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Infinite Variation Tempered Stable Ornstein-Uhlenbeck Processes

with Discrete Observations

REIICHIRO KAWAI
∗
AND HIROKI MASUDA

†

Abstract

We investigate transition law between consecutive observations of Ornstein-Uhlenbeck processes of in-

finite variation with tempered stable stationary distribution. Thanks to the Markov autoregressive struc-

ture, the transition law can be written in the exact sense as a convolution of three random components; a

compound Poisson distribution and two independent tempered stable distributions, one with stability in-

dex in (0,1) and the other with index in (1,2). We discuss simulation techniques for those three random

elements. With the exact transition law and proposed simulation techniques, sample paths simulation

proves significantly more efficient, relative to the known approximative technique based on infinite shot

noise series representation of tempered stable Lévy processes.

Keywords: acceptance-rejection sampling, Lévy process, Ornstein-Uhlenbeck processes, selfdecompos-

ability, transition law, tempered stable process.

2010 Mathematics Subject Classification: 60J75, 62E15, 65C10, 68U20.

1 Introduction

The class of non-Gaussian Ornstein-Uhlenbeck (OU, in short) processes is closely related to the selfde-

composability of the infinitely divisible distribution. Several interesting properties are known, such as the

explicit relation between Lévy measures of the stationary distribution and the underlying Lévy process and

the representation of entire trajectory based on shot noise series representation of Lévy processes, to men-

tion just a few. (For details, see Section 17 of Sato [15], Masuda [11] and references therein.) Also, due to

the growing practical interest, many authors have proposed statistical inference methods for non-Gaussian

OU processes. (See, for example, Brockwell et al. [4], Jongbloed et al. [8] and Sun and Zhang [16].)

∗Email Address: reiichiro.kawai@gmail.com. Postal Address: Department of Mathematics, University of Leicester, Leicester

LE1 7RH, UK.
†Email Address: hiroki@math.kyushu-u.ac.jp. Postal Address: Graduate School of Mathematics, Kyushu University, Fukuoka

819-0395, Japan.
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In the class of non-Gaussian OU processes, the class of tempered stable OU (TS-OU, in short) process

of finite variation has been of particular interest from both theoretical and practical points of view. In terms

of mathematical tractability, the transition law between consecutive observations can be written in the exact

sense as a convolution of one compound Poisson and one tempered stable distributions. It is known that

exact, yet simple, simulation methods are available for both random elements. The particular setting of

inverse-Gaussian OU processes was studied in Zhang and Zhang [18], while the general setting in [9]. Also,

it was shown in Zhang and Zhang [19] that the transition law is selfdecomposable when the stability index is

no less than 1/2. In practice, due to its distributional flexibility and the positivity of sample paths, they have

been used in financial economics and mathematical finance (for example, Barndorff-Nielsen and Shephard

[2] and Benth et al. [3]).

In this paper, we study the class of TS-OU processes of infinite variation, that is, OU processes with

a tempered stable stationary distribution with stability index in (1,2). This can be thought of as a natu-

ral alternative of finite variation TS-OU processes, while the extension is not straightforward. In fact, the

structure of transition law turns out to be significantly different, in the sense that for example, the transition

law is a convolution of two independent tempered stable and one compound Poisson components. Also,

the support of sample paths is necessarily the whole real line, while only the positive half line in the finite

variation setting if no negative jumps exist. We will here only deal with a unilateral setting with no negative

jumps. Nevertheless, the bilateral setting is also within our scope as it can be treated simply by superpo-

sitioning another similar convolution of three independent random components. In addition, the bilateral

framework can produce more distributional flexibility through combinations of positive and negative jump

components in terms of, for example, stability index and even finite and infinite variations. They may widen

the applicability of OU processes in a variety of fields.

The rest of this paper is organized as follows. Section 2 summarizes background material on stable and

tempered stable distributions and on OU processes with tempered stable stationary distribution. In Section

3, we derive the transition law in closed form, consisting of three random components; a compound Poisson

distribution and two independent tempered stable distributions, one with stability index α ∈ (1,2), while the

other with index α−1 ∈ (0,1). In Section 4, we discuss simulation methods for the three random elements,

all of which are based on acceptance-rejection sampling techniques. We also provide numerical results to

illustrate the effectiveness of our exact transition law and proposed simulation techniques in sample paths

generation, relative to the existing approximative method with infinite shot noise series representation of

tempered stable Lévy processes. Finally, Section 5 concludes.
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2 Preliminaries

Let us begin this preliminary section with the notations which will be used throughout the paper. We denote

by R the one dimensional Euclidean space with the norm | · | and R+ := (0,+∞). Let N be the collection

of positive integers with N0 := N∪{0}. We denote by
L
= the identity in law. We denote by Γ(a,b) the

gamma distribution with density ba/Γ(a)za−1e−bz. We write fL(z) for a probability density function of a

distribution L. (For example, fΓ(a,b)(z) = ba/Γ(a)za−1e−bz.) We fix (Ω,F ,P) as our underlying probability

space. Finally, note that Γ(−s)< 0 for s ∈ (0,1), while Γ(−s)> 0 for s ∈ (1,2).

