate of convergence to f̂δ up to a logarithmic

term. Thus f̂∗δ is somewhat less efficient than f̂δ in terms of MISE but can be used under
very mild assumptions on (1.1). For proving our main theorems, we establish a general
result on the performance of wavelet term-by-term thresholding estimators which may be
of independent interest.

The rest of this work is organized as follows. Section 2 clarifies the assumptions on the
model and introduces some notations. Section 3 describes the considered wavelet basis on
[0, 1]d and the Besov balls. Section 4 is devoted to our adaptive wavelet estimators and
their MISE properties over Besov balls. The technical proofs are postponed in Section 5.

2 Assumptions

We make the following assumptions on the model (1.1).

Assumptions on the noise

Let us recall that (ξt)t∈Z is a strictly stationary random process independent of (Xt)t∈Z
such that E(ξ1) = 0.

H1. We suppose that there exist three constants υ > 0, σ > 0 and ω > 0 such that, for
any t ∈ R,

E(etξ1) ≤ ωe−t2σ2/2.
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H2. We suppose that E(ξ21) <∞.

Obviously H1 allows a Gaussian distribution on ξ1 and H1 implies H2.

Remark 2.1 It follows from H1 that

• for any p ≥ 1, we have E(|ξ1|p) <∞,

• for any λ > 0 we have

P(|ξ1| ≥ λ) ≤ 2ωe−λ2/(2σ2). (2.1)

α-mixing assumption

H3. For any m ∈ Z, we define the m-th strongly mixing coefficient of (Yt, Xt)t∈Z by

αm = sup
(A,B)∈F(Y,X)

−∞,0×F(Y,X)
m,∞

|P(A ∩B)−P(A)P(B)| ,

where F (Y,X)
−∞,0 is the σ-algebra generated by . . . , (Y−1, X−1), (Y0, X0) and F (Y,X)

m,∞ is the σ-
algebra generated by (Ym, Xm), (Ym+1, Xm+1), . . ..

We suppose that there exist two constants γ > 0 and β > 0 such that, for any integer
m ≥ 1,

αm ≤ γe−βm.

Further details on the α-mixing dependence can be found in, e.g., Bradley (2007), Doukhan
(1994) and Carrasco and Chen (2002). Applications on (1.1) under α-mixing dependence
can be found in, e.g., White and Domowitz (1984), Härdle (1990) and Lütkepohl (1992).

Boundedness assumptions

H4. We suppose that there exists a constant K > 0 such that

sup
x∈[0,1]d

|f(x)| ≤ K.

H5. For any m ∈ {1, . . . , n}, let g(X0,Xm) be the density of (X0, Xm). We suppose that
there exists a constant L > 0 such that

sup
m∈{1,...,n}

sup
(x,x∗)∈[0,1]2d

g(X0,Xm)(x, x∗) ≤ L. (2.2)

These boundedness assumptions are standard for (1.1) under α-mixing dependence. See,
e.g., Masry (2000) and Patil and Truong (2001).
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3 Preliminaries on wavelets

This section contains some facts about the wavelet tensor-product basis on [0, 1]d and the
considered function space in terms of wavelet coefficients that will be used in the sequel.

3.1 Wavelet tensor-product basis on [0, 1]d

For any p ≥ 1, set

Lp([0, 1]
d) =







h : [0, 1]d → R; ||h||p =
(

∫

[0,1]d
|h(x)|pdx

)1/p

<∞







.

For the purpose of this paper, we use a compactly supported wavelet-tensor product basis
on [0, 1]d based on the Daubechies wavelets. Let N be a positive integer, φ be ”father”
Daubechies-type wavelet and ψ be a ”mother” Daubechies-type wavelet of the family db2N .
In particular, mention that φ and ψ have compact supports (see Mallat (2009)).

Then, for any x = (x1, . . . , xd) ∈ [0, 1]d we construct 2d functions as follows:

• a scale function

Φ(x) =

d
∏

u=1

φ(xu)

• 2d − 1 wavelet functions

Ψu(x) =



























ψ(xu)
d
∏

v=1
v 6=u

φ(xv) when u ∈ {1, . . . , d},

∏

v∈Au

ψ(xv)
∏

v 6∈Au

φ(xv) when u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all non void subsets of {1, . . . , d} of cardi-
nality greater or equal to 2.

We set
Dj = {0, . . . , 2j − 1}d,

for any j ≥ 0 and k = (k1, . . . , kd) ∈ Dj ,

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2
jxd − kd)

and, for any u ∈ {1, . . . , 2d − 1},

Ψj,k,u(x) = 2jd/2Ψu(2
jx1 − k1, . . . , 2

jxd − kd).
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Then there exists an integer τ such that the collection

B = {Φτ,k, k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N− {0, . . . , τ − 1}, k ∈ Dj}

(with appropriated treatments at the boundaries) forms an orthonormal basis of L2([0, 1]
d).

Let j∗ be an integer such that j∗ ≥ τ . A function h ∈ L2([0, 1]
d) can be expanded into a

wavelet series as

h(x) =
∑

k∈Dj∗

cj∗,kΦj∗,k(x) +

2d−1
∑

u=1

∞
∑

j=j∗

∑

k∈Dj

dj,k,uΨj,k,u(x),

where

cj,k =

∫

[0,1]d
h(x)Φj,k(x)dx, dj,k,u =

∫

[0,1]d
h(x)Ψj,k,u(x)dx. (3.1)

For further results and details about this wavelet basis on [0, 1]d, we refer the reader to
Meyer (1992), Cohen et al. (1993) and Mallat (2009).

3.2 Besov balls

Let M > 0, s ∈ (0, N), p ≥ 1 and r ≥ 1. A function h ∈ L2([0, 1]
d) belongs to the Besov

balls Bs
p,r(M) if and only if there exists a constant M∗ > 0 such that the associated wavelet

coefficients (3.1) satisfy





∑

k∈Dτ

|cτ,k|p




1/p

+







∞
∑

j=τ






2j(s+d(1/2−1/p))





2d−1
∑

u=1

∑

k∈Dj

|dj,k,u|p




1/p






r





1/r

≤M∗

and with the usual modifications for p = ∞ or q = ∞.
For a particular choice of parameters s, p and r, these sets contain Sobolev and Hölder

balls as well as function classes of significant spatial inhomogeneity (such as the Bump
Algebra and Bounded Variations balls). Details about Besov balls can be found in, e.g.,
Devore and Popov (1988), Meyer (1992) and Härdle et al. (1998).

