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On the iterated Lévy transforms of Brownian motion

September 2, 2012

Hatem Hajri
(1)

University of Luxembourg.

Abstract

The Lévy transform of a Brownian motion B is given by T (B)t =
∫

t

0
sgn(Bs)dBs. Csáki and

Vincze have defined in 1961 a discrete analogous T of T which applies to simple random walks and

is measure preserving. Although their result is quite important and optimal, its relationship with

the Lévy transform has not been explored enough until now. In this paper, we prove that T is exact

:
⋂

k≥1
σ(T k(S)) is trivial for each simple random walk S and give a precise description of the lost

information at each step k. We then consider a suitable simple random walk Sn embedded in B

depending on n and prove that for each k, T k(Sn) suitably normalized and time scaled converges

to T k(B) in probability in C(R+,R) as n → ∞. We also derive some interesting consequences of

this result. Finally, we give a sufficient condition under which the Lévy transform is ergodic.

1 Introduction and main results.

Let B be a Brownian motion, then T (B)t =
∫ t

0 sgn(Bs)dBs is a Brownian motion too. Iterating T

yields a family of Brownian motions (Bn)n given by

B0 = B, Bn+1 = T (Bn).

We call Bn the n-iterated Lévy transformation of B. Let W = C(R+,R) be the Wiener space equipped

with the Borel σ-field F associated to the distance of uniform convergence on compact sets

dU (w,w
′) =

∑

n≥1

2−n
(

sup
0≤t≤n

|w(t)− w′(t)| ∧ 1
)

.

(1)Email: hatemfn@yahoo.fr
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Let µ be the Wiener measure and Bt(ω) = ω(t) be the canonical Brownian motion defined on W. The

Lévy transformation on W

TW : W −→ W

ω 7−→ ω̂,

where

ω̂(t) =

∫ t

0
sgn(Bs)dBs(ω) = |Bt(ω)| − Lt(B)(ω) = |ω(t)| − lim

ǫ→0

1

2ǫ

∫ t

0
1{|ω(u)|≤ǫ}du.

leaves invariant µ. Whether TW is ergodic, i.e.

∀E ∈ F , T−1
W (E) = E ⇒ µ(E) ∈ {0, 1},

is a very known open question raised by Marc Yor since the late 70’s (see [9] page 257). The ergodicity

of TW is an immediate consequence of :
⋂

n≥0 T
−n
W (F) is µ-trivial (see [7] Corollary 4). Dubins and

Smorodinsky [2] gave a proof of ergodicity in the modified discrete case. For a simple random walk

(SRW) S, their definition of the Lévy transform of S is the SRW obtained by skipping plat paths from

n 7−→ |Sn| − Ln

where L is a discrete analogous of local time. Another discrete Lévy transformation was also given in

Fujita [4]. However, what was probably missing in [2] and [4] is the relationship with all the iterated

Lévy transforms and the question of ergodicity in the spirit of the results below.

Before stating our results, let us introduce some notations. We equip E = WN with the product metric

defined for each x = (xk)k≥0, y = (yk)k≥0 by

d(x, y) =
∑

k≥0

2−k(dU (xk, yk) ∧ 1).

Thus (E, d) is a separable complete metric space.

For each SRW S and h ≥ 0, we denote by T h(S) the h-iterated Csáki-Vincze transformation (to be

defined in Section 2.1) of S with the convention T 0(S) = S.

Let B be a Brownian motion defined on (Ω,A,P). For each n ≥ 1, define T n
0 = 0 and for all k ≥ 0,

T n
k+1 = inf

{

t ≥ T n
k : |Bt −BTn

k
| = 1√

n

}

.

Then Sn
k =

√
nBTn

k
, k ≥ 0, is a SRW and we have the following
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Theorem 1. (i) For each SRW S (and in particular for Sn for each n ≥ 1) and h ≥ 0, T h(S) is

independent of (Sj, j ≤ h) and a fortiori

⋂

h≥0

σ(T h(S))

is trivial.

(ii) For each n ≥ 1, h ≥ 0 and t ≥ 0, define

Sn,h(t) =
1√
n
T h(Sn)⌊nt⌋ +

(nt− ⌊nt⌋)√
n

(

T h(Sn)⌊nt⌋+1 − T h(Sn)⌊nt⌋
)

.