2.1 Spectrally Positive Stable Processes

Let {L
(s)
t : t ≥ 0} be a totally positively skewed stable (Lévy) process satisfying

E

[
eiyL

(s)
t

]
= exp

[
taΓ(−α)cos

(πα

2

)
|y|α

(
1− i tan

πα

2
sgn(y)

)]

=





exp
[
t
∫
R+

(
eiyz−1

)
a

zα+1 dz
]
, if α ∈ (0,1),

exp
[
t
∫
R+

(
eiyz−1− iyz

)
a

zα+1 dz
]
, if α ∈ (1,2),

(2.1)

with some a > 0. Throughout this paper, we exclude the case α = 1. We write S(α,a) := L (L
(s)
1 ). The

C+∞-density of the distribution S(α,a) is given in the form of convergent power series

fS(α,b)(x) =





(−aΓ(−α))−1/α

π ∑+∞
k=1(−1)k−1 sin(πkα)Γ(kα+1)

k!

(
x

(−aΓ(−α))1/α

)−kα−1

, if α ∈ (0,1),

(aΓ(−α))−1/α

π ∑+∞
k=1 sin

(
πk 1−α

α

) Γ(k/α+1)
k!

(
− x

(aΓ(−α))1/α

)k−1

, if α ∈ (1,2).
(2.2)

Note that the above density is defined on R+ if α ∈ (0,1), while on R if α ∈ (1,2). It holds that for each t > 0,

L (L
(s)
t ) = S(α, ta), and by the scaling property, L (t−1/αL

(s)
t ) = S(α,a). Note that the distribution S(α, ta)

has density t−1/α fS(α,a)(t
−1/αx). The distribution S(α,a) can be simulated in the exact sense through the

well known representation, due to Chambers et al. [5],

S(α,a)
L
= (−aΓ(−α)cos(πα/2))1/α sin(αV +θ)

(cosV cosθ)1/α

(
cos((1−α)V −θ)

E

) 1−α
α

, (2.3)

where θ := arctan(tan(πα/2)), V is a uniform random variable on (−π/2,π/2) and E is a standard expo-

nential random variable independent of V . See Zolotarev [20] for more details on the stable distribution.

2.2 Spectrally Positive Tempered Stable Processes

Let {L
(ts)
t : t ≥ 0} be a centered and totally positively skewed tempered stable (Lévy) process satisfying

E

[
eiyL

(ts)
t

]
= exp

[
t

∫

R+

(
eiyz−1− iyz

)
a

e−bz

zα+1
dz

]
= exp

[
taΓ(−α)

(
(b− iy)α −bα + iyαbα−1

)]
.
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Note that as indicated by “centered”, the tempered stable process here is centered even in the case α ∈ (0,1),

unlike in the case of the stable process characterized by (2.1). As a matter of course, when α ∈ (0,1), by

adding back the centering term as L
(ts)
t + tΓ(1−α)abα−1, we can recover the associated tempered stable

subordinator. Throughout the paper, we will use the notations

T S(α,a,b) := L (L
(ts)
1 ), (2.4)

and

T S′(α,a,b) := L (L
(ts)
1 +Γ(1−α)abα−1). (2.5)

It is known that
e−bz

E

[
e−bL

(s)
1

] fS(α,a)(z) = e−bz−aΓ(−α)bα
fS(α,a)(z) = fT S′(α,a,b)(z). (2.6)

The class of tempered stable distributions was first proposed by Tweedie [17]. Several featuring prop-

erties of tempered stable distributions and processes were revealed by Rosiński [14], such as a stable-like

behavior over short intervals, the absolute continuity with respect to its short-range limiting stable process,

an aggregational Gaussianity and an infinite shot noise series representation in closed form

{
L
(ts)
t : t ∈ [0,T ]

}
L
=

{
+∞

∑
k=1

[[(
αΓk

Ta

)−1/α

∧
VkU

1/α
k

b

]
�

[0,t](Tk)−
t

T

(
αk

Ta

)−1/α
�

(1,2)(α)

]

+
t

T

(
Ta

α

)1/α

ζ (1/α)
�

(1,2)(α)− tΓ(1−α)abα−1 : t ∈ [0,T ]

}
, (2.7)

where {Γk}k∈N are arrival times of a standard Poisson process, {Tk}k∈N is a sequence of iid uniform random

variables on [0,T ], {Vk}k∈N is a sequence of iid standard exponential random variables and {Uk}k∈N is a

sequence of iid uniform random variables on [0,1]. All those random sequences are mutually independent.