4 Wavelet estimators and results

4.1 Introduction

We consider the model (1.1) and we adopt the notations introduced in Sections 2 and 3.
We expand the unknown regression function f as

f(x) =
∑

k∈Dj0

cj0,kΦj0,k(x) +

2d−1
∑

u=1

∞
∑

j=j0

∑

k∈Dj

dj,k,uΨj,k,u(x), (4.1)
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where j0 ≥ τ , cj,k =
∫

[0,1]d f(x)Φj,k(x)dx and dj,k,u =
∫

[0,1]d f(x)Ψj,k,u(x)dx. In the next
section, we will construct two different wavelet estimators for f according to the two fol-
lowing groups of assumptions:

Group 1: H1, H3, H4 and H5,

Group 2: H2, H3 and H4.

4.2 Wavelet estimator I and result

Suppose that H1, H3, H4 and H5 hold. We define the hard thresholding estimator f̂δ by

f̂δ(x) =
∑

k∈Dj0

ĉj0,kΦj0,k(x) +

2d−1
∑

u=1

j1
∑

j=j0

∑

k∈Dj

δ(d̂j,k,u, κλn)Ψj,k,u(x), (4.2)

where j0 ≥ τ is an integer satisfying

1

2
(lnn)2 < 2j0d ≤ (lnn)2,

ĉj,k and d̂j,k,u are the empirical wavelet coefficients estimators of cj,k and dj,k,u, i.e.,

ĉj,k =
1

n

n
∑

i=1

YiΦj,k(Xi), d̂j,k,u =
1

n

n
∑

i=1

YiΨj,k,u(Xi), (4.3)

δ : R × (0,∞) → R is a term-by-term thresholding rule satisfying: there exists a constant
C > 0 such that, for any (u, v, λ) ∈ R

2 × (0,∞),

|δ(v, λ)− u| ≤ C(min(|u|, λ) + |v − u|1{|v−u|>λ/2}) (4.4)

κ is a large enough constant,

λn =

√

lnn

n
(4.5)

and j1 is an integer satisfying

1

2

n

(lnn)4
< 2j1d ≤ n

(lnn)4
.

Remark 4.1 The estimators ĉj,k and d̂j,k,u (4.3) are unbiased. Indeed the independence of
X1 and ξ1, and E(ξ1) = 0 imply that

E(ĉj,k) = E(Y1Φj,k(X1)) = E(f(X1)Φj,k(X1)) =

∫

[0,1]d
f(x)Φj,k(x)dx = cj,k.

Similarly we prove that E(d̂j,k,u) = dj,k,u.
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Remark 4.2 Among the thresholding rules δ satisfying (4.4), there are

• the hard thresholding rule defined by δ(v, λ) = v1{|v|≥λ}, where 1 denotes the indicator
function,

• the soft thresholding rule defined by δ(v, λ) = sign(v)max(|v| − λ, 0), where sign de-
notes the sign function.

The technical details can be found in (Delyon and Jusitky, 1996, Lemma 1).

The idea behind the term-by-term thresholding rule δ in f̂δ is to only estimate the “large”
wavelet coefficients of f (and to remove the others). The reason is that wavelet coefficients
having small absolute value are considered to encode mostly noise whereas the important
information of f is encoded by the coefficients having large absolute value. This term-by-
term selection gives to f̂δ an extraordinary local adaptability in handling discontinuities.
For further details on such estimators in various statistical framework, we refer the reader
to, e.g., Donoho and Johnstone (1994, 1995), Donoho et al. (1995), Delyon and Jusitky
(1996), Antoniadis et al. (1997) and Härdle et al. (1998).

The considered threshold λn (4.5) corresponds to the universal one determined in the
standard Gaussian i.i.d. case (see Donoho and Johnstone (1994, 1995)).

It is important to underline that f̂δ is adaptive; its construction does not depend on the
smoothness of f .

Theorem 4.1 below explores the performance of f̂δ under the MISE over Besov balls.

Theorem 4.1 Let us consider the model (1.1) under H1, H3, H4 and H5. Let f̂δ be
(4.2). Suppose that f ∈ Bs

p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and
s ∈ (d/p,N)}. Then there exists a constant C > 0 such that

R(f̂δ, f) ≤ C

(

lnn

n

)2s/(2s+d)

.

The proof of Theorem 4.1 is based on a general result on the performance of the wavelet
term-by-term thresholding estimators (see Theorem 5.1 below) and some statistical prop-
erties on (4.3) (see Proposition 5.1 below).

The rate of convergence (lnn/n)2s/(2s+d) is the near optimal one (in the minimax sense)
for the standard Gaussian i.i.d. case (see, e.g., Härdle et al. (1998) and Tsybakov (2004)).
“Near” is due to the extra logarithmic term (lnn)2s/(2s+d). Also, following the terminology
of Härdle et al. (1998), note that this rate of convergence is attained over both the ho-
mogeneous zone of the Besov balls (corresponding to p ≥ 2) and the inhomogeneous zone
(corresponding to p ∈ [1, 2)). This shows that the performance of f̂δ is unaffected by the
presence of discontinuities in f .

In view of Theorem 4.1, it is natural to address the following question: is it possible to
construct an adaptive wavelet estimator reaching the two following objectives:
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• relax some assumptions on the model,

• attain a suitable rate of convergence, i.e., as close as possible to the optimal one
n−2s/(2s+d).

An answer is provided in the next section.

4.3 Wavelet estimator II and result

Suppose that H2, H3 and H4 hold (only moments of order 2 are required on ξ1 and we
have no a priori assumption on (2.2)). We define the hard thresholding estimator f̂∗δ by

f̂∗δ (x) =
∑

k∈Dj0

ĉ∗j0,kΦj0,k(x) +

2d−1
∑

u=1

j1
∑

j=j0

∑

k∈Dj

δ(d̂∗j,k,u, κλn)Ψj,k,u(x), (4.6)

where j0 = τ , ĉ∗j,k and d̂∗j,k,u are the wavelet coefficients estimators of cj,k and dj,k,u defined
by

ĉ∗j,k =
1

n

n
∑

i=1

Ai,j,k, d̂∗j,k,u =
1

n

n
∑

i=1

Bi,j,k,u, (4.7)

where

Ai,j,k = YiΦj,k(Xi)1{|YiΦj,k(Xi)|≤
√
n

lnn

}, Bi,j,k,u = YiΨj,k,u(Xi)1{|YiΨj,k,u(Xi)|≤
√
n

lnn

},

κ is a large enough constant,

λn =
lnn√
n
,

δ : R× (0,∞) → R is a term-by-term thresholding rule satisfying (4.4) and j1 is an integer
such that

1

2

n

(lnn)2
< 2j1d ≤ n

(lnn)2
.

The role of the thresholding selection in (4.7) is to remove the large |Yi|. This allows
us to replace H1 by the less restrictive assumption H2. Such an observations thresholding
technique has already used in various contexts of wavelet regression function estimation in
Delyon and Jusitky (1996), Chesneau and Fadili (2012), Chesneau (2012) and Chesneau
and Shirazi (2013).

Again, let us mention that f̂∗δ is adaptive.

