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We study the low-temperature behavior and the phase transition of a thin film by Monte Carlo
simulation. The thin film has a simple cubic lattice structure where each site is occupied by a
Potts parameter which indicates the molecular orientation of the site. We take only three molecular
orientations in this paper which correspond to the 3-state Potts model. The Hamiltonian of the
system includes: (i) the exchange interaction Jij between nearest-neighbor sites i and j (ii) the
long-range dipolar interaction of amplitude D truncated at a cutoff distance rc (iii) a single-ion
perpendicular anisotropy of amplitude A. We allow Jij = Js between surface spins, and Jij = J
otherwise. We show that the ground state depends on the the ratio D/A and rc. For a single layer,
for a given A, there is a critical value Dc below (above) which the ground-state (GS) configuration of
molecular axes is perpendicular (parallel) to the film surface. When the temperature T is increased,
a re-orientation transition occurs near Dc: the low-T in-plane ordering undergoes a transition to
the perpendicular ordering at a finite T , below the transition to the paramagnetic phase. The same
phenomenon is observed in the case of a film with a thickness. We show that the surface phase
transition can occur below or above the bulk transition depending on the ratio Js/J . Surface and
bulk order parameters as well as other physical quantities are shown and discussed.

PACS numbers:64.60.De, 75.10.-b, 75.40.Mg, 75.70.Rf :

I. INTRODUCTION

Surface physics has been intensively developed during
the last 30 years. Among the main reasons for that rapid
and successful development we can mention the inter-
est in understanding the physics of low-dimensional sys-
tems and an immense potential of industrial applications
of thin films [1–3]. In particular, theoretically it has
been shown that systems of continuous spins (XY and
Heisenberg) in two dimensions (2D) with short-range in-
teraction cannot have long-range order at finite temper-
ature [4]. In the case of thin films, it has been shown
that low-lying localized spin waves can be found at the
film surface [5] and effects of these localized modes on
the surface magnetization at finite temperature (T ) and
on the critical temperature have been investigated by
the Green’s function technique [6, 7]. Experimentally,
objects of nanometric size such as ultrathin films and
nanoparticles have also been intensively studied because
of numerous and important applications in industry. An
example is the so-called giant magnetoresistance used in
data storage devices, magnetic sensors, etc. [8–11]. Re-
cently, much interest has been attracted towards prac-
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tical problems such as spin transport, spin valves and
spin-torques transfer, due to numerous applications in
spintronics.

In this paper, we are interested in the phase transition
of the Potts model [12] in thin films taking into account a
dipolar interaction and a perpendicular anisotropy. The
q-state Potts model is very popular in statistical physics
and much is known for models with short-range ferromag-
netic interactions in 2D and 3D [12]. The Potts model
with an algebraically decaying long-range interaction has
been investigated in 1D [13, 14]. Such a monotonous
long-range interaction can induce an ordering at finite
T in one-dimensional systems. The dipolar interaction,
however, is very special because it contains two compet-
ing terms which yield complicated orderings depending
on the sample shape. For example, the dipolar interac-
tion favors an in-plane ordering in films and slabs with
infinite lateral dimensions. Many studies have been done
with the dipolar interaction in thin films with the Heisen-
berg spin model [15, 16]. The absence of the Potts model
for thin films has motivated the present work.

We will consider a thin film made of a molecular crys-
tal where molecular spins can point along the x, y or
z axes. The interactions between molecular spins in-
clude a dipolar interaction truncated at a distance rc

and an exchange interaction between nearest neighbors
(NN). We also take into account a single-ion perpendicu-
lar anisotropy which is known to exist in ultrathin films
[1]. The method we employ is Monte Carlo (MC) sim-
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ulations. Phase transition in systems of interacting par-
ticles is a major domain in statistical physics. Much is
now understood with the analysis provided by the fun-
damental concepts of the renormalization group [17] and
with the use of the field theory [18]. But these methods
encountered some difficulties in dealing with frustrated
spin systems [19, 20]. MC simulations are therefore very
useful to complete theories and to interpret experiments.
They serve as testing means for new theoretical develop-
ments. Over the years, the standard MC method [21] has
been improved by the finite-size scaling theory [22] and
by other high-performance techniques such as histogram
techniques [23, 24], cluster updating algorithms [25–27]
and Wang-Landau flat-histogram method [28]. We have
now at hand these efficient techniques to deal with com-
plex systems. We can mention our recent investigations
by MC techniques on multilayers [29], on frustrated sur-
faces [30, 31] or on surface criticality [32, 33].