Note that the kernel of series representation is not unique. In fact, there are different series representations

derived in Imai and Kawai [7] through the thinning and rejection methods and yet another representation

numerically through the inverse Lévy measure method. (For details about the methods, see Rosiński [13].)

2.3 Ornstein-Uhlenbeck Processes with Tempered Stable Stationary Distribution

Consider the stochastic process {Xt : t ≥ 0} defined in form of the stochastic differential equation

dXt = λ (µ−Xt)dt +dZλ t , (2.8)

where λ > 0, µ ∈R and {Zt : t ≥ 0} is a Lévy process (not necessarily a subordinator), or in canonical form

Xt = e−λ tX0 +µ
(

1− e−λ t
)
+

∫ t

0
e−λ (t−s)dZλ s. (2.9)

4
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Processes of this type are often called non-Gaussian OU processes, or Lévy-driven OU processes. With

{Zt : t ≥ 0} being a subordinator, they have been used, for example, to model the squared volatility in

a stochastic volatility model of Barndorff-Nielsen and Shephard [2], due to the non-negativity of sample

paths.

In this paper, we consider the class of OU processes (2.8) where its invariant law L (limt↑+∞ Xt) is

T S(α,a,b)∗δµ with α ∈ (1,2), where ∗ denotes the convolution and δµ is the degenerate distribution at µ .

The invariant law is clearly self-decomposable and has Lévy density

u(z) = a
e−bz

zα+1
, z ∈ R+. (2.10)

In fact, since the law has finite moments of every order due to the exponential tempering in (2.10), it follows

that regardless of the choice of the parameter λ > 0, there exists an ergodic Lévy-driven OU process having

T S(α,a,b)∗δµ as its invariant law. (We refer the reader to Masuda [11] and the references therein for details

about Lévy-driven OU processes.) In particular, OU process with inverse Gaussian invariant law (α = 1/2)

was applied in Benth [3] to stochastic volatility modeling of [2] for volatility and variance swap valuations.

Let w(z) be the Lévy density of the marginal Z1 of the background driving Lévy process. Since u(z) is

differentiable, the Lévy densities w(z) and u(z) are related by

w(z) =−u(z)− z
∂

∂ z
u(z) = aα

e−bz

zα+1
+ab

e−bz

z(α−1)+1
. (2.11)

(See, for example, [2].) Therefore, on the one hand, if α ∈ (0,1), then the underlying process {Zt : t ≥ 0}

is the superposition of a tempered stable process with T S′(α,aα,b) and a compound Poisson process with

Lévy density abz−αe−bz. Sample paths can be written in the exact sense, using the infinite shot noise series

representation (2.7) as

{Xt : t ∈ [0,T ]}
L
=

{
e−λ tX0 +µ

(
1− e−λ t

)
+

+∞

∑
k=1

e−λ (t−Tk)

[(
Γk

aT

)−1/α

∧
VkU

1/α
k

b

]
�

[0,t] (Tk)

+
+∞

∑
k=1

eΓ̃k−λ tGk

�

[0,λ t]

(
Γ̃k

)
: t ∈ [0,T ]

}
, (2.12)

where {Γ̃k}k∈N are arrival times of a standard Poisson process, independent of {Γk}k∈N, with intensity Γ(1−

α)abα(=
∫
R+

abz−αe−bzdz), and {Gk}k∈N is a sequence of iid random variables with gamma distribution

Γ(1−α, b).

On the other hand, if α ∈ (1,2), then the equation (2.11) implies that the underlying process {Zt : t ≥ 0}

is a superposition of two independent tempered stable processes with T S(α,aα,b) and T S(α − 1,ab,b).

Sample paths can also be written in the exact sense with infinite shot noise series representation (2.7). This

may however be not very sensible, at least for the following three reasons; (i) there are too many random

sequences to be generated, (ii) the series representation for T S(α,aα,b) contains intricate centering terms

as seen in (2.7), and (iii) the issue of truncation error has to be addressed for two infinite shot noise series.
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3 Transition Law of Tempered Stable Ornstein-Uhlenbeck Processes of In-

finite Variation

In this section, we derive the transition law between consecutive observations of discrete time skeleton

X0, X∆, X2∆, · · · ,

of infinite variation TS-OU processes (2.8), with a fixed time stepsize ∆ > 0. (In principle, the stepsize does

not need to be equidistant and can be set different positive values for different steps.) The difference from

the finite variation setting [9, 19] lies in the integrability of Lévy density of the transition law around the

origin. As a consequence, the Lévy density has to be decomposed twice to extract all infinite activity part,

while only once in the finite variation case. For better presentation, we will use the following notations

w1,∆(z) :=
(

1− e−αλ∆
) a

zα+1
e−bz,

w2,∆(z) := e−αλ∆ a

zα+1

(
e−bz− e−beλ∆z

)
,

w21,∆(z) := e−αλ∆
(

eλ∆−1
) ab

z(α−1)+1
e−beλ∆z,

w22,∆(z) := ae−αλ∆ e−bz− e−beλ∆z−b(eλ∆−1)ze−beλ∆z

zα+1
.