Theorem 4.2 below investigates the performance of f̂∗δ under the MISE over Besov balls.
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Theorem 4.2 Let us consider the regression model (1.1) under H2, H3 and H4. Let f̂∗δ
be (4.6). Suppose that f ∈ Bs

p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and
s ∈ (d/p,N)}. Then there exists a constant C > 0 such that

R(f̂∗δ , f) ≤ C

(

(lnn)2

n

)2s/(2s+d)

.

The proof of Theorem 4.2 is based on a general result on the performance of the wavelet
term-by-term thresholding estimators (see Theorem 5.1 below) and some statistical prop-
erties on (4.7) (see Proposition 5.2 below).

Theorem 4.1 improves (Chesneau, 2012, Theorem 1) in terms of rates of convergence
and provides an extension to the multidimensional setting.

Remark 4.3 Obviously the assumptions H1 and H2 includes the bounded noise. If ξ is
bounded, the only interest of Theorem 4.2, and a fortiori f̂∗δ , is to relax H5.

Remark 4.4 Our work can be extended to random design X1 such that X1(Ω) = [a, b]d with
a < b, (a, b) ∈ R

2, having a known density g bounded from below. In this case, it suffices to
replace Yi by Yi/g(Xi) in the definitions of f̂δ and f̂∗δ (more precisely, in (4.3) and (4.7)) to
be able to prove Theorems 4.1 and 4.2. When g is unknown, a possible approach following
the idea of Patil and Truong (2001) is to consider f̂δ (or f̂∗δ ) to estimate fg, then estimate
the unknown density g by a term-by-term wavelet thresholding estimator ĝ (as the one in
Härdle et al. (1998)) and finally construct f̂ † = f̂δ/ĝ. However, we do not claim it to be
near optimal in the minimax sense.

Conclusion and discussion

This paper provides some theoretical contributions to the adaptive wavelet estimation of a
multidimensional regression function from the α-mixing sequence (Yt, Xt)t∈Z defined by
(1.1). Two different wavelet term-by-term thresholding estimators f̂δ and f̂∗δ are con-
structed. Under mild assumptions on (1.1), we determine their rates of convergence under
the MISE over Besov balls Bs

p,r(M). To be more specific, we prove that

result assumptions estimator rate of convergence

Theorem 4.1 H1, H3, H4, H5 f̂δ (4.2) (lnn/n)2s/(2s+d)

Theorem 4.2 H2, H3, H4 f̂∗δ (4.6) ((lnn)2/n)2s/(2s+d)

Since n−2s/(2s+d) is the optimal rate of convergence (in the minimax sense) in the standard
i.i.d. framework, these results show the good performances of f̂δ and f̂

∗
δ . Let us now discuss

several aspects of our study.
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• Some useful assumptions in Theorem 4.1 are relaxed in Theorem 4.2 and the rate
of convergence attained by f̂∗δ is close to the one of f̂δ (up to the logarithmic term
(lnn)2s/(2s+d)).

• Stricto sensu f̂δ is more efficient to f̂∗δ . Moreover the construction of f̂∗δ is more

complicated to the one of f̂δ due to the presence of the thresholding in (4.7). This
could be an obstacle from a practical point of view.

Possible perspectives of this work are to

• determine the optimal lower bound for (1.1) under the α-mixing dependence,

• consider a random design X1 with unknown density or/and unbounded,

• relax the exponential decay assumption of αm in H3,

• improve the rates of convergence by perhaps using a group thresholding rule (see, e.g.,
Cai (1999, 2002)).

All these aspects needs further investigations that we leave for a future work.

5 Proofs

In the following, the quantity C denotes a generic constant that does not depend on j, k
and n. Its value may change from one term to another.

5.1 A general result

Theorem 5.1 below is derived from (Kerkyacharian and Picard, 2000, Theorem 3.1) and
(Delyon and Jusitky, 1996, Theorem 1). The main contributions of this result is to provide
more flexibility on the choices of j0 and j1 (which will be crucial in our dependent framework)
and to clarified the minimal assumptions on the wavelet coefficients estimators to ensure
a “suitable” rate of convergence for the corresponding wavelet term-by-term thresholding
estimator (see (a) and (b) in Theorem 5.1). This result may be of independent interest.

Theorem 5.1 Let us consider a (general) nonparametric model where an unknown function
f ∈ L2([0, 1]

d) needs to be estimated from n observations of a random process defined on
a probability space (Ω,A,P). Using its wavelet series expansion (4.1), we define the hard
thresholding estimator f̂⋄δ by

f̂⋄δ (x) =
∑

k∈Dj0

ĉ⋄j0,kΦj0,k(x) +
2d−1
∑

u=1

j1
∑

j=j0

∑

k∈Dj

δ(d̂⋄j,k,u, κλn)Ψj,k,u(x),

11



where j0 ≥ τ is an integer such that

1

2
2τd(lnn)ν < 2j0d ≤ 2τd(lnn)ν ,

with ν ≥ 0, ĉ⋄j0,k and d̂⋄j,k,u are wavelet coefficients estimators of cj0,k and dj,k,u respectively,
κ is a large enough constant, λn is a threshold, δ : R × (0,∞) → R is a term-by-term
thresholding satisfying (4.4) and j1 is an integer such that

1

2

1

λ2n(lnn)
̺
≤ 2j1d ≤ 1

λ2n(lnn)
̺
,

with ̺ ≥ 0.
It is understood that

lim
n→∞

(lnn)max(ν,̺)λ2(1−υ)
n = 0

for any υ ∈ (0, 1).
We suppose that ν, ĉ⋄j,k, d̂

⋄
j,k,u, κ, λn and ̺ satisfy the following inequalities:

(a) there exists a constant C > 0 such that, for any k ∈ Dj,

E((ĉ⋄j0,k − cj0,k)
2) ≤ Cλ2n.

(b) there exists a constant C > 0 such that, for any j ∈ {j0, . . . , j1}, k ∈ Dj and u ∈
{1, . . . , 2d − 1},

P
(

|d̂⋄j,k,u − dj,k,u| ≥
κ

2
λn

)

≤ C
λ8n
̟n

,

where ̟n is such that
E((d̂⋄j,k,u − dj,k,u)

4) ≤ ̟n.

Furthermore we suppose that f ∈ Bs
p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2)

and s ∈ (d/p,N)}. Then there exists a constant C > 0 such that

R(f̂⋄δ , f) ≤ C
(

λ2n
)2s/(2s+d)

.

Proof of Theorem 5.1. The orthonormality of the considered wavelet basis yields

R(f̂⋄δ , f) = R1 +R2 +R3, (5.1)

where

R1 =
∑

k∈Dj0

E
(

(ĉ⋄j0,k − cj0,k)
2
)

, R2 =

2d−1
∑

u=1

j1
∑

j=j0

∑

k∈Dj

E
(

(δ(d̂⋄j,k,u, κλn)− dj,k,u)
2
)

12



and

R3 =

2d−1
∑

u=1

∞
∑

j=j1+1

∑

k∈Dj

d2j,k,u.