In section II, we describe our model and the method
we employ. Results of MC simulations are shown and dis-
cussed in section III for several cases: 2D, homogeneous
films and effects of surface interaction. Concluding re-
marks are given in section IV.

II. MODEL AND METHOD

We consider a thin film of simple cubic lattice. The film
is infinite in the xy plane and has a thickness Lz in the
z direction. The Hamiltonian is given by the following
3-state Potts model:

H = −
∑

(i,j)

Jijδ(σi, σj) (1)

where σi is a variable associated to the lattice site i. σi

is equal to 1, 2 and 3 if the spin at that site lies along
the x, y and z axes, respectively. Jij is the exchange
interaction between NN at i and j. We will assume that
(i) Jij = Js if i and j are on the same film surface (ii)
Jij = J otherwise.

The dipolar Hamiltonian is written as

Hd = D
∑

(i,j)

{S(σi) · S(σj)

r3
i,j

−3
[S(σi) · ri,j ][S(σj) · ri,j ]

r5
i,j

} (2)

where ri,j is the vector of modulus ri,j connecting the
site i to the site j. One has ri,j ≡ rj − ri. In Eq. (2), D
is a positive constant depending on the material, the sum∑

(i,j) is limited at pairs of spins within a cut-off distance

rc, and S(σi) is given by the following three-component

pseudo vector representing the spin state

S(σi) = (sx(i), 0, 0) if σi = 1 (3)

S(σi) = (0, sy(i), 0) if σi = 2 (4)

S(σi) = (0, 0, sz(i)) if σi = 3 (5)

where sα (α = x, y, z) is the α component with values
±1.

The perpendicular anisotropy is introduced by the fol-
lowing term

Ha = −A
∑

i

sz(i)
2 (6)

where A is a constant.
Note that the dipolar interaction as applied in our

Potts model is not similar to that used in the vector spin
model where S(σi) is a true vector. In our model, each
spin can only choose to lie on one of three axes, pointing
in positive or negative direction.

We use J = 1 as the unit of energy. The tempera-
ture T is expressed in the unit of J/kB where kB is the
Boltzmann constant.

In the absence of D, the GS configuration is perpen-
dicular to the film surface due to the term Ha. In the
absence of A, the GS is an in-plane configuration due to
D. When both A and D are present, the GS depends
on the ratio D/A. An analytical determination of the
GS is impossible due to the long-range interaction. We
therefore determine the GS by the numerical steepest-
descent method which works very well in systems with
uniformly distributed interactions. This method is very
simple[30, 31] (i) we generate a random initial spin con-
figuration (ii) we calculate the local field created at a
given spin by its neighbors using Eqs. (1) and (2) (iii)
we change the spin axis to minimize its energy (i. e. we
align the spin in its local field) (iv) we go to another spin
and repeat until all spins are visited: we say we make one
sweep (v) we do a large number of sweeps until a good
convergence to the lowest energy is reached.