Then

(Sn,0, Sn,1, Sn,2, · · · )

converges to

(B0, B1, B2, · · · )

in probability in E as n → ∞.

A sufficient condition for the ergodicity of the Lévy transformation is the convergence in law of

(Bn, B) (or (Bαn , B) where (αn)n is a nonegative sequence with values in N and such that αn −→ +∞
as n → ∞) to a 2-dimensional Brownian motion. This fact has been proved recently by Prokaj [10]

(Proposition 16). We prove that this property is satisfied in discrete time.

Corollary 1. Fix p ≥ 2 and let αi = (αi
n)n≥1, i ∈ [1, p] be p nonegative sequences such that

α1
n −→ +∞, αi

n − αi−1
n −→ +∞ as n → ∞ for all i ∈ [2, p].

Let X0,X1, · · · ,Xp be p+ 1 independent Brownian motions.

(i) Let S be a SRW and for n ≥ 1, h ≥ 0, t ∈ R+, define

Sh
n(t) =

1√
n
T h(S)⌊nt⌋ +

(nt− ⌊nt⌋)√
n

(

T h(S)⌊nt⌋+1 − T h(S)⌊nt⌋
)

. (1)

Then
(

S0
n, S

⌊nα1
n⌋

n , · · · , S⌊nαp
n⌋

n

)

law−−−−−→
n → +∞

(

X0,X1, · · · ,Xp

)

in Wp+1.
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(ii) With the same notations of Theorem 1, we have

(

B,Sn,⌊nα1
n⌋, · · · , Sn,⌊nαp

n⌋

)

law−−−−−→
n → +∞

(

X0,X1, · · · ,Xp

)

in Wp+1.

We were not able to deduce the ergodicity of the Lévy transformation. The following proposition

gives a sufficient condition to prove this result.

Proposition 1. Suppose there exists a nonegative sequence (αn)n with values in N tending to +∞
and a subsequence (an)n of n 7→ n such that for all t ≥ 0,

lim
n→∞

(

San,anαn(t)−Banαn

t

)

= 0 in probability, (2)

then as n → ∞, (B,Banαn) converges in law to (X,Y ) in W2 where X,Y are two independent

Brownian motions and a fortiori the Lévy transformation is ergodic.

From Theorem 1, we can deduce that for each subsequence (an)n there exists a nonegative bounded

sequence (αn)n such that (2) holds. We just write the result for an = n as follows.

Corollary 2. With the same notations of Theorem 1, there exists a family (αi)i∈N of nondecreasing

sequences αi = (αi
n)n∈N with values in N such that

α0
n −→ +∞, αi

n − αi−1
n −→ +∞ as n → ∞ for all i ≥ 1

and moreover

lim
n→∞

(

Sn,αi
n −Bαi

n

)

= 0 in probability in W

for all i ∈ N.

The sequences (αi)i∈N will be constructed such that 0 ≤ α0
n ≤ n and 0 ≤ αi

n − αi−1
n ≤ n for all i

and n and it is not easy to deduce from Corollary 2 that (2) is satisfied (for an = n).

In the next section we prove the previous results. We first review the Csáki-Vincze transforma-

tion, establish part (i) of Theorem 1 and show that (S,T (S), · · · ,T h(S), · · · ) ”converges” in law to

(B,T (B), · · · , T h(B), · · · ). To prove part (ii) of Theorem 1, we use the simple idea : if Zn converges

in law to a constant c, then the convergence holds also in probability. The other proofs are based on

the crucial property of the transformation T : T h(S) is independent of σ(Sj , j ≤ h) for each h.
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2 Proofs.

2.1 The Csáki-Vincze transformation and convergence in law.

For the sequel, we recommand the lecture of the pages 109 and 110 in [8] (Theorem 2 below). Some

consequences (see Proposition 2 below) have been drawn in [5] (Sections 2.1 and 2.2) to give a discrete

approach to some stochastic flows associated to Tanaka’s SDE. We also notice that our stating of this

result is slightly different from [8]. We leave to the reader to make the obvious analogy.