Bound for R1: By (a) we have

R1 ≤ C2j0dλ2n ≤ C(lnn)νλ2n ≤ C
(

λ2n
)2s/(2s+d)

. (5.2)

Bound for R2: The feature of the term-by-term thresholding δ (i.e., (4.4)) yields

R2 ≤ C(R2,1 +R2,2), (5.3)

where

R2,1 =
2d−1
∑

u=1

j1
∑

j=j0

∑

k∈Dj

(min(|dj,k,u|, κλn))2

and

R2,2 =

2d−1
∑

u=1

j1
∑

j=j0

∑

k∈Dj

E
(

|d̂⋄j,k,u − dj,k,u|21{|d̂⋄j,k,u−dj,k,u|≥κλn/2}
)

.

Bound for R2,1: Let j2 an integer satisfying

1

2

(

1

λ2n

)1/(2s+d)

< 2j2 ≤
(

1

λ2n

)1/(2s+d)

.

First of all, let us consider the case p ≥ 2. Since f ∈ Bs
p,r(M) ⊆ Bs

2,∞(M), we have

R2,1 =
2d−1
∑

u=1

j2
∑

j=j0

∑

k∈Dj

(min(|dj,k,u|, κλn))2 +
2d−1
∑

u=1

j1
∑

j=j2+1

∑

k∈Dj

(min(|dj,k,u|, κλn))2

≤
2d−1
∑

u=1

j2
∑

j=j0

∑

k∈Dj

κ2λ2n +

2d−1
∑

u=1

j1
∑

j=j2+1

∑

k∈Dj

d2j,k,u

≤ C



λ2n

j2
∑

j=τ

2jd +

∞
∑

j=j2+1

2−2js



 ≤ C
(

λ2n2
j2d + 2−2j2s

)

≤ C
(

λ2n
)2s/(2s+d)

.

13



Let us now explore the case p ∈ [1, 2). The facts that f ∈ Bs
p,r(M) with s > d/p and

(2s+ d)(2− p)/2 + (s+ d(1/2− 1/p))p = 2s lead to

R2,1 =

2d−1
∑

u=1

j2
∑

j=j0

∑

k∈Dj

(min(|dj,k,u|, κλn))2 +
2d−1
∑

u=1

j1
∑

j=j2+1

∑

k∈Dj

(min(|dj,k,u|, κλn))2−p+p

≤
2d−1
∑

u=1

j2
∑

j=j0

∑

k∈Dj

κ2λ2n +

2d−1
∑

u=1

j1
∑

j=j2+1

∑

k∈Dj

|dj,k,u|p(κλn)2−p

≤ C



λ2n

j2
∑

j=τ

2jd + (λ2n)
(2−p)/2

∞
∑

j=j2+1

2−j(s+d(1/2−1/p))p





≤ C
(

λ2n2
j2d + (λ2n)

(2−p)/22−j2(s+d(1/2−1/p))p
)

≤ C
(

λ2n
)2s/(2s+d)

.

Therefore, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and s ∈ (d/p,N)}, we have

R2,1 ≤ C
(

λ2n
)2s/(2s+d)

. (5.4)

Bound for R2,2: It follows from the Cauchy-Schwarz inequality and (b) that

R2,2 ≤ C

2d−1
∑

u=1

j1
∑

j=j0

∑

k∈Dj

√

E
(

(d̂⋄j,k,u − dj,k,u)4
)

P
(

|d̂⋄j,k,u − dj,k,u| > κλn/2
)

≤ Cλ4n

j1
∑

j=τ

2jd ≤ Cλ4n2
j1d ≤ Cλ4n

1

λ2n(lnn)
̺
≤ Cλ2n ≤ C

(

λ2n
)2s/(2s+d)

. (5.5)

Putting (5.3), (5.4) and (5.5) together, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2)
and s ∈ (d/p,N)}, we obtain

R2 ≤ C
(

λ2n
)2s/(2s+d)

. (5.6)

Bound for R3: In the case p ≥ 2, we have f ∈ Bs
p,r(M) ⊆ Bs

2,∞(M) which implies that

R3 ≤ C
∞
∑

j=j1+1

2−2js ≤ C2−2j1s ≤ C
(

λ2n(lnn)
̺
)2s/d ≤ C

(

λ2n
)2s/(2s+d)

.

On the other hand, when p ∈ [1, 2), we have f ∈ Bs
p,r(M) ⊆ B

s+d(1/2−1/p)
2,∞ (M). Observing

that s > d/p leads to (s+ d(1/2− 1/p))/d > s/(2s+ d), we have

R3 ≤ C

∞
∑

j=j1+1

2−2j(s+d(1/2−1/p)) ≤ C2−2j1(s+d(1/2−1/p))

≤ C
(

λ2n(lnn)
̺
)2(s+d(1/2−1/p))/d ≤ C

(

λ2n
)2s/(2s+d)

.
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Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > d/p}, we have

R3 ≤ C
(

λ2n
)2s/(2s+d)

. (5.7)

Combining (5.1), (5.2), (5.6) and (5.7), we arrive at, for r ≥ 1, {p ≥ 2 and s > 0} or
{p ∈ [1, 2) and s > d/p},

R(f̂⋄δ , f) ≤ C
(

λ2n
)2s/(2s+d)

.

The proof of Theorem 5.1 is completed.

�

5.2 Proof of Theorem 4.1

The proof of Theorem 4.1 is a consequence of Theorem 5.1 above and Proposition 5.1 below.
To be more specific, Proposition 5.1 shows that (a) and (b) of Theorem 5.1 are satisfied
under the following configuration:

• ν = 2,

• ĉ⋄j0,k = ĉj0,k and d̂⋄j,k,u = d̂j,k,u from (4.3),

• λn =
√

lnn/n,

• κ is a large enough constant,

• ̺ = 3.

Proposition 5.1 Suppose that H1, H3, H4 and H5 hold. Let ĉj,k and d̂j,k,u be defined by
(4.3), and

λn =

√

lnn

n
.

Then

(i) there exists a constant C > 0 such that, for any j satisfying (lnn)2 ≤ 2jd ≤ n and
k ∈ Dj,

E((ĉj,k − cj,k)
2) ≤ C

1

n

(

≤ Cλ2n
)

.