We shall use MC simulation to calculate properties of
the system at finite T . Periodic boundary conditions are
used in the xy planes for sample sizes of L × L × Lz

where Lz is the film thickness. Free symmetric surfaces
are supposed for simplicity. Standard MC method [21] is
used to get general features of the phase transition. Sys-
tematic finite-size scaling to obtain critical exponents is
not the purpose of the present work. In general, we dis-
card several millions of MC steps per spin to equilibrate
the system before averaging physical quantities over sev-
eral millions of MC steps. The averaged energy and the
specific heat are defined by

〈U〉 = < H + Hd + Ha > (7)

CV =
〈U2〉 − 〈U〉2

kBT 2
(8)

where < ... > indicates the thermal average taken over
several millions of microscopic states at T .
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We define the order parameter Q for the q-state Potts
model by

Q = [q max(Q1, Q2, Q3) − 1]/(q − 1) (9)

where Qn is the spatial average defined by

Qn =
∑

j

δ(σi − n)/(L × L × Lz) (10)

n(n = 1, 2, 3) being the value attributed to denote the
axis of the spin σi at the site i. The susceptibility is
defined by

χ =
〈Q2〉 − 〈Q〉2

kBT
(11)

We did not use the theory of finite-size scaling[22–24]
because the calculation of critical exponents is not the
purpose of the present work. However, in order to appre-
ciate finite-size effects, we carried out simulations in the
2D case for sizes from L × L = 24 × 24 to 60 × 60 and
in the case of thin films from L × L × Lz = 12 × 12 × 4
to 48 × 48 × 6. Results for the largest size are not signi-
ficatively different from those of smaller sizes, excepted
for the thickness. We will show therefore in the following
results for lateral lattice size L = 60 for the 2D case, and
L = 24 for thin films with thicknesses Lz = 4 and 6.
In order to check the first-order nature of a weak first-
order transition, the histogram technique is very efficient
[23, 24]. But in our case as will be seen below, the re-
orientation is a very strong first-order transition. The
discontinuity of energy and magnetization is clearly seen
at the transition. We just use the histogram technique
to check the 2D case for a demonstration.

III. GROUND STATE AND PHASE

TRANSITION

A. Two dimensions

In the case of 2D, for a given A, the steepest-descent
method gives the ”critical value” Dc of D above (below)
which the GS is the in-plane (perpendicular) configura-
tion. Dc depends on rc. Let us take A = 0.5 and make
vary D and rc in the following. The GS numerically ob-
tained is shown in Fig. 1 for several sets of (D, rc). For

instance, when rc =
√

6 ≃ 2.449, we have Dc = 0.100.
We show in Fig. 2 the energy per site E ≡< U >

/(L × L × Lz) and the specific heat, and in Fig. 3 the
order parameter M =< Q > as well as the susceptibility
χ, as functions of T in the case of rc =

√
6, for D = 0.09

and D = 0.11 on two sides of Dc = 0.100. We observe
one transition of second order for these values of D. Note
that the transition for larger D is sharper.

It is interesting to examine the region very close to Dc,
namely close to the frontier of two different GS. We have
seen in the past that many interesting phenomena occur

FIG. 1. Ground states as functions of (D, rc), with A = 0.5,
J = 1: the number (I) stands for the perpendicular configura-
tion and the number (II) for the in-plane configuration (spins
pointing along x or y axis).
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FIG. 2. (Color online) Energy E and specific heat CV versus
T for D =0.09 (black solid circles) and 0.11(blue void circles),
L = 60, A = 0.5, J = 1, rc =

√

6.

at the boundaries of different phases: we can mention
the reentrance phenomenon in frustrated spin systems
[19, 20] and the re-orientation transition in the Heisen-
berg film with a dipolar interaction similar to the present
model [16]. We have carried out simulation for values
close to Dc. We find indeed a transition from the in-
plane ordering to the perpendicular one when T increases
in the region D ∈ [0.100, 0.104]. We show an example at
D = 0.101 in Fig. 4 where we observe that in the low-T
phase (0 ≤ T < 0.93) the spins align parallel to the x
axis and in the intermediate-T phase (0.93 < T < 1.05)
the spins point along the z axis perpendicular to the film.
The system becomes disordered at T > 1.05. Note that
in the disordered phase, each ”state” of the Potts spin
(along of one of the three axes) has 1/3 of the total num-
ber of spins. This explains why Mx and Mz tend to 1/3
at high T in Fig. 4. The transition from the in-plane to
the perpendicular configuration is of first order as seen
in Fig. 4 by the discontinuity of Mx, Mz, the energy
and the magnetization at the transition point. The first-
order character has been confirmed by the double-peaked
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D = 0.09 is the perpendicular magnetization while M for
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FIG. 6. (Color online) Phase diagram in 2D: Transition tem-
perature TC versus D, with A = 0.5, J = 1, rc =