Theorem 2. ([8] page 109) Let S = (Sn)n≥0 be a SRW defined on (Ω,A,P) and Xi = Si−Si−1, i ≥ 1.

Define τ0 = 0 and for l ≥ 0,

τl+1 = min
{

i > τl : Si−1Si+1 < 0
}

.

Set

Xj =
∑

l≥0

(−1)lX1Xj+11{τl+1≤j≤τl+1}.

Then S0 = 0, Sn = X1+ · · ·+Xn, n ≥ 1 is a SRW. Moreover if Yn := Sn−min
k≤n

Sk, then for all n ∈ N,

|Yn − |Sn|| ≤ 2. (3)

We call S = T (S), the Csáki-Vincze transformation of S (see the figures 1 and 2 below).

S
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Figure 1: S and T (S).
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Figure 2: |S| and Y .

Note that (−1)lX1 is simply equal to sgn(S)|[τl+1,τl+1](:= Xτl+1) which can easily be checked by

induction on l. Thus for all j ∈ [τl + 1, τl+1],

Xj = sgn(S)|[τl+1,τl+1](Sj+1 − Sj)

and one can expect that (S,T (S) will ”converge” to (B,B1) in a suitable sense. The following

proposition has been established in [5]. We give its proof for completeness.

Proposition 2. With the same notations of Theorem 2, we have

(i) For all n ≥ 0, σ(T (S)j , j ≤ n) ∨ σ(S1) = σ(Sj , j ≤ n+ 1).

(ii) S1 is independent of σ(T (S)).

Proof. (i) To prove the inclusion ⊂, we only need to check that {τl +1 ≤ j ≤ τl+1} ∈ σ(Sh, h ≤ n+1)

for a fixed j ≤ n. This is clear since {τl = m} ∈ σ(Sh, h ≤ m+ 1) for all l,m ∈ N.

Now, for all 1 ≤ j ≤ n, we have Xj+1 =
∑

l≥0(−1)lX1Xj1{τl+1≤j≤τl+1}. As a consequence of (iii) and

(iv) [8] (page 110), for all l ≥ 0,

τl = min {n ≥ 0,T (S)n = −2l}.

Thus τl is a stopping time with respect to the natural filtration of T (S) and as a result {τl + 1 ≤ j ≤
τl+1} ∈ σ(T (S)h, h ≤ j − 1) which proves the inclusion ⊃.

(ii) We may write for all l ≥ 1,

τl = min {i > τl−1 : X1Si−1X1Si+1 < 0}.
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This shows that T (S) is σ(X1Xj+1, j ≥ 0)-measurable and (ii) is proved.

Note that

T (S) = T (−S), σ(T h+1(S)) ⊂ σ(T h(S)),

which is the analogous of

T (B) = T (−B), σ(T h+1(B)) ⊂ σ(T h(B)).

The previous proposition yields the following

Corollary 3. For all n ≥ 0,

(i) σ(S) = σ(T n(S)) ∨ σ(Sk, k ≤ n).

(ii) σ(T n(S)) and σ(Sk, k ≤ n) are independent.

(iii) The σ-field

G∞ =
⋂

n≥0

σ(T n(S))

is P-trivial.

Proof. Set Xi = Si − Si−1, i ≥ 1.

(i) We apply successively Proposition 2 (i) so that for all n ≥ 1,

σ(S) = σ(T (S)) ∨ σ(S1)

= σ(T 2(S)) ∨ σ(T (S)1) ∨ σ(S1)

= · · ·

= σ(T n(S)) ∨ σ(T n−1(S)1) ∨ · · · ∨ σ(T (S)1) ∨ σ(S1).

To deduce (i), it suffices to prove that

σ(Sk, k ≤ n) = σ(T n−1(S)1) ∨ · · · ∨ σ(T (S)1) ∨ σ(S1). (4)

Again Proposition 2 (i), yields

σ(Sk, k ≤ n) = σ(T (S)j , j ≤ n− 1) ∨ σ(S1)

= σ(T 2(S)j , j ≤ n− 2) ∨ σ(T (S)1) ∨ σ(S1)

= · · ·

= σ(T n−1(S)1) ∨ σ(T n−2(S)1) · · · ∨ σ(T (S)1) ∨ σ(S1)

7



which proves (4) and allows to deduce (i).