Theorem 3.1. Fix ∆ > 0. For each n ∈ N0, it holds that given Xn∆,

X(n+1)∆
L
= e−λ∆Xn∆ +µ

(
1− e−λ∆

)
+Y01 +Y02 +

(
Nκ∆

∑
k=1

Θk−∆γ

)
, (3.1)

where

γ := abα−1Γ(1−α)
(

e−αλ∆− e−λ∆−
(

e−λ∆− e−2λ∆
)
(1−α)

)
,

and all the random elements are mutually independent and specified as

• Y01 ∼ T S(α,a(1− e−αλ∆),b),

• Y02 ∼ T S(α−1,abe−αλ∆(eλ∆−1),beλ∆),

• Nκ∆
∼ Pois(κ∆) with κ∆ := abαΓ(−α)(α(1− e−λ∆)+ e−αλ∆−1),

• {Θk}k∈N is a sequence of iid random variables in R+ with common probability density v1,∆(z) :=

κ−1
∆ w22,∆(z).

Moreover, the transition law is selfdecomposable.

Proof. By the homogeneous Markovian autoregressive structure of (2.9), it holds that for each n∈N0, given

6
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Xn∆,

X(n+1)∆ = e−λ∆Xn∆ +µ
(

1− e−λ∆
)
+

∫ (n+1)∆

n∆
e−λ ((n+1)∆−s)dZλ s

=: e−λ∆Xn∆ +µ
(

1− e−λ∆
)
+ ε∆,n+1

L
= e−λ∆Xn∆ +µ

(
1− e−λ∆

)
+

∫ λ∆

0
e−λ∆+sdZs,

where the identity in law holds by the independence and stationarity of increments of the underlying Lévy

process {Zt : t ≥ 0}. This implies that {ε∆,k}k∈N reduces to a sequence of iid random variables with common

distribution F∆ := L (
∫ λ∆

0 e−λ∆+sdZs). It thus suffices to investigate the conditional law L (X∆|X0), that is,

only of the first increment. Note that by definition, this law is infinitely divisible.

Using the Lévy-integral transform, we get the characteristic function of the distribution F∆ as

F̂∆(y) = exp

[∫

R+

(
eiyz−1− iyz

)
w∆(z)dz

]
, (3.2)

where

w∆(z) :=
∫ λ∆

0
esw(esz)ds.

By further computing w∆(z), we get

w∆(z) =
a

zα+1

∫ λ∆

0
(α +besz)e−αse−beszds

=−
a

zα+1

∫ λ∆

0

∂

∂ s

(
e−αse−besz

)
ds

=
a

zα+1

(
e−bz− e−αλ∆−beλ∆z

)

= w1,∆(z)+w2,∆(z).

Note that w1,∆ and w2,∆ are positive functions on R+. Clearly, w1,∆ is the smooth Lévy density of T S(α,(1−

e−αλ∆)a,b). Note that w2,∆(z)∼ abe−αλ∆(eλ∆−1)z−α as z ↓ 0. This implies that w2,∆ is not integrable and

thus cannot be a Lévy density of compound Poisson components.

Let us further decompose w2,∆ into two parts. We use the identity

e−x− e−y = (y− x)e−y + e−x (y− x)2
H (y− x) , y > x > 0. (3.3)

where H(z) := z−2(1−e−z(1+z)) is positive, bounded and strictly decreasing on R+ such that limz↓0 H(z) =

1/2. By applying this identity, we get

w2,∆(z) =e−αλ∆
(

eλ∆−1
) ab

z(α−1)+1
e−beλ∆z

+ab2
(

eλ∆−1
)2

e−αλ∆z(2−α)−1e−bzH
(

b
(

eλ∆−1
)

z
)

=w21,∆(z)+w22,∆(z).
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Clearly, w21,∆ is the smooth Lévy density of T S(α−1,abe−αλ∆(eλ∆−1),beλ∆).

Next, observe that
∫

R+

w22,∆(z)dz = ae−αλ∆
∫

R+

z−1−α
(

e−bz− e−beλ∆z−b
(

eλ∆−1
)

ze−beλ∆z
)

dz = κ∆.

This shows that w22,∆ serves as a Lévy density of compound Poisson components. To realize the centering

for the compound Poisson distribution due to (3.2), we need to subtract the constant term
∫
R+

zw22,∆(z)dz =

γ , multiplied by the time stepsize ∆.

