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Abstract

The notion of P -simple points has been introduced by Bertrand to conceive parallel thinning algorithms.

In ’A 3D fully parallel thinning algorithm for generating medial faces’, Ma has proposed an algorithm for

which there exists objects whose topology is not preserved. In this paper, we propose a new application of

P -simple points: to automatically correct Ma’s algorithm.
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1 Introduction

In the image processing framework, thinning is a technique which extracts skeletons from objects. Such a repre-
sentation has the advantage of being compact while conserving important features of objects like topology and ge-
ometry. Thinning has many applications such as compression, analysis and recognition [Reniers and Telea(2007)].
In a binary image, objects are represented by black points. The complement is represented by white points.
Thinning consists of changing black points to white. It is generally done in successive iterations of deletions.
Removing a point should preserve certain properties like topology. This leads to the essential notion of a simple
point: a simple point is a point which can be removed without changing topology [Kong and Rosenfeld(1989)].

The literature gives several kinds of 3D thinning algorithms. Parallel thinning algorithms proceed by re-
moving black points in parallel. Implemented on appropriate computers, such algorithms can efficiently achieve
thinning. The problem is that the notion of a simple point is not powerful enough to garantee topology preser-
vation in this context. For example, consider an object made of two neighboring points. Both points are simple
but removing them both does change topology. This problem cannot occur by sequential processing because
the deletion of the first point makes the second point become non-simple. To solve this problem, Bertrand
has proposed the notion of P -simple points [Bertrand(1995a)]: a point of a set P is P -simple if it is simple
when any subset of P is removed. Parallel thinning algorithms removing P -simple points have been proposed
[Bertrand(1995b), Lohou and Bertrand(2004), Lohou and Bertrand(2005), Lohou and Bertrand(2007)]. Such
algorithms have remarkable topology-preserving property.

In this paper we propose another application of P -simple points: ensuring topology preservation of an
existing parallel thinning algorithm. In [Ma(1995)], Ma proposes a 3D parallel thinning algorithm. This
algorithm is one of the few thinning algorithms able to preserve surfaces and is used as a reference [Palágyi(2008),
Lohou and Bertrand(2007)]. In [Lohou(2008)], one of the authors gives an object whose topology is not preserved
by Ma’s algorithm. This proves that the algorithm fails to preserve topology, which it should do. Here, we
propose a topology preserving algorithm by using P -simple points to repair Ma’s algorithm. As far as we know,
this is the first time P -simple points are used to automatically correct an image operator.

This paper is organized as follows. Section 2 gives some basic notions of Digital Topology and presents
P -simple points. Section 3 shows how to use P -simple points in a thinning algorithm. In section 4, we propose
such an algorithm to correct Ma’s. Section 5 gives some results and section 6 concludes.

2 Basic notions of Digital Topology

2.1 Neighborhoods and connected components

A point x ∈ Z
3 is defined by (x1, x2, x3) with xi ∈ Z. We consider the three neighborhoods: N26(x) = {x′ ∈

Z
3 : max[|x1 − x′

1
|, |x2 − x′

2
|, |x3 − x′

3
|] ≤ 1},

N6(x) = {x′ ∈ Z
3 : |x1−x′

1
|+ |x2−x′

2
|+ |x3−x′

3
| ≤ 1}, and N18(x) = {x′ ∈ Z

3: |x1−x′

1
|+ |x2−x′

2
|+ |x3−x′

3
| ≤

2} ∩ N26(x). We define N∗

n(x) = Nn(x) \ {x}. We call respectively 6-, 18-, 26-neighbors of x the points of
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(a) (b)

Figure 1: (a): The 6-neighbors (triangles), 18-neighbors (diamonds) and 26-neighbors (crosses) of x. (b): Axis
and orientations.

(a) (b) (c) (d)

Figure 2: Simple points and P -simple points. Black points represent the object X . White points and hidden
points represent the complement X. (a): x is 26-simple for X . (b): x is not 26-simple for X . In (c) and (d),
black squares represent P and black discs represent X \ P . (c): x is P -simple for X . (d): x is not P -simple for
X .