(ii) will be proved by induction on n. For n = 0, this is clear. Suppose the result holds for n, then

S1,T 1(S)1, · · · ,T n−1(S)1,T n(S) are independent (recall (4)). Let prove that S1,T 1(S)1, · · · ,T n(S)1,T n+1(S)

are independent which will imply (ii) by (4). Note that T n(S)1 and T n+1(S) are σ(T n(S))-measurable.

By the induction hypothesis, this show that (S1,T 1(S)1, · · · ,T n−1(S)1) and (T n(S)1,T n+1(S)) are

independent. But T n(S)1 and T n+1(S) are also independent by Proposition 2 (ii). Hence (ii) holds

for n+ 1 and thus for all n.

(iii) Let A ∈ G∞ and fix n ≥ 1. Then A ∈ σ(T n(S)) and we deduce from (ii) that A is independent

of σ(Sk, k ≤ n). Since this holds for all n, A is independent of σ(S). As G∞ ⊂ σ(S), A is therefore

independent of itself.

Let S be a SRW defined on (Ω,A,P) and recall the definition of Sh
n(t) from (1). On E, define

Zn(t0, t1, · · · , th, · · · ) =
(

S0
n(t0), S

1
n(t1), · · · , Sh

n(th), · · ·
)

and let Pn be the law of Zn.

Lemma 1. The family {Pn, n ≥ 1} is tight on E.

Proof. By Donsker theorem for each h, Sh
n converges in law to standard Brownian motion as n → ∞.

Thus the law of each coordinate of Zn is tight on W which is sufficient to get the result (see [3] page

107).

The limit process. Fix a sequence (mn, n ∈ N) such that Zmn
law−−−−−→

n → +∞
Z in E where

Z =

(

B(0), B(1), · · · , B(h), · · ·
)

is the limit process. Note that B(0) is a Brownian motion. From (3), we have ∀n ≥ 1, t ≥ 0

∣

∣

∣

∣

|S0
n(t)| − (S1

n(t)− min
0≤u≤t

S1
n(u))

∣

∣

∣

∣

≤ 2012√
n
.

Letting n → ∞, we get

|B(0)
t | = B

(1)
t − min

0≤u≤t
B(1)

u .

Tanaka’s formula for local time gives

|B(0)
t | =

∫ t

0
sgn(B(0)

u )dB(0)
u + Lt(B

(0)) = B
(1)
t − min

0≤u≤t
B(1)

u ,

8



where Lt(B
(0)) is the local time at 0 of B(0) and so

B
(1)
t =

∫ t

0
sgn(B(0)

s )dB(0)
s .

The same reasoning shows that for all h ≥ 1,

B
(h+1)
t =

∫ t

0
sgn(B(h)

s )dB(h)
s .

Thus the law of Z is independent of the sequence (mn, n ∈ N) and therefore

(

S0
n, S

1
n, · · · , Sh

n , · · ·
)

law−−−−−→
n → +∞

(

B,B1, · · · , Bh, · · ·
)

in E (5)

where B is a Brownian motion.

2.2 Convergence in probability.

Let B a Brownian motion and recall the notations in Theorem 1. For each n ≥ 1, define

Un =

(

B,Sn,0, B1, Sn,1, · · · , Bh, Sn,h, · · ·
)

.

and let Qn be the law of Un. Since T h(Sn) is a simple random walk for each (h, n), a similar argument

as in the proof of Lemma 1 shows that {Qn, n ≥ 1} is tight on E. Fix a sequence (mn, n ∈ N) such

that Umn
law−−−−−→

n → +∞
U in E. Using (5), we see that there exist two Brownian motions X and Y such

that

U =

(

X,Y,X1, Y 1, · · · ,Xh, Y h, · · ·
)

.

It is easy to check that if ϕ : W −→ R is bounded uniformly continuous, then Ψ(f, g) = ϕ(f − g)

defined for all (f, g) ∈ W2 is bounded uniformly continuous which comes from

dU (f − f ′, g − g′) = dU (f − g, f ′ − g′) for all f, f ′, g, g′ ∈ W.