It remains to show the selfdecomposability of the transition law. Define

h∆(z) :=
1

zα

∫ λ∆

0
(a+besz)e−αs−beszds, z ∈ R+,

so that w∆(z) = ah∆(z)/z. This function is obviously non-negative and is decreasing on R+, due to

d

dz
h∆(z) =

∫ λ∆

0
z−1−αe−αs−besz

(
−(bes)2z2− (2α−1)besz−α2

)
ds (3.4)

≤−
α2

z1+α

∫ λ∆

0
e−αs−beszds < 0.

Hence, Corollary 15.11 of Sato [15] yields the claim. The proof is complete.

Remark 3.2. It is worth noting that the selfdecomposability of the transition law holds for any α ∈ (1,2) in

the infinite variation setting, while in the finite variation case, it holds only for the stability index of no less

than 1/2. This difference occurs due to the term 2α−1 in the integrand of (3.4), that is, the sign of 2α−1

changes at α = 1/2. (See Zhang and Zhang [19] for the finite variation case.)

Remark 3.3. It is difficult to provide an efficient simulation method for the distribution induced by the Lévy

density w2,∆. Nevertheless, in the finite variation setting, that is, if α ∈ (0,1), then w2,∆ is integrable
∫

R+

w2,∆(z)dz =−abαΓ(−α)
(

1− e−αλ∆
)
∈ R+. (3.5)

This shows that w2,∆ acts as the smooth Lévy density of a compound Poisson distribution. Moreover, there

is no further need to decompose w2,∆, unlike we did in Theorem 3.1, since the corresponding Poisson

distribution can be simulated in the exact sense through an acceptance-rejection sampling method, which

will be presented in Section 4.1.

4 Simulation Methods

It follows from Theorem 3.1 that to simulate sample paths of infinite variation TS-OU processes at discrete

timings, it suffices to simulate three random elements, that is, the tempered stable random variables Y01 and

Y02, and the compound Poisson random variable ∑
Nκ∆
k=1 Θk. In this section, we discuss simulation methods for

those random elements. We begin with relatively straightforward cases of Y02 and of the compound Poisson

∑
Nκ∆
k=1 Θk.
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4.1 Simulation of Tempered Stable with Stability Index α−1

First, we present an exact simulation method for Y02 ∼ T S(α − 1,abe−αλ∆(eλ∆− 1),beλ∆), which is cen-

tered. Hence, we will first instead simulate T S′(α−1,abe−αλ∆(eλ∆−1),beλ∆), that is,

Y ′02 := Y02 +Γ(2−α)abα
(

1− e−λ∆
)
,

which takes values solely in R+ and then subtract the added constant term. An efficient and exact simulation

method for the case α−1 = 0.5, that is the inverse Gaussian, is well known due to Michael et al. [12]. For

the general case of α − 1 ∈ (0,1), the best route would be acceptance-rejection sampling based on the

representation (2.3) of the stable distribution and the likelihood ratio of the two densities; for each z ∈ R+,

fT S′(α−1,abe−αλ∆(eλ∆−1),beλ∆)(z)

fS(α−1,abe−αλ∆(eλ∆−1))(z)
= e−beλ∆z−Γ(1−α)abα+1(eλ∆−1) ≤ e−Γ(1−α)abα+1(eλ∆−1), (4.1)

where the density functions fS(α,a) and fT S′(α,a,b) are given respectively by (2.2) and (2.6). The random

variable Y02 can then be generated in the exact sense by the following simple acceptance-rejection sampling

algorithm.

Algorithm 1 (Y02 ∼ T S(α−1,abe−αλ∆(eλ∆−1),beλ∆)):

Step 1. Generate U as uniform (0,1) and V , independent of U , as S(α−1,abe−αλ∆(eλ∆−1)) through the

representation (2.3).

Step 2. If U ≤ e−beλ∆V , let Y02←V −Γ(2−α)abα(1− e−λ∆). Otherwise, return to Step 1.

The acceptance rate at Step 2 of Algorithm 1 is given by

p1(∆) := P

(
U ≤ e−beλ∆V

)
= eΓ(1−α)abα+1(eλ∆−1).

Clearly, the algorithm works more efficiently when the acceptance rate p1(∆) at Step 2 is closer to 1. Indeed,

this happens when ∆ ↓ 0.

It is, however, more practical to discuss the effectiveness on the work-normalized basis. Since the

simulation of L (Y02) is exact through Algorithm 1, all we need to pay attention to is the computing time

required to generate iid increments from T S(α−1,abe−αλ∆(eλ∆−1),beλ∆) to fill each sample path. Since

we are concerned with sample paths over a finite time horizon, by taking a smaller time stepsize ∆, the

number of increments for each sample path increases in proportion to 1/∆. Next, in Algorithm 1, the

number of trials until one acceptance has the geometric distribution with success probability p1(∆). The

average time to get one sample from Algorithm 1 is thus proportional to 1/p1(∆). Then, we find that as

∆ ↓ 0,
1

∆ · p1(∆)
'

1

∆
,
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which implies that the average computing time related to Y02 for each sample path increases in proportion

to 1/∆ as ∆ ↓ 0.