N∗

6
(x), N∗

18
(x) \ N∗

6
(x), N∗

26
(x) \ N∗

18
(x). Such points are represented in Fig. 1 (a). Let X ⊆ Z

3. The points
belonging to X (resp. X, the complement of X in Z

3) are called black points (resp. white points). Axis and
orientations used in this paper are given in Fig. 1 (b).

Two points x and y are said to be n-adjacent if y ∈ N∗

n
(x) (n = 6, 18, 26). An n-path is a sequence of points

x0, . . . , xk, with xi n-adjacent to xi−1 and 1 ≤ i ≤ k. If x0 = xk, the path is closed. Let X ⊆ Z
3. Two points

x ∈ X and y ∈ X are n-connected if they can be linked by an n-path included in X . The equivalence classes
relative to this relation are the n-connected components of X . The presence of an n-hole is detected whenever
there is a closed n-path in X that cannot be deformed, in X , into a single point (see [Kong(1989)], for further
details). In order to have a correspondence between the topology of X and that of X, we have to consider two
different kinds of adjacency for X and for X [Kong and Rosenfeld(1989)]: if we use an n-adjacency for X , we
have to use another n-adjacency for X. In this paper, we only consider (n, n) = (26, 6).

2.2 Simple points and topological numbers

Let X ⊆ Z
3. A point x ∈ X is said to be n-simple for X if its deletion does not “change the topology” of the

image, in the sense that there is a bijection between the components and the holes of X and X and the ones of
X \ {x} and X ∪ {x} (see [Kong(1989)] for a precise definition). In the following, we write x is simple instead
of x is simple for X . In Fig. 2 (a), we may verify that x is simple. In Fig. 2 (b), X is a single connected
component whereas X \ {x} is made of two connected components ({a, c} and {b}), therefore the topology of
X is not preserved by the deletion of x, i.e. x is not simple.

The set composed of all n-connected components of X is denoted by Cn(X). The set of all n-connected
components of X and n-adjacent to a point x is denoted by Cx

n
(X). Let #X denote the number of elements which

belong to X . The topological numbers relative to X and x are the two numbers [Bertrand(1994)]: T6(x, X) =
#Cx

6
(N∗

18
(x) ∩ X) and T26(x, X) = #Cx

26
(N∗

26
(x) ∩ X) (in fact, T26(x, X) = #C26(N∗

26
(x) ∩ X), since any 26-

connected component of black points in N∗

26
(x) is inevitably 26-adjacent to x). These numbers lead to a very

concise characterization of 3D simple points [Malandain and Bertrand(1992), Bertrand and Malandain(1994)]:
x ∈ X is 26-simple if and only if T26(x, X) = 1 and T6(x, X) = 1. For example, in Fig. 2 (a), the points of
N∗

26
(x)∩X (resp. N∗

18
(x)∩X) make a single 26-connected (resp. 6-connected and 6-adjacent to x) component.

Thus (T26(x, X), T6(x, X)) = (1, 1); therefore x is simple. In Fig. 2 (b), N∗

26
(x) ∩ X is constituted by two
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26-connected components ({a, c} and {b}). N∗

18
(x) ∩X is made of a single 6-connected component 6-adjacent

to x. Thus, we have, (T26(x, X), T6(x, X)) = (2, 1); therefore x is not simple.

2.3 P -simple points

This section recalls the definition of P -simple points and several properties of such points [Bertrand(1995a)].
In the following, we consider a subset X of Z

3, a subset P of X and a point x of P .

Definition 1 The point x is P -simple for X if for each subset S of P \ {x}, x is 26-simple for X \ S.

For example, in Fig. 2 (c), P = {x, a}. We may verify that x is simple for X \ {a}; therefore x is P -simple.
In Fig. 2 (d), P = {x, a}. With S = {a}, we may verify that x is not simple for X \ S; therefore x is not
P -simple.