√

6 (top)
and rc = 4 (bottom). Phase (I) is the perpendicular spin
configuration, phase (II) the in-plane spin configuration and
phase (P) the paramagnetic phase. See text for comments.

energy histogram at the re-orientation transition temper-
ature as shown in Fig. 5.

We show in Fig. 6 (top) the phase diagram in the

space (D,T ) for rc =
√

6 where the line of re-orientation
transition near Dc is a line of first order. Let us dis-
cuss about the effect of changing rc. Increasing rc will
increase the dipolar energy at each site. Therefore, a
smaller value of D suffices to ”neutralize” the effect of
perpendicular anisotropy energy. The critical value of Dc

is thus reduced as seen in the phase diagram established
with rc = 4 shown in Fig. 6 (bottom) where Dc = 0.090

compared to Dc = 0.100 when rc =
√

6 (top).
It is interesting to compare the present system using

the 3-state Potts model with the same system using the
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Heisenberg spins [16]. In that work, the re-orientation
transition line is also of first order but it tilts on the left
of Dc, namely the re-orientation transition occurs in a
small region below Dc, unlike what we find here for the
Potts model. To explain the ”left tilting” of the Heisen-
berg case, we have used the following entropy argument:
the Heisenberg in-plane configuration has a spin-wave en-
tropy larger than that of the perpendicular configuration
at finite T , so the re-orientation occurs in ”favor” of the
in-plane configuration, it goes from perpendicular to in-
plane ordering with increasing T . Obviously, this argu-
ment for the Heisenberg case does not apply to the Potts
model because we have here the inverse re-orientation
transition. We think that, due to the discrete nature of
the Potts spins, spin-waves cannot be excited, so there
is no spin-wave entropy as in the Heisenberg case. The
perpendicular anisotropy A is thus dominant at finite T
for D slightly larger than Dc.

B. Thin films

The case of thin films with a thickness Lz where Lz

goes from a few to a dozen atomic layers has a very sim-
ilar re-orientation transition as that shown above for the
2D case.

Let us show results for Js = J in Figs. 7-10 below.
The effect of surface exchange integral Js will be shown
in the following subsection.

Let us show in Fig. 7 the GS obtained by the steepest-
descent method with A = 0.5 and J = 1 as before, for
two thicknesses Lz = 4 and Lz = 6. Changing the film
thickness results in changing the dipolar energy at each
lattice site. Therefore, the critical value Dc will change
accordingly. We note the periodic layered structures at
large D and rc for both cases. In the case Lz = 4, for
rc =

√
6 the critical value Dc above which the GS changes

from the perpendicular to the in-plane configuration is
Dc = 0.305.

As in the 2D case, we expect interesting behaviors near
the critical value Dc. For example, when Lz = 4, rc =

√
6

and A = 0.5, we find indeed a re-orientation transition
which is shown in Fig. 8. The upper curves show clearly
a first-order transition from in-plane x ordering to per-
pendicular ordering at T ≃ 1.41. The total magnetiza-
tion (middle curve) and the energy (bottom curve) show
a discontinuity at that temperature. The whole phase
diagram is shown in Fig. 9. Note that the line sepa-
rating the uniform in-plane phase (II) and the periodic
single-layered phase (1) is vertical.

To close this subsection, let us show in Fig. 10 the
transition at values of D far from the critical values of D.
There is only one transition from the ordered phase to the
paramagnetic phase. As seen the transition from the in-
plane ordering [phases (II) and (1)] to the paramagnetic
phase is sharper than that from the perpendicular one
[phase (I)], as in the 2D case.