Thus if (Fn, Gn) converges in law to (F,G) in W2, then Fn − Gn converges in law to F − G in W.

Applying this, we see that B−Sn,0 converges in law to X−Y . On the other hand, B−Sn,0 converges

to 0 (in W) in probability (see [6] page 39). Consequently X = Y and

Un law−−−−−→
n → +∞

(

B,B,B1, B1, · · · , Bh, Bh, · · ·
)

in E.

In particular for each h, Sn,h − Bh converges in law to 0 as n → ∞, that is Sn,h converges to Bh in

probability as n → ∞. Now the following equivalences are classical
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(i) limn→∞Un = (B,B1, · · · ) in probability in E.

(ii) limn→∞E[d(Un, U) ∧ 1] = 0.

(iii) For each h, limn→∞E[dU (S
n,h, Bh) ∧ 1] = 0.

(iv) For each h, limn→∞ Sn,h = Bh in probability in W.

Since we have proved (iv), Theorem 1 holds.

2.3 Proof of Corollary 1.

(i) Let S be a SRW and X0,X1, · · · ,Xp be p + 1 independent Brownian motions (not necessarily

defined on the same probability space as S). Fix

0 ≤ t01 ≤ · · · ≤ t0i0 , 0 ≤ t11 ≤ · · · ≤ t1i1 , · · · , 0 ≤ t
p
1 ≤ · · · ≤ t

p
ip
.

By Corollary 3 (ii), for n large enough (such that ⌊nt0i0⌋ + 1 ≤ ⌊nα1
n⌋),

(

S0
n(t

0
1), · · · , S0

n(t
0
i0
)
)

which

is σ(Sj , j ≤ ⌊nt0i0⌋ + 1)-measurable, is independent of T ⌊nα1
n⌋(S). Thus (S0

n(t
0
1), · · · , S0

n(t
0
i0
)) is

independent of (S
⌊nα1

n⌋
n , · · · , S⌊nαp

n⌋
n ) and similarly T ⌊nα2

n⌋(S) is independent of σ(T ⌊nα1
n⌋(S)j , j ≤

⌊nα2
n⌋−⌊nα1

n⌋). Again, for n large (such that ⌊nt1i1⌋+1 ≤ ⌊nα2
n⌋−⌊nα1

n⌋),
(

S
⌊nα1

n⌋
n (t11), · · · , S

⌊nα1
n⌋

n (t1i1)
)

is σ(T ⌊nα1
n⌋(S)j , j ≤ ⌊nα2

n⌋−⌊nα1
n⌋)-measurable and therefore is independent of

(

S
⌊nα2

n⌋
n , · · · , S⌊nαp

n⌋
n

)

.

By induction on p, for n large enough,

(

S0
n(t

0
1), · · · , S0

n(t
0
i0
)
)

,
(

S⌊nα1
n⌋

n (t11), · · · , S⌊nα1
n⌋

n (t1i1)
)

, · · · ,
(

S⌊nαp
n⌋

n (tp1), · · · , S⌊nαp
n⌋

n (tpip)
)

are independent and this yields the convergence in law of

(

S0
n(t

0
1), · · · , S0

n(t
0
i0
), S⌊nα1

n⌋
n (t11), · · · , S⌊nα1

n⌋
n (t1i1), · · · , S

⌊nαp
n⌋

n (tp1), · · · , S⌊nαp
n⌋

n (tpip)

)

to
(

X0(t
0
1), · · · ,X0(t

0
i0
),X1(t

1
1), · · · ,X1(t

1
i1
), · · · ,Xp(t

p
1), · · · ,Xp(t

p
ip
)

)

.

Thus the convergence of the finite dimensional marginals holds and the proof is completed.

(ii) is easy to check using (i) and the convergence in probability of Sn,0 to B.
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2.4 Proof of Proposition 1.