(ii) there exists a constant C > 0 such that, for any j satisfying 2jd ≤ n, k ∈ Dj and
u ∈ {1, . . . , 2d − 1},

E((d̂j,k,u − dj,k,u)
4) ≤ Cn (= ̟n) .
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(iii) for κ > 0 large enough, there exists a constant C > 0 such that, for any j satisfying
(lnn)2 ≤ 2jd ≤ n/(lnn)4, k ∈ Dj and u ∈ {1, . . . , 2d − 1},

P
(

|d̂j,k,u − dj,k,u| ≥
κ

2
λn

)

≤ C
1

n5
(

≤ Cλ8n/̟n

)

.

Proof of Proposition 5.1. The technical ingredients in our proof are suitable covari-
ance decompositions, a covariance inequality for α-mixing processes (see Lemma 5.3 in
Appendix) and a Bernstein-type exponential inequality for α-mixing processes (see Lemma
5.4 in Appendix).

(i) Since E(Y1Φj,k(X1)) = cj,k, we have

ĉj,k − cj,k =
1

n

n
∑

i=1

Ui,j,k,

where
Ui,j,k = YiΦj,k,u(Xi)−E(Y1Φj,k(X1)).

Considering the event Ai =
{

|Yi| ≥ κ∗
√
lnn

}

, where κ∗ denotes a constant which will

be chosen later, we can split Ui,j,k as follows:

Ui,j,k = Vi,j,k +Wi,j,k,

where
Vi,j,k = YiΦj,k(Xi)1Ai

−E (Y1Φj,k(X1)1Ai
)

and
Wi,j,k = YiΦj,k(Xi)1Ac

i
−E

(

Y1Φj,k(X1)1Ac
i

)

.

The inequality (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R
2, yields

E((ĉj,k − cj,k)
2) =

1

n2
E





(

n
∑

i=1

Vi,j,k +
n
∑

i=1

Wi,j,k

)2


 ≤ 2

n2
(S + T ), (5.8)

where

S = V

(

n
∑

i=1

YiΦj,k(Xi)1Ai

)

, T = V

(

n
∑

i=1

YiΦj,k(Xi)1Ac
i

)

.

Bound for S: Let us now introduce a result which will be useful in the rest of study.

Lemma 5.1 Let p ≥ 1. Consider (1.1). Suppose that E(|ξ1|p) < ∞ and H4 holds.
Then
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• there exists a constant C > 0 such that, for any j ≥ τ and k ∈ Dj,

E (|Y1Φj,k(X1)|p) ≤ C2jd(p/2−1).

• there exists a constant C > 0 such that, for any j ≥ τ , k ∈ Dj and u ∈
{1, . . . , 2d − 1},

E (|Y1Ψj,k,u(X1)|p) ≤ C2jd(p/2−1).

Using the inequality (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , a = (a1, . . . , am) ∈ R

m, Lemma 5.1
with p = 4 (thanks to H1 implying E(|ξ1|p) <∞ for p ≥ 1) and 2jd ≤ n, we arrive at

S ≤ E





(

n
∑

i=1

YiΦj,k(Xi)1Ai

)2


 ≤ n2E
(

(Y1Φj,k(X1))
21A1

)

≤ n2
√

E ((Y1Φj,k(X1))4)P(A1) ≤ Cn22jd/2
√

P(A1)

≤ Cn5/2
√

P(A1).

Now, using H4, H1 (implying (2.1)) and taking κ∗ large enough, we obtain

P(A1) ≤ P(|ξ1| ≥ κ∗
√
lnn−K) ≤ P

(

|ξ1| ≥
κ∗
2

√
lnn

)

≤ 2ωe−κ2
∗ lnn/(8σ2) = 2ωn−κ2

∗/(8σ
2) ≤ C

1

n3
.

Hence

S ≤ Cn5/2
1

n3/2
= Cn. (5.9)

Bound for T : Observe that

T ≤ T1 + T2, (5.10)

where
T1 = nV

(

Y1Φj,k(X1)1Ac
1

)

and

T2 =

∣

∣

∣

∣

∣

n
∑

v=2

v−1
∑

ℓ=1

Cov

(

YvΦj,k(Xv)1Ac
v
, YℓΦj,k(Xℓ)1Ac

ℓ

)

∣

∣

∣

∣

∣

.

Bound for T1: Lemma 5.1 with p = 2 yields

T1 ≤ nE
(

(Y1Φj,k(X1))
2 1Ac

1

)

≤ nE
(

(Y1Φj,k(X1))
2
)

≤ Cn. (5.11)
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Bound for T2: It follows from the stationarity of (Yt, Xt)t∈Z and 2jd ≤ n that

T2 =

∣

∣

∣

∣

∣

n
∑

m=1

(n−m)Cov

(

Y0Φj,k(X0)1Ac
0
, YmΦj,k(Xm)1Ac

m

)

∣

∣

∣

∣

∣

≤ n
n
∑

m=1

∣

∣Cov

(

Y0Φj,k(X0)1Ac
0
, YmΦj,k(Xm)1Ac

m

)∣

∣ = n(T2,1 + T2,2), (5.12)

where

T2,1 =

[lnn/β]−1
∑

m=1

∣

∣Cov

(

Y0Φj,k(X0)1Ac
0
, YmΦj,k(Xm)1Ac

m

)∣

∣ ,

T2,2 =

n
∑

m=[lnn/β]

∣

∣Cov

(

Y0Φj,k(X0)1Ac
0
, YmΦj,k(Xm)1Ac

m

)∣

∣

and [lnn/β] is the integer part of lnn/β (where β is the one in H3).

Bound for T2,1: First of all, for any m ∈ {1, . . . , n}, let h(Y0,X0,Ym,Xm) be the density
of (Y0, X0, Ym, Xm) and h(Y0,X0) the density of (Y0, X0). We set

θm(y, x, y∗, x∗) = h(Y0,X0,Ym,Xm)(y, x, y∗, x∗)− h(Y0,X0)(y, x)h(Y0,X0)(y∗, x∗),

(y, x, y∗, x∗) ∈ R× [0, 1]d × R× [0, 1]d. (5.13)

For any (x, x∗) ∈ [0, 1]2d, since the density of X0 is 1 over [0, 1]d and using H5, we
have

∫ ∞

−∞

∫ ∞

−∞
|θm(y, x, y∗, x∗)|dydy∗

≤
∫ ∞

−∞

∫ ∞

−∞
h(Y0,X0,Ym,Xm)(y, x, y∗, x∗)dydy∗ +

(∫ ∞

−∞
h(Y0,X0)(y, x)dy

)2

= g(X0,Xm)(x, x∗) + 1 ≤ L+ 1. (5.14)

By a standard covariance equality, the definition of (5.13), (5.14) and Lemma 5.1 with
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p = 1, we obtain
∣

∣Cov

(

Y0Φj,k(X0)1Ac
0
, YmΦj,k(Xm)1Ac

m

)∣

∣

=

∣

∣

∣

∣

∫ κ∗
√
lnn

−κ∗
√
lnn

∫

[0,1]d

∫ κ∗
√
lnn

−κ∗
√
lnn

∫

[0,1]d
θm(y, x, y∗, x∗) (yΦj,k(x)y∗Φj,k(x∗)) dydxdy∗dx∗

∣

∣

∣

∣

≤
∫

[0,1]d

∫

[0,1]d

(

∫ κ∗
√
lnn

−κ∗
√
lnn

∫ κ∗
√
lnn

−κ∗
√
lnn

|y||y∗||θm(y, x, y∗, x∗)|dydy∗
)

|Φj,k(x)||Φj,k(x∗)|dxdx∗

≤ κ2∗ lnn
∫

[0,1]d

∫

[0,1]d

(∫ ∞

−∞

∫ ∞

−∞
|θm(y, x, y∗, x∗)|dydy∗

)

|Φj,k(x)||Φj,k(x∗)|dxdx∗

≤ C lnn

(

∫

[0,1]d
|Φj,k(x)|dx

)2

≤ C lnn2−jd.