For more details about related acceptance-rejection sampling methods, see Baeumer and Meerschaert

[1], Devroye [6] and Kawai and Masuda [9].

4.2 Simulation of Compound Poisson Component

Next, we consider simulation of the compound Poisson component. Generation of the Poisson random

variable Nκ∆
is straightforward and is thus omitted. We concentrate on generation of the random sequence

{Θk}k∈N. Recall that L (Θ1) has a probability density function v1,∆(z) and that the function H in (3.3) is

positive, bounded and strictly decreasing on R+ with limz↓0 H(z) = 1/2. We can thus show that

v1,∆(z)≤
1

2κ∆
abα

(
eλ∆−1

)2

e−αλ∆Γ(2−α) fΓ(2−α,b)(z) =: g∆(z), (4.2)

where fΓ(2−α,b)(z) = b2−αΓ(2−α)−1z(2−α)−1e−bz defined on R+. Then, it holds that

v1,∆(z)

g∆(z)
=

2

(eλ∆−1)2b2

e−bz− e−beλ∆z−b(eλ∆−1)ze−beλ∆z

z2
=: v2,∆(z), z ∈ R+.

This suggests the following acceptance-rejection sampling algorithm for generation of the random variable

Θ1.

Algorithm 2 (Θ1 with probability density v1,∆(z))

Step 1: Generate U as uniform (0,1) and V , independent of U , as Γ(2−α,b).

Step 2: If U ≤ v2,∆(V ), let Θ1←V . Otherwise, return to Step 1.

The acceptance rate at Step 2 is given by

p2(∆) := P(U ≤ v2,∆(V )) =
2

α(α−1)

α(1− e−λ∆)+ e−αλ∆−1

e−αλ∆(eλ∆−1)2
.

We can show that the acceptance rate tends to 1 as ∆ ↓ 0.

Since the simulation of {Θk}k∈N is exact by Algorithm 2 as well, all we need to pay attention to is the

computing time required to generate iid increments from the distribution L (∑
Nκ∆
k=1 Θk) to fill each sample

path. Again, by taking a smaller time stepsize ∆, the number of increments over a finite time horizon

increases in proportion to 1/∆. Next, the average number of implementation of Algorithm 2 required to

generate one sample from the distribution L (∑
Nκ∆
k=1 Θk) is proportional to the intensity κ∆ of the Poisson

random variable Nκ∆
. The average time to get one sample from Algorithm 2 is proportional to 1/p2(∆).

Therefore, we get

κ∆

∆ · p2(∆)
=

abαΓ(−α)α(α−1)e−αλ∆(eλ∆−1)2

2∆
' ∆,

as ∆ ↓ 0. This implies that the computing time for simulation of L (∑
Nκ∆
k=1 Θk) decreases linearly in ∆, as

∆ ↓ 0.
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4.3 Simulation of Tempered Stable with Stability Index α

We have seen that the two distributions L (Y02) and L (∑
Nκ∆
k=1 Θk) can be simulated in the exact sense through

acceptance-rejection sampling. To the best of our knowledge, the exact simulation of Y01 ∼ T S(α,a(1−

e−αλ∆),b) seems impossible in practice. For example, the series representation (2.7) looks like an exact

method, while it is still approximative as soon as a finite truncation is performed. In this paper, amongst

several possible approximative methods, we present a method proposed by Baeumer and Meerschaert [1],

which seems to be most suitable for our purpose. (See [10] for a comparison among various approximative

simulation methods.) Its procedure is outlined as follows.

Algorithm 3 (Approximation of Y01 ∼ T S(α,a(1− e−αλ∆),b)):

Fix c > 0.

Step 1. Generate U as uniform (0,1) and V (∆), independent of U , as S(α,a(1− e−αλ∆)).

Step 2. If U ≤ e−b(V (∆)+c), let Y ′01,c←V (∆). Otherwise, return to Step 1.

Step 3. Return Y01,c← Y ′01,c−Γ(1−α)a(1− e−αλ∆)bα−1.

Note that the random variable Y ′01,c in Step 2 approximates T S′(α,a(1− e−αλ∆),b), while Y01,c approx-

imates T S(α,a(1− e−αλ∆),b). In fact, the constant shift −Γ(1−α)a(1− e−αλ∆)bα−1 in Step 3 accounts

for the difference between (2.4) and (2.5).

Let us briefly review basic properties of Algorithm 3 derived in [1]. The acceptance rate at Step 2 of

Algorithm 3 is

p3(∆,c) := E

[
e−b(V (∆)+c)

∣∣V (∆)>−c
]
P(V (∆)>−c)+P(V (∆)≤−c) .