To simplify notations, we will take an = n. Again, we only need to check the convergence of the finite

dimensional marginals. So, let 0 ≤ t1 ≤ · · · ≤ tp, 0 ≤ u1 ≤ · · · ≤ uq and f : Rp+q −→ R be a bounded

uniformly continuous function. We can suppose that ⌊ntp⌋+ 1 ≤ nαn for all n. We have

E
[

f
(

Bt1 , · · · , Btp , B
nαn
u1

, · · · , Bnαn
uq

)
]

= εn + E[f(Sn,0(t1), · · · , Sn,0(tp), B
nαn
u1

, · · · , Bnαn
uq

)
]

(6)

with limn→∞ εn = 0 using the uniform continuity of f and the convergence in probability of
(

Sn,0(ti)
)

1≤i≤p

to
(

Bti

)

1≤i≤p
. The right hand side of (6) may be written as

εn + ηn + E
[

f
(

Sn,0(t1), · · · , Sn,0(tp), S
n,nαn(u1), · · · , Sn,nαn(uq)

)]

with limn→∞ ηn = 0 using (2) and the uniform continuity of f . Recall that (Sn,0(t1), · · · , Sn,0(tp)) is

measurable with respect to σ(Sn
j , j ≤ ⌊ntp⌋ + 1) ⊂ σ(Sn

j , j ≤ nαn). Since Sn,nαn is independent of

σ(Sn
j , j ≤ nαn) and

(

Sn,0(t1), · · · , Sn,0(tp), S
n,nαn(u1), · · · , Sn,nαn(uq)

)

law−−−−−→
n → +∞

(

Xt1 , · · · ,Xtp , Yu1 , · · · , Yuq

)

,

the proof is now completed.

2.5 Proof of Corollary 2.

We need the following lemma which may be found in [1] page 32 in more generality:

Lemma 2. If (uk,n)k,n∈N is a nonegative and bounded doubly indexed sequence such that for all

k, limn→∞ uk,n = 0, then there exists a nondecreasing sequence (kn)n such that limn→∞ kn = +∞ and

limn→∞ ukn,n = 0.

Proof. By induction on p, we construct an increasing sequence (np)p∈N such that up,n < 2−p for all

n ≥ np. Now define

kn =











n if 0 ≤ n ≤ n0

p if np ≤ n < np+1 for some p ∈ N.

Clearly n 7−→ kn is nondecreasing and limn→∞ kn = +∞. Moreover for all p and n ≥ np, we have

ukn,n < 2−p. Thus for all p, 0 ≤ lim supn→∞ ukn,n ≤ 2−p and since p is arbitrary, the lemma is

proved.
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Lemma 2 applied to

uk,n = E[dU (S
n,k, Bk) ∧ 1],

guarantees the existence of a nondecreasing sequence (α0
n)n with values in N such that limn→∞ α0

n =

+∞ and

lim
n→∞

(

Sn,α0
n −Bα0

n
)

= 0 in probability in W. (7)

Now set

V n =

(

Bα0
n , Sn,α0

n , Bα0
n+1, Sn,α0

n+1, · · · , Bα0
n+h, Sn,α0

n+h, · · ·
)

.

Using the same idea as in Section 2.2 and the relation (7), we prove that for all j ∈ N,

lim
n→∞

(

Sn,α0
n+j −Bα0

n+j
)

= 0 in probability in W. (8)

This is also equivalent to : for all j ∈ N,

lim
n→∞

u0j,n = 0 where u0j,n = E
[

dU (S
n,α0

n+j, Bα0
n+j) ∧ 1

]

.

By Lemma 2 again, there exists a nondecreasing sequence (β0
n)n with values in N such that limn→∞ β0

n =

+∞ and

lim
n→∞

(

Sn,α0
n+β0

n −Bα0
n+β0

n
)

= 0 in probability in W. (9)

Define α1
n = α0

n + β0
n. Now using (9) and the same preceding idea, we construct α2 and all the (αi)i

by the same way.

Remark 1. Note that in Lemma 2, we have kn ≤ n for all n and it is not always possible to construct

kn such that limn→∞
kn
n

= +∞ (take uk,n = k
n
). This result cannot therefore be applied to Proposition

1.

References

[1] H. Attouch. Variational convergence for functions and operators. Applicable Mathematics Series.

Pitman (Advanced Publishing Program), Boston, MA, 1984.

[2] Lester E. Dubins and Meir Smorodinsky. The modified, discrete, Lévy-transformation is Bernoulli.
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de probabilité, available at http://arxiv.org/pdf/1206.2485.pdf, 2012.

13