Therefore, since 2jd ≥ (lnn)2,

T2,1 ≤ C(lnn)22−jd ≤ C. (5.15)

Bound for T2,2: By the Davydov inequality (see Lemma 5.3 in Appendix with p =
q = 4), Lemma 5.1 with p = 4, 2jd ≤ n and H3, we have

∣

∣Cov

(

Y0Φj,k(X0)1Ac
0
, YmΦj,k(Xm)1Ac

m

)∣

∣ ≤ C
√
αm

√

E
(

(Y0Φj,k(X0))
4 1Ac

0

)

≤ C
√
αm

√

E
(

(Y0Φj,k(X0))
4
)

≤ C
√
αm2jd/2 ≤ Ce−βm/2√n.

The previous inequality implies that

T2,2 ≤ C
√
n

n
∑

m=[lnn/β]

e−βm/2 ≤ C
√
ne− lnn/2 ≤ C. (5.16)

Combining (5.12), (5.15) and (5.16), we arrive at

T2 ≤ n(T2,1 + T2,2) ≤ Cn. (5.17)

Putting (5.10), (5.11) and (5.17) together, we have

T ≤ T1 + T2 ≤ Cn. (5.18)

Finally, (5.8), (5.9) and (5.18) lead to

E((ĉj,k − cj,k)
2) ≤ 2

n2
(S + T ) ≤ C

1

n2
n ≤ C

1

n
.

This ends the proof of (i).
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(ii)UsingE(Y1Ψj,k,u(X1)) = dj,k,u the inequality (
∑m

i=1 ai)
4 ≤ m3

∑m
i=1 a

4
i , a = (a1, . . . , am) ∈

R
m, the Hölder inequality, Lemma 5.1 with p = 4 and 2jd ≤ n, we obtain

E((d̂j,k,u − dj,k,u)
4) =

1

n4
E





(

n
∑

i=1

(YiΨj,k,u(Xi))−E(Y1Ψj,k,u(X1))

)4




≤ C
1

n4
n4E

(

(Y1Ψj,k,u(X1))
4
)

≤ C2jd ≤ Cn.

The proof of (ii) is completed.

Remark 5.1 This bound can be improved using more sophisticated moment inequal-
ities for α-mixing processes (as (Yang, 2007, Theorem 2.2)). However, the obtained
bound in (ii) is sufficient in the rest of our study.

(iii) Since E(Y1Ψj,k,u(X1)) = dj,k,u, we have

d̂j,k,u − dj,k,u =
1

n

n
∑

i=1

Pi,j,k,u,

where
Pi,j,k,u = YiΨj,k,u(Xi)−E(Y1Ψj,k,u(X1)).

Considering again the event Ai =
{

|Yi| ≥ κ∗
√
lnn

}

, where κ∗ denotes a constant

which will be chosen later, we can split Pi,j,k,u as follows:

Pi,j,k,u = Qi,j,k,u +Ri,j,k,u,

where
Qi,j,k,u = YiΨj,k,u(Xi)1Ai

−E (Y1Ψj,k,u(X1)1Ai
)

and
Ri,j,k,u = YiΨj,k,u(Xi)1Ac

i
−E

(

Y1Ψj,k,u(X1)1Ac
i

)

.

Therefore

P
(

|d̂j,k,u − dj,k,u| ≥
κ

2
λn

)

≤ I1 + I2, (5.19)

where

I1 = P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Qi,j,k,u

∣

∣

∣

∣

∣

≥ κ

4
λn

)

, I2 = P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Ri,j,k,u

∣

∣

∣

∣

∣

≥ κ

4
λn

)

.
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Bound for I1: The Markov inequality, the Cauchy-Schwarz inequality and Lemma 5.1
with p = 2 yield

I1 ≤ 4

κnλn
E

(∣

∣

∣

∣

∣

n
∑

i=1

Qi,j,k,u

∣

∣

∣

∣

∣

)

≤ C
√
nE(|Q1,j,k,u|) ≤ C

√
nE (|Y1Ψj,k,u(X1)|1A1)

≤ C
√
n

√

E
(

(Y1Ψj,k,u(X1))
2
)

P(A1) ≤ C
√
n
√

P(A1).

Now, using H4, H1 (implying (2.1)) and taking κ∗ large enough, we obtain

P(A1) ≤ P(|ξ1| ≥ κ∗
√
lnn−K) ≤ P

(

|ξ1| ≥
κ∗
2

√
lnn

)

≤ 2ωe−κ2
∗ lnn/(8σ2) = 2ωn−κ2

∗/(8σ
2) ≤ C

1

n11
.

Hence

I1 ≤ C
√
n

1

n11/2
≤ C

1

n5
. (5.20)

Bound for I2: We will bound I2 via the Bernstein inequality for α-mixing process
described in Lemma 5.4 (see Appendix).

We have E(R1,j,k,u) = 0 and, since |Y1|1Ac
1
≤ κ∗

√
lnn and |Ψj,k,u(x)| ≤ C2jd/2 ≤

C
√
n/(lnn)2,

|Ri,j,k,u| ≤ C
√
lnn sup

x∈[0,1]d
|Ψj,k,u(x)| ≤ C

√
lnn

√
n

(lnn)2
= C

√

n

(lnn)3
.

Using arguments similar to the proofs of the bounds for T1 and T2,1 in (i), for any
l ≤ C lnn, since 2jd ≥ (lnn)2, we have

V

(

l
∑

i=1

Ri,j,k,u

)

= V

(

l
∑

i=1

YiΨj,k,u(Xi)1Ac
i

)

≤ C(l + l2 lnn2−jd) ≤ Cl.

Hence

Dm = max
l∈{1,...,2m}

V

(

l
∑

i=1

Ri,j,k,u

)

≤ Cm.