We have the remarkable property that any algorithm removing subsets composed solely of P -simple points
is garanteed to keep the topology unchanged [Bertrand(1995a)].

The following proposition permits to locally characterize P -simple points [Bertrand(1995c)].

Proposition 1 The point x is P -simple if and only if:














T26(x, X \ P ) = 1,

T6(x, X) = 1,

∀y ∈ N∗

26
(x) ∩ P, ∃z ∈ X \ P such that z is 26-adjacent to x and to y,

∀y ∈ N∗

6
(x) ∩ P, ∃z ∈ X and ∃t ∈ X such that {x, y, z, t} is a unit square.

For example, in Fig. 2 (c), x is P -simple because it concurs with the four conditions of Proposition 1. In
Fig. 2 (d), x is not P -simple because the first condition is not satisfied (T26(x, X \ P ) = 2). In both examples,
Proposition 1 makes it possible to consider only a few points around x to determine whether x is P -simple or
not.

3 Thinning algorithms based on P -simple points

Let us consider an algorithm which removes P -simple points in parallel, in successive iterations. Since some
points are deleted during an iteration, this algorithm thins objects. A skeleton is obtained when no more
points can be removed. As shown in the previous section, removing subsets composed of solely P -simple points
guarantees to keep the topology unchanged. Consequently, topology preservation, which is one of the most
important features of a thinning algorithm, is automatically proved for such algorithms.

Algorithm 1 : P-SimpleThinningAlgorithm(X, C)→ X

1: repeat

2: {parallel labelling of points which belong to P}
3: P ← ∅
4: for each point x in X , in parallel, do

5: if x verifies the condition C then

6: put x in P

7: end if

8: end for

9: {parallel deletion of P -simple points}
10: for each point x in P , in parallel, do

11: if x is P -simple for X then

12: delete x in X

13: end if

14: end for

15: until no points are deletable

Algorithm 1 gives such an algorithm; where C denotes the condition a point x of X should satisfy to belong
to P (the set of candidate points to deletion). Each iteration is composed of two passes. Thanks to P -simple
points, the algorithm can examine points in parallel. Furthermore, using the local characterization of P -simple
points (Proposition 1), the algorithm can consider limited neighborhoods. It is thus well-suited for parallel
machines.

Algorithm 1 does not explain how to determine P (the set of candidate points for deletion). In [Bertrand(1995a)],
Bertrand proposes that P contains the simple points of X to obtain a certain kind of skeleton.
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Figure 3: The templates of Ma’s algorithm. A point p satisfies a template if each disc is a black point, each
circle is a white point, at least one square is a white point and at least one diamond is a white point.

4 A new thinning algorithm correcting Ma’s algorithm

In the previous section, we have recalled how P -simple points can be used to conceive thinning algorithms.
We now suggest a new application of P -simple points: to correct an existing thinning algorithm which fails to
preserve topology. Indeed, a lot of parallel thinning algorithms (including Ma’s algorithm) are based on “local”
templates. Basically, they consist of removing in parallel and in successive iterations, all the points matching
one of the given templates. A skeleton is obtained when no more points can be removed. However, when a
templates-based thinning algorithm is proposed, its topology preservation should be proven afterward. This is
very difficult because it implies considering a great number of configurations in a greater neighborhood than
the N26 neighborhood of the considered point. Thus, giving an analytical proof is difficult and computing the
correctness of the algorithm cannot be done in reasonnable time using actual computers. That’s why an error
can be made easily, when a templates-based thinning algorithm is conceived. This is what has occured with
Ma’s algorithm. A correction could be made by changing the initial templates but, once again, proof has to be
given, which leads us to the previously mentioned difficulties. In this section, we explain how to use P -simple
points to correct, in a simple and effective manner, a templates-based thinning algorithm which fails to preserve
topology.

4.1 Study of Ma’s algorithm

This algorithm has been proposed in [Ma(1995)]. It is a 3D parallel thinning algorithm based on templates
requiring access of up to 30 points to decide whether a point is deletable or not.