Moreover, we have

P(Y ′01,c ≤ z) =
1

p3(∆,c)

(
P(V (∆)≤min(z,−c))+

∫ z

min(z,−c)
e−b(y+c) fS(α,a(1−e−αλ∆))(y)dy

)
,

fL (Y ′01,c)
(z) =





p3(∆,c)
−1 fS(α,a(1−e−αλ∆))(z), if z ∈ (−∞,−c],

p3(∆,c)
−1e−b(z+c) fS(α,a(1−e−αλ∆))(z), if z ∈ (−c,+∞).

In view of the expression

fT S′(α,a(1−e−αλ∆),b)(z) = e−b(z+a(1−e−αλ∆)Γ(−α)bα−1) fS(α,a(1−e−αλ∆))(z), z ∈ R,

the parameter c in Algorithm 3 acts as a truncation of the entire real line R to the domain on which the

exponential tempering e−bz is performed. To sum up, we get

fL (Y01,c)(z) = fL (Y ′01,c)
(z+Γ(1−α)a(1− e−αλ∆)bα−1), z ∈ R.
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It is also proved in Theorem 8 [1] that the density fL (Y01,c) converges in L1(R) to the true density fT S(α,a(1−e−αλ∆),b)

as c ↑+∞, and consequently the Kolmogorov-Smirnov distance DKS(∆,c) between two distributions L (Y01,c)

and T S(α,a(1− e−αλ∆),b) converges to zero as well, where

DKS(∆,c) := sup
x∈R

∣∣∣∣
∫ x

−∞

(
fL (Y01,c)(z)− fT S(α,a(1−e−αλ∆),b)(z)

)
dz

∣∣∣∣

= sup
x∈R

∣∣∣∣
∫ x

−∞

(
fL (Y ′01,c)

(z)− fT S′(α,a(1−e−αλ∆),b)(z)
)

dz

∣∣∣∣

= sup
x∈R

∣∣∣∣∣

∫ x

−∞

(
1∧ e−b(z+c)

p3(∆,c)
− e−b(z+a(1−e−αλ∆)Γ(−α)bα−1)

)
fS(α ,a(1−e−αλ∆))(z)dz

∣∣∣∣∣ .

Nevertheless, it is not sensible to simply look for a smaller distribution error by taking c ↑ +∞, since then

the consequent low acceptance rate makes Algorithm 3 extremely inefficient, due to limc↑+∞ p3(∆,c) = 0

for each ∆ > 0. Meanwhile, it holds that for each c > 0, lim∆↓0 p3(∆,c) = e−bc. Thus, there exists the

issue of trade-off between the distribution error and the computing effort in terms of ∆ and c. Concerning

the computing effort, on the one hand, we wish to find (∆,c) minimizing 1/(∆ · p3(∆,c)), just as in the

previous two subsections. It should be noted that asymptotic behaviors of p3(∆,c) in ∆ and c are difficult

to analyze. Next, on the other hand, there exist several appropriate criteria to measure the distribution

error. Natural candidates include L1(R), L2(R)-distances between densities fL (Y01,c) and fT S(α,a(1−e−αλ∆),b),

while the Kolmogorov-Smirnov distance DKS(∆,c) above is certainly valid. None of them are tractable in

an explicit manner. For illustrative purpose, we present numerical results in Table 1 with parameter set

(α,a,b,λ ) = (1.8, 1.0, 1.0, 0.2) and ∆ = 0.1.

c 0.0 0.3 0.6 0.8 1.0 1.2 1.4 1.6

DKS(∆,c) 1.10E-1 6.35E-2 2.14E-2 7.00E-3 1.63E-3 2.69E-4 3.13E-5 2.51E-6

p3(∆,c) 0.875 0.753 0.599 0.499 0.411 0.337 0.276 0.226

Table 1: Numerical results of distribution error and acceptance rate for different truncation points c.

We draw in Figure 1 the resulting density functions fL (Y01,c) with a few different choices of c, together

with the true tempered stable density function fT S(α,a(1−e−αλ∆),b). For clear comparison, we also provide

vertical lines x =−c−Γ(1−α)a(1− e−αλ∆)bα−1. (We need the constant shift here because the truncation

c is performed on the distribution T S′(α,a(1− e−αλ∆),b), rather than on T S(α,a(1− e−αλ∆),b).) Observe

that two densities are sufficiently close when c = 1.4. It is not quite worth setting c > 1.4 in this specific

example, as the acceptance rate decreases still steadily. In principle, one would expect a small b in any

application, since otherwise an exponentially tailed distribution would be chosen instead. This fact favors a

relatively large acceptance rate p3(∆,c).
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Figure 1: Comparison of two density functions fL (Y01,c) (solid) and fT S(α,a(1−e−αλ∆),b) (dotted) under

(α,a,b,λ ) = (1.8, 1.0, 1.0, 0.2). The horizontal line indicates x =−c−Γ(1−α)a(1− e−αλ∆)bα−1.