Lemma 5.4 applied with the α-mixing random variables R1,j,k,u, . . . , Rn,j,k,u, λ =

κλn/4, λn =
√

lnn/n, m = [u lnn] with u > 0 chosen later, M = C
√

n/(lnn)3 and

21



H3 gives

I2 ≤ C

(

exp

(

−C κ2λ2nn

Dm/m+ κλnmM

)

+
M

λn
ne−βm

)

≤ C

(

exp

(

−C κ2 lnn

1 + κ
√

lnn/nu lnn
√

n/(lnn)3

)

+

√

n/(lnn)3

lnn/n
ne−βu lnn

)

≤ C
(

n−Cκ2/(1+κu) + n2−βu
)

.

Therefore, taking u =
√
κ (for instance) and κ large enough, we have

I2 ≤ C
1

n5
. (5.21)

It follows from (5.19), (5.20) and (5.21) that

P
(

|d̂j,k,u − dj,k,u| ≥
κ

2
λn

)

≤ I1 + I2 ≤ C
1

n5
.

This completes the proof of (iii).

This ends the proof of Proposition 5.1.

�

5.3 Proof of Theorem 4.2

The proof of Theorem 4.2 is a consequence of Theorem 5.1 above and Proposition 5.2 below.
To be more specific, Proposition 5.2 shows that (a) and (b) of Theorem 5.1 can be applied
under the following configuration:

• ν = 0,

• ĉ⋄j0,k = ĉ∗j0,k and d̂⋄j,k,u = d̂∗j,k,u from (4.7),

• λn = lnn/
√
n,

• κ is a large enough constant,

• ̺ = 0.

Proposition 5.2 Suppose that H2, H3 and H4 hold. Let ĉ∗j,k and d̂∗j,k,u be defined by
(4.7), and

λn =
lnn√
n
.

Then
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(i) there exists a constant C > 0 such that, for any j satisfying 2jd ≤ n and k ∈ Dj,

E((ĉ∗j,k − cj,k)
2) ≤ C

(lnn)2

n

(

≤ Cλ2n
)

.

(ii) there exists a constant C > 0 such that, for any j such that 2jd ≤ n, k ∈ Dj and
u ∈ {1, . . . , 2d − 1},

E((d̂∗j,k,u − dj,k,u)
4) ≤ C (= ̟n) .

(iii) for κ > 0 large enough, there exists a constant C > 0 such that, for any j satisfying
2jd ≤ n/(lnn)4, k ∈ Dj and u ∈ {1, . . . , 2d − 1},

P
(

|d̂∗j,k,u − dj,k,u| ≥
κ

2
λn

)

≤ C
1

n4
(

≤ Cλ8n/̟n

)

.

Proof of Proposition 5.2. Again the technical tools in our proof are suitable covari-
ance decompositions, a covariance inequality for α-mixing processes (see Lemma 5.3 in
Appendix) and a Bernstein-type exponential inequality for α-mixing processes (see Lemma
5.4 in Appendix).

The following result will be useful in the sequel.

Lemma 5.2 Let ĉ∗j,k and d̂∗j,k,u be defined by (4.7). Suppose that H2 and H4 hold. Then

• there exists a constant C > 0 such that, for any j ≥ τ and k ∈ Dj,

|ĉ∗j,k − cj,k| ≤
1

n

∣

∣

∣

∣

∣

n
∑

i=1

(Ai,j,k −E(A1,j,k))

∣

∣

∣

∣

∣

+ C
lnn√
n
,

• there exists a constant C > 0 such that, for any j ≥ τ , k ∈ Dj and u ∈ {1, . . . , 2d−1},

|d̂∗j,k,u − dj,k,u| ≤
1

n

∣

∣

∣

∣

∣

n
∑

i=1

(Bi,j,k,u −E(B1,j,k,u))

∣

∣

∣

∣

∣

+ C
lnn√
n
.

(i) Lemma 5.2 and the inequality (x2 + y2) ≤ 2(x2 + y2), (x, y) ∈ R
2, yield

E((ĉ∗j,k − cj,k)
2) ≤ C

(

1

n2
V

(

n
∑

i=1

Ai,j,k

)

+
(lnn)2

n

)

≤ C
1

n2
(

S + T + n(lnn)2
)

, (5.22)
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where

S = nV (A1,j,k) , T =

∣

∣

∣

∣

∣

n
∑

v=2

v−1
∑

ℓ=1

Cov (Av,j,k, Aℓ,j,k)

∣

∣

∣

∣

∣

.

Bound for S: It follows from Lemma 5.1 with p = 2 that

S ≤ nE
(

(A1,j,k)
2
)

≤ nE
(

(Y1Φj,k(X1))
2
)

≤ Cn. (5.23)

Bound for T : It follows from the stationarity of (Yt, Xt)t∈Z that

T =

∣

∣

∣

∣

∣

n
∑

m=1

(n−m)Cov (A0,j,k, Am,j,k)

∣

∣

∣

∣

∣

≤ n
n
∑

m=1

|Cov (A0,j,k, Am,j,k)|

= n(T1 + T2), (5.24)

where

T1 =

[lnn/β]−1
∑

m=1

|Cov (A0,j,k, Am,j,k)| , T2 =
n
∑

m=[lnn/β]

|Cov (A0,j,k, Am,j,k)|

and [lnn/β] is the integer part of lnn/β (where β is the one in H3).

Bound for T1: The covariance inequality: Cov(U, V ) ≤ E(U2), where U and V are
identically distributed random variables admitting moments of order 2, and Lemma
5.1 with p = 2 lead to

T1 ≤ C

[lnn/β]−1
∑

m=1

E
(

(A0,j,k)
2
)

≤ C lnnE
(

(Y0Φj,k(X0))
2
)

≤ C lnn. (5.25)

Bound for T2: By the Davydov inequality (see Lemma 5.3 in Appendix with p = q =
4), the Hölder inequality, (A0,j,k)

4 ≤ n(Y0Φj,k(X0))
2, Lemma 5.1 with p = 2 and H3,

we have

|Cov (A0,j,k, Am,j,k)| ≤ C
√
αm

√

E ((A0,j,k)4)

≤ C
√
αm

√
n
√

E ((Y0Φj,k(X0))2) ≤ Ce−βm/2√n.

Owing to the previous inequality, we arrive at

T2 ≤ C
√
n

n
∑

m=[lnn/β]

e−βm/2 ≤ C
√
ne− lnn/2 = C. (5.26)
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Combining (5.24), (5.25) and (5.26), we obtain

T ≤ n(T1 + T2) ≤ Cn lnn. (5.27)

Finally, putting (5.22), (5.23) and (5.27) together, we have

E((ĉ∗j,k − cj,k)
2) ≤ C

1

n2
(

S + T + n(lnn)2
)

≤ C
(lnn)2

n
.

This ends the proof of (i).