In [Ma(1995)], Ma gives the following definitions and rules:

• A black point is called border point if it is 6-adjacent to a white point.

• Definition 1.1: Let p be a black point of a 3D image. Then p is called an edge point if p has exactly
one black 26-neighbor in N∗

26
(p) or in any of the three orthogonal 3× 3 planes containing p; p is called a

non-edge point if it is not an edge point.

• Suppose p is a point in a 3D image. Let s(p), w(p) and d(p) be the south, west and down neighbors of p,
respectively.

• Rule 2.1: Suppose all four corners of a unit lattice square are to be deleted. Then the corner with the
smallest sum of coordinates is preserved if and only if it is non-simple after the other three corners are
deleted.

• Let Ω be the set of all rotations and reflections of all three configurations (shown in Fig. 3). For each
element T of Ω, a black point p is said to satisfy T if [it satisfies the corresponding template and]1 all of
the following conditions are satisfied:














p is a non-edge point,
if p is a north border point, then s(s(p)) is a black point,
if p is a east border point, then w(w(p)) is a black point,
if p is a up border point, then d(d(p)) is a black point.

A black point p is said to satisfy Ω if p satisfies any element in Ω.
Using these definitions, Ma gives the Algorithm 2, denoted by Ma95.
This algorithm works by iterations. Each iteration is composed of two passes (find black points satisfying

Ω; delete points not preserved by Rule 2.1). During a pass, points can be considered in parallel.

1not mentioned in the original article
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Algorithm 2 : Ma95

1: repeat

2: parallel delete black point that satisfies Ω and is not preserved by Rule 2.1
3: until no points are deleted

In [Lohou(2008)], it is shown that Ma’s algorithm does not always preserve topology. Now, we propose an
algorithm which corrects this problem.

4.2 Our proposal

In section 3, we proposed a generic parallel thinning algorithm (Algorithm 1). First, this algorithm detects, in
parallel, the points which verify a condition C. These points compose the set P . Then, the algorithm deletes
P -simple points in parallel among the points of P .

To correct Ma’s algorithm, we propose to remove P -simple points in parallel in successive iterations where
P is precisely the set of points which would be deleted by Ma’s algorithm. This is equivalent to Algorithm 1
where the condition C is “the point satisfies Ω and is not preserved by Rule 2.1”.

Checking Rule 2.1 for a point x requires us to determine if some neighbors of x are to be deleted. This can
be done by checking whether they satisfy Ω or not. This method means accessing a larger neighborhood of x

(see [Lohou and Bertrand(2004)] for further details). To avoid this, we can first find the points that satisfy Ω
and, in another pass, determine which ones are preserved by Rule 2.1. This algorithm, denoted by LD09, is
given in Algorithm 3.

Algorithm 3 : LD09(X)→ X

1: repeat

2: {parallel labelling of points which belong to P ′}
3: P ′ ← ∅
4: for each point x in X , in parallel, do

5: if x satisfies Ω then

6: put x in P ′

7: end if

8: end for

9: {parallel application of Rule 2.1}
10: P ← ∅
11: for each point x in P ′, in parallel, do

12: if x is not preserved by Rule 2.1 in P ′ then

13: put x in P

14: end if

15: end for

16: {parallel deletion of P -simple points}
17: for each point x in P , in parallel, do

18: if x is P -simple for X then

19: delete x in X

20: end if

21: end for

22: until no points are deletable

LD09 is indeed a correction of Ma95. First, it removes P -simple points only, which ensures topology
preservation. And finally, it can delete only the same points as Ma95. This use of P -simple points implies that
LD09 preserves topology. On the contrary, a correction based only on a modification of the initial templates
would have required a difficult and error-prone proof of the topology preservation.

We may notice that other algorithms can be derived from LD09. For instance, Rule 2.1 may be checked
in the same time as the P -simpleness, which makes it possible to bypass the specific pass. Another algorithm
can be defined by letting P be the set of points which match the templates and then removing P -simple points
which are non-edge points and non-border points. We are currently working on these points and a few other
ones [DEHOS and LOHOU(2009)].
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bull cobra knot letterD Tz2 vertebra

Figure 4: Six of the objects used for our tests.