4.4 Sample Paths

We provide in Figure 2 typical sample paths of TS-OU processes of infinite variation with discrete observa-

tions, based on the transition law we have obtained in Theorem 3.1 and the simulation methods described

in Algorithm 1, 2 and 3. The model parameters are set λ = 0.2, µ = 0, a = b = 1 and α = 1.2, 1.5 and 1.8.

For simplicity, we set the initial state X0 = 0, that is the mean of the stationary distribution T S(α,a,b)∗δµ .

Sample paths are generated over the time interval either [0, 100] or [0, 200], where the time stepsize is kept

∆ = 0.1 all over in common. This means that 1000 and 2000 recursive increments are needed, respectively,

for the intervals [0, 100] and [0, 200].

In our parameter setting, acceptance rates in Algorithm 1 (to generate one sample of Y02) are 0.889,

0.931 and 0.891, respectively, while in Algorithm 2 (to generate one sample of Θ1), acceptance rates are,

respectively, 0.990, 0.993 and 0.997. In Algorithm 3 (to generate one sample of Y01), we have chosen the

truncation point c = 0.3, 0.6 and 1.4, respectively, for α = 1.2, 1.5 and 1.8, on the basis of the criterion

DKS(∆,c)/(∆ · p3(∆,c)), as discussed in Section 4.3. With the choice of truncation point c, acceptance rates

in Algorithm 3 are 0.831, 0.588 and 0.276. Even in the case α = 1.8 with the lowest acceptance rate 0.276

in Algorithm 3, each sample path can be generated within 0.1 second by Scilab software on a computer with

recent regular spec. (The computing time can easily be reduced by employing a low-level language, such as

C.)

5 Concluding Remarks

We have derived exact transition law between consecutive observations of TS-OU processes of infinite vari-

ation as a convolution of three random components; a compound Poisson distribution and two tempered
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stable distributions, one with stability index in (0,1) and the other with index in (1,2). We have adopted

acceptance-rejection sampling techniques to simulate exactly the compound Poisson component and the

tempered stable distribution with index in (0,1). For simulation of the tempered stable distribution with

index in (1,2), we have presented an approximative acceptance-rejection sampling method of [1] with dis-

cussion on the issue of trade-off between distribution error and computing time. Sample paths simulation is

significantly more efficient with our explicit transition law and simulation techniques, relative to the known

approximative method based on infinite shot noise series representation of tempered stable Lévy processes.

As mentioned in Section 4.3, we could think of several approximative simulation techniques for the

tempered stable distribution with stability index in (1,2). Those techniques are investigated in [10]. Also,

with the explicit transition density functions of TS-OU processes, it is certainly worthwhile to investigate

related statistical issues, such as the local asymptotic behavior of the likelihood ratio statistics, efficient

parameter estimation, and so on. These topics will be investigated in subsequent papers.

Acknowledgements

The authors would like to appreciate an anonymous referee for valuable suggestions on the computation

part.

References
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Figure 2: Typical sample paths of tempered stable Ornstein-Uhlenbeck processes through exact simulation

algorithm. The horizontal dotted lines indicate X0 = 0(= limt↑+∞E[Xt ]).
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Response to Referee Comments on
“Infinite Variation Tempered Stable Ornstein-Uhlenbeck Processes

with Discrete Observations”

Reiichiro Kawai and Hiroki Masuda

Dear Prof. Balakrishnan and the anonymous reviewer,

Please find enclosed the revised version of the manuscript entitled “Infinite Variation Tempered
Stable Ornstein-Uhlenbeck Processes with Discrete Observations” written by R. Kawai and H.
Masuda (LSSP-2010-0376.R2) that we submitted to Communications in Statistics - Simulation
and Computation. In preparing the revision, we have tried to take care of all the points raised in
the referee reports. Let us address the issues related to the referee comments.

We admit that our computation is not as robust at a very high precision level as the referee’s.
Indeed, by expanding the integration region and by refining the discretization further, we obtained
the presented values for c = 1.4 and c = 1.6. With these values, our discussion on this part breaks
down. As the referee pointed out, finding a minimal c (and numerical results for c > 1.4 as well)
are not directly relevant to the main scope of our manuscript. Hence, following the referee’s
recommendation, we have decided to delete the part about finding an optimal threshold and have
amended the section accordingly. We appreciate the referee for a careful examination and valuable
suggestions on this part.

Finally, we denote by E[e−b(V (∆)+c); V (∆)>−c] the expectation of e−b(V (∆)+c) over the event
{V (∆) > −c}, rather than a conditional expectation. This notation however might not be com-
pletely clear to every reader, since the referee has been confused with

E
[
e−b(V (∆)+c); V (∆)>−c

]
= P(V (∆)>−c)E

[
e−b(V (∆)+c)∣∣V (∆)>−c

]
.

To avoid unnecessary confusion, we have made a modification as above.
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