(ii) Using |dj,k,u| ≤ C (since f ∈ L2([0, 1]
d)) and |Bi,j,k,u| ≤

√
n/ lnn, we have

|d̂∗j,k,u − dj,k,u| ≤ |d̂∗j,k,u|+ |dj,k,u| ≤
1

n

n
∑

i=1

|Bi,j,k,u|+ C ≤
√
n

lnn
+ C ≤ C

√
n

lnn
.

Moreover, proceeding as in the proof of (i) but with Ψj,k,u instead of Φj,k, we obtain

E((d̂∗j,k,u − dj,k,u)
2) ≤ C

(lnn)2

n
.

Therefore

E((d̂∗j,k,u − dj,k,u)
4) ≤ C

n

(lnn)2
E((d̂∗j,k,u − dj,k,u)

2) ≤ C
n

(lnn)2
(lnn)2

n
≤ C.

This finishes the proof of (ii).

(iii) For any j ≥ τ , k ∈ Dj and u ∈ {1, . . . , 2d − 1}, set

Wi,j,k,u = Bi,j,k,u −E(B1,j,k,u).

Lemma 5.2 and λn = lnn/
√
n imply that, for κ large enough,

P
(

|d̂∗j,k,u − dj,k,u| ≥
κ

2
λn

)

≤ P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi,j,k,u

∣

∣

∣

∣

∣

≥ κ

2
λn − C

lnn√
n

)

≤ P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi,j,k,u

∣

∣

∣

∣

∣

≥ κ

4
λn

)

. (5.28)

We will bound this probability term via the Bernstein inequality for α-mixing process
(see Lemma 5.4 in Appendix)

We have E(W1,j,k,u) = 0 and, since |Bi,j,k,u| ≤
√
n/ lnn,

|Wi,j,k,u| ≤ 2

√
n

lnn
.
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Similar arguments to the proofs of the bounds of S and T in (i) with 1 ≤ l ≤ C lnn
lead to

V

(

l
∑

i=1

Wi,j,k,u

)

= V

(

l
∑

i=1

Bi,j,k,u

)

≤ C(l + l2) ≤ l2.

Hence

Dm = max
l∈{1,...,2m}

V

(

l
∑

i=1

Wi,j,k,u

)

≤ Cm2.

Lemma 5.4 applied with the α-mixing random variables W1,j,k,u, . . . ,Wn,j,k,u, λ =
κλn/4, λn = lnn/

√
n, m = [u lnn] with u > 0 chosen later, M = C

√
n/ lnn and H3

gives

P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi,j,k,u

∣

∣

∣

∣

∣

≥ κ

4
λn

)

≤ C

(

exp

(

−C κ2λ2nn

Dm/m+ κλnmM

)

+
M

λn
ne−βm

)

≤ C

(

exp

(

−C κ2(lnn)2

u lnn+ κ(lnn/
√
n)u lnn(

√
n/ lnn)

)

+

√
n/ lnn

lnn/
√
n
ne−βu lnn

)

≤ C

(

exp

(

−C κ2(lnn)2

u lnn(1 + κ)

)

+ n2e−βu lnn

)

≤ C
(

n−Cκ2/u(1+κ) + n2−βu
)

.

Therefore, taking u =
√
κ (for instance) and κ large enough, we have

P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Wi,j,k,u

∣

∣

∣

∣

∣

≥ κ

4
λn

)

≤ C
1

n4
. (5.29)

It follows from (5.28) and (5.29) that

P
(

|d̂j,k,u − dj,k,u| ≥
κ

2
λn

)

≤ C
1

n4
.

This completes the proof of (iii).

This ends the proof of Proposition 5.2.

�
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5.4 Proof of the auxiliary results

Proof of Lemma 5.1. Owing to E(|ξ1|p) <∞, H4, the inequality |x+ y|p ≤ 2p−1(|x|p +
|y|p), (x, y) ∈ R

2, p ≥ 1, the independence between X1 and ξ1 and the change of variables
y = 2jx− k, we obtain

E (|Y1Φj,k(X1)|p) ≤ CE ((Kp + |ξ1|p)|Φj,k(X1)|p)

= C(Kp +E(|ξ1|p))E (|Φj,k(X1)|p) ≤ C

∫

[0,1]d
|Φj,k(x)|pdx

= C2jdp/2

(

∫

[0,1]
|φ(2jx− k)|pdx

)d

≤ C2jd(p/2−1).

The proof of the other point is similar; it is enough to replace Φj,k by Ψj,k,u. This ends the
proof of Lemma 5.1.

�

Proof of Lemma 5.2. Since E (Y1Φj,k(X1)) = cj,k, we have

cj,k = E(A1,j,k) +E

(

Y1Φj,k(X1)1{|Y1Φj,k(X1)|>
√
n

lnn

}

)

.

Therefore

|c∗j,k − cj,k| ≤
1

n

∣

∣

∣

∣

∣

n
∑

i=1

(Ai,j,k −E(A1,j,k))

∣

∣

∣

∣

∣

+E

(

|Y1Φj,k(X1)|1{|Y1Φj,k(X1)|>
√
n

lnn

}

)

.

Let us now bound the last term. The Markov inequality and Lemma 5.1 with p = 2 yield

E

(

|Y1Φj,k(X1)|1{|Y1Φj,k(X1)|>
√
n

lnn

}

)

≤ lnn√
n
E
(

(Y1Φj,k(X1))
2
)

≤ C
lnn√
n
,

that ends the proof of the first point. The proof of the second point is identical; it is enough
to replace Φj,k by Ψj,k,u. Lemma 5.2 is proved.

�

Appendix

In this section we give some preliminary lemmas which have been used in the proofs of our
main results.
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Lemma 5.3 (Davydov (1970)) Let (At)t∈Z be a stationary α-mixing process with mixing
coefficient αm, m ≥ 0, and h and k be two measurable functions. Let p > 0 and q > 0
satisfying 1/p + 1/q < 1, such that E(|h(A0)|p) and E(|k(A0)|q) exist. Then there exists a
constant C > 0 such that

|Cov(h(A0), k(Am))| ≤ Cα1−1/p−1/q
m (E(|h(A0)|p))1/p (E(|k(A0)|q))1/q .

Lemma 5.4 (Liebscher (2001)) Let (At)t∈Z be a stationary process with them-th strongly
mixing coefficient αm, m ≥ 0, n be a positive integer, h : R → C be a measurable function
and, for any t ∈ Z, Ut = h(At). We assume that E(U1) = 0 and there exists a constant
M > 0 satisfying |U1| ≤M . Then, for any m ∈ {1, . . . , [n/2]} and λ > 0, we have

P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

≥ λ

)

≤ 4 exp

(

− λ2n

16(Dm/m+ λMm/3)

)

+ 32
M

λ
nαm,

where

Dm = max
l∈{1,...,2m}

V

(

l
∑

i=1

Ui

)

.
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