Object Black Deleted points Deleted points Iterations
points (first iteration) (total)

Ma95 LD09 Ma95 LD09 Ma95 LD09

bull 424 346 31 344 31 290 399 207 395 099 42 42
cobra 89 890 18 924 18 922 80 626 79 962 10 11
knot 231 239 35 572 35 542 212 503 210 972 14 14
letterD 2 079 1 281 1 281 1 665 1 665 3 3
Tz2 4 299 1 739 1 739 3 879 3 873 6 7
vertebra 180 161 23 042 23 034 162 715 161 215 24 25

Table 1: Comparison between Ma95 and LD09 applied to the 6 objects depicted in Fig. 4.

5 Results

We have compared Ma’s algorithm and ours thanks to 5 small synthetic objects, 5 large objects obtained by
voxelisation and 1 object obtained by medical imagery (see Table 1. Some of these objects are depicted in Fig.
4. We have found that 3 objects have the same number of deleted points with both algorithms (for instance,
letterD and Tz2), 8 objects have more deleted points with Ma’s algorithm and no object has more deleted
points with our algorithm. Furthermore, 6 objects have the same number of iterations with both algorithms
(for instance, Bull), one object has more iterations with Ma’s algorithm and 4 objects have more iterations
with our algorithm (for instance, vertebra).

If we apply these algorithms to the same object, we can get different results after the first iteration, because
LD09 removes some but not always all of the points removed by Ma95. Thus, the next iteration happens on
different objects therefore the final results are difficult to compare. By its conception, our algorithm cannot
delete more points of a given object than Ma’s algorithm, during one iteration (columns 3 and 4 of Table 1.
According to our tests, our algorithm generally deletes less points and performs more iterations than Ma’s.
However, we cannot prove anything from this. For example, as mentioned before, one object of our database is
thinned by less iterations with our algorithm than with Ma’s.

Fig. 5 shows the result of both algorithms applied to an object of the database. The initial object (a) is
a dolphin obtained by voxelisation. The skeletons given by Ma’s algorithm (b) and ours (c) are quite similar.
However, we can see on their respective close-ups (d) and (e), that Ma’s algorithm does not preserve the topology
whereas ours does. For example, in (d), the stamp 1 depicts a voxel which is disconnected from the skeleton
by Ma’s algorithm. In the same way, the stamp 2 shows a hole created by the algorithm. We can see on (e)
that our algorithm does not have these problems. From another viewpoint (f), we can notice that, like Ma’s
skeleton (g), our skeleton (h) presents medial faces. Finally, if the skeletons have common points (i), they also
have points which are unique to themselves (j, k).

6 Conclusion

Up until now, P -simple points have been used to develop new topology-preserving thinning algorithms. In this
paper, thanks to P -simple points, we have proposed an automatic correction of a templates-based thinning
algorithm which fails to preserve topology. Like this latter, our algorithm allows us to extract medial-face
skeletons. However, our algorithm ensures topology preservation. To our knowledge, it is the first time P -
simple points are used for such an application. Our algorithm could be seen as a correcting patch for current
applications using Ma’s algorithm.
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Figure 5: Result of both algorithms applied to a same object. (a): Initial object (1 202 772 black points). (b):
Skeleton obtained with Ma’s algorithm (1 153 121 deleted points in 60 iterations, 49 651 remaining points). (c):
Skeleton obtained with our algorithm (1 150 230 deleted points in 61 iterations, 52 542 remaining points). (d):
Close-up of (b). (e): Close-up of (c). (f): Another viewpoint of (a). (g): (b) from the same viewpoint as (f).
(h): (c) from the same viewpoint as (f). (i): Intersection of (b) and (c) (45 967 points). (j): Difference between
(b) and (c) (3 684 points). (k): Difference between (c) and (b) (6 575 points).
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