FIG. 7. Ground states in a thin film as functions of (D, rc), for
thickness Lz = 4(top) and 6 (bottom), with A = 0.5 and J =
1: the number (I) stands for the perpendicular configuration,
the number (II) for the in-plane configuration (spins pointing
along x or y axis), the number (1) for alternately one layer in x
and one layer in y direction (periodic single-layered structure),
the number (2) stands for the configuration with alternately
2 layers in x alignment and 2 layers in y alignment (periodic
bi-layered structure), and the number (3) for alternately three
layers in x and three layers in y direction (periodic tri-layered
structure) .

C. Effect of surface exchange interaction

We have calculated the effect of Js by taking its val-
ues far from the bulk value (J = 1) for several values
of D. In general, when Js is smaller than J the surface
spins become disordered at a temperature T below the
temperature where the interior layers become disordered.
This case corresponds to the soft surface (or magneti-
cally ”dead” surface layer) [7]. On the other hand, when
Js > J , we have the inverse situation: the interior spins
become disordered at a temperature lower that of the
surface disordering. We have here the case of a magnet-
ically hard surface. We show in Fig. 11 an example of a
hard surface in the case where Js = 3 for D = 0.6 with
Lz = 4. The same feature is observed for D = 0.4. Note
that the surface and bulk transitions are seen by the re-
spective peaks in the specific heat and the susceptibility.
In the re-orientation region, the situation is very compli-
cated as expected because the surface transition occurs
in the re-orientation zone.
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D. Discussion

Note that for a given D, the effect of the cutoff dis-
tance rc is to move the critical value of Dc as seen in
Figs. 1 and 7. At rc =

√
10 ≃ 3.16 one has 146 neigh-

bors for each interior spin (not near the surface). This
huge number makes MC simulations CPU-time consum-
ing. We therefore performed simulations at finite T only
with two values of rc in the 2D case. As seen in Fig. 6,
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FIG. 10. (Color online) E, CV , M and χ versus T for D =0.3
(black solid circles), 0.4 (blue void circles) and 0.6 (red dia-
monds), Lz = 4, L = 24.
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the change of rc does not alter our conclusion on the re-
orientation transition. We think that the cutoff is more
than a technical necessity, it involves also physical real-
ity. We have in mind the observation that in most exper-
imental systems interaction between faraway neighbors
can be neglected. The concept that the interaction range
between particles can go to infinity is a theoretical con-
cept. Models in statistical physics limited to interaction
between NN are known to interpret with success exper-
iments [1, 18]. Rarely we have to go farther than third
NN. For example, in our recent paper on the spin resistiv-
ity in semiconducting MnTe, we took interactions up to
third neighbors to get an excellent agreement with exper-
iments [34]. Therefore, we wanted to test in the present
paper how physical results depend on rc in the dipolar
interaction. If we know for sure that in a thin film the in-
teraction is dipolar and that a double-layered structure
for example is observed, from what is found above we
can suggest the interaction range between spins in the
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system. Finally, we note that if we change A, the value
of Dc will change. The choice of A=0.5 which is a half of
J is a reasonable choice to make the re-orientation hap-
pen. A smaller A will induce a smaller Dc but again, the
physics found above will not change.

IV. CONCLUDING REMARKS

We have shown in this paper MC results on the phase
transition in thin magnetic films using the Potts model
including a short-range exchange interaction J and a
long-range dipolar interaction of strength D, truncated
at a distance rc. We have also included a perpendicular

anisotropy A which is known to exist in very thin films.

Among the striking results, let us mention the re-
orientation transition which occurs in 2D and in thin
films at a finite temperature below the overall disorder-
ing. This re-orientation is a very strong first-order tran-
sition as seen by the discontinuity of the energy and the
magnetization. We emphasize that the re-orientation is
possible only because we have two competing interac-
tions: the perpendicular anisotropy and the dipolar in-
teraction.
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