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Abstract

An image output by a camera is generally not a faithful representation ofthe real scene, because it undergoes a series of
radiometric disturbances during the imaging process. This paper proposes a method for obtaining a more accurate measure of
the light seen by a camera. Our method requires no specific calibration apparatus and only minimal supervision. Nevertheless,
it is quite comprehensive, since it accounts for response function, exposure, vignetting, spatial non-uniformity of the sensor
and colour balancing. Our method works in two steps. First, the camera is calibrated off-line, in a photoquantity sense. Then,
the photoquantity of any scene can be estimated in-line. Our method is therefore geared to a wide range of computer vision
applications where a camera is expected to give a measurement of the visible light. The paper starts by presenting a photoquantity
model of the camera imaging process. It then describes the key steps of calibration and correction method. Finally, results are
given and analyzed to evaluate the relevance of our approach.

1 Introduction

Computer vision handles various kinds of data, from videos to 3D medical images. This paper solely deals with 2D stills typically
obtained from a computer-controlled colour camera. Such images can be used, for example, to reconstruct scene geometry[5, 22],
estimate the material reflectances [19] or compute a wide-field view by image mosaicing [11]. To achieve these tasks accurately,
input images generally have to be a quite faithful measure ofthe light seen by the camera. However, this is not the case since the
imaging process introduces geometric and radiometric distortions.

In this paper, we only deal with radiometric distortions. Our objective is to deploy a comprehensive yet practical method
which can reduce radiometric distortions and thus give a quite faithful measure of the light seen by the camera.

We make several assumptions about the camera:

• electronic gain and optical aperture are constant,

• exposure time is known and controlled,

• optics can be temporarily removed from the camera.

Our method comprises two steps. First, the camera is calibrated. This step has to be done a single time, off-line. The
correction step then computes the photoquantity of any static scene, in-line, based on the characterization of the camera given by
the calibration step.

Our method accounts for:

• non-linear response functions (one response for each colour channel),

• colour balancing (global adjustment of the colour channels),
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• spatial non-uniformity of the sensor (due to imperfectionsin the building process),

• vignetting (spatial non-uniformity due to the internal geometry of the camera).

Furthermore, since the method performs high dynamic range imaging (HDRI) through multiple exposures, it can be used with
highly contrasted scenes and possesses some inherent robustness to noise.

The main contribution of this paper is a practical method to characterize a camera and then measure photoquantity. It also
proposes an extension of the Goldman-Chen vignetting modeland a calibration scheme based on this model.

The remainder of the paper is organized as follows. Section 2reviews some related work. Section 3 presents a photoquantity
model of the imaging process. Section 4 details the model inversion, which gives a photoquantity measurement method. Section
5 details the calibration step. Section 6 presents and discusses some of our results and Section 7 concludes.

2 Related work

There is a wealth of literature on radiometric camera correction. However, work is generally limited to a specific kind of
radiometric distortion (such as, vignetting or camera response), application (mosaicing, HDRI) or technology (CCD, CMOS).

In [17], Tarel gives a fairly comprehensive study of radiometric camera distortion, but only considers CCD cameras leading to
a specific characterization. Based on the study, he also explains how to radiometrically correct camera acquisitions. However, no
practical method is given, as it was not the purpose of his paper.

High dynamic range imaging is a related field which has gaineda lot of attention. In [10], Mann and Picard propose a method
to estimate camera response from multiple exposures. Theirmethod works as follows. Let us consider a point in the scene.This
point emits a constant light flux. Therefore, by comparing the exposures and the corresponding values output by the camera, we
can characterize the camera response for the measured light. Thus, by considering several points in the scene, the full response
can be measured.

In [2], Debevec and Malik propose another method to estimatethe camera response from multiple exposures. Their method
consists in considering the values of several points under different exposures. This makes it possible to define a minimization
problem. The resolution of this problem gives the camera response.

In [16], Robertson et al. propose a similar method to Debevec-Malik. However, they use a different formalization, starting
out from a statistical approach. They obtain a minimizationproblem, and propose a relaxation method to solve it.

Finally, in [14], Mitsunaga and Nayar propose a polynomial model of camera response. Using this model, they formulate the
response characterization as an optimization problem and propose an iterative algorithm to solve it.

There has been a recent surge in work on vignetting correction. The methods proposed are generally based on a vignetting
model. For example, in [20], Yu proposes a hypercosine modelof vignetting and an antivignetting method based on wavelet
denoising and decimation. In [21], Zheng et al. use the Kang-Weiss model [8] to propose a single-image vignetting correction
method.

Vignetting correction is often associated with HDRI and image mosaics. In [3], Goldman and Chen propose a method to
estimate vignetting, response function and exposures froman image mosaic. They propose a 6th-order polynomial vignetting
model and use the empirical model of response given in [3] to formulate the problem as a non-linear optimization.

In [9], Kim and Pollefeys use the same vignetting and response models as Goldman and Chen. However, they decouple
vignetting from the response function and propose a method to successively estimate response function and vignetting by solving
two linear least-square problems.

Finally, in [6, 7], Litvinov and Schechner propose a method to estimate vignetting, response function and exposures from a
frame sequence. Their method is not based on a model. Instead, they use the fact that regions are represented on several frames
to state and resolve a non-parametric linear least-square problem.

In contrast to previous methods, ours is both general and practical. First, it accounts for the main radiometric distortions
occurring throughout the camera imaging process. Second, it is not limited to a specific kind of camera or application. Finally, it
is practical in the sense that it requires no specific calibration apparatus and only little supervision.

3 Photoquantity model

In this section, we start with a recap on how a camera creates an image. This enables us to explain the main radiometric
distortions, and thus to establish a photoquantity model ofthe imaging process.
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Figure 1: Camera acquision radiometric process.

3.1 Image formation

The digital imaging process is illustrated Fig. 1. First, the light travels from the real scene onto the optics of the camera. It then
hits the cells of the light sensor where it is converted into electric signals. These signals are then amplified, digitized and possibly
post-processed. This gives the output image.

In the case of colour imaging, the sensor is composed of several kinds of cell. Each cell type has its own spectral response.
The colour of a pixel is given by associating cells of different kinds.

3.2 Radiometric distortions

The imaging process introduces radiometric distortions inthe output image. The main distortion sources are describedbelow.

3.2.1 Spatial non-uniformity

Spatial non-uniformity means that for the same input light,the camera can output different values according to the position
reached in the image. This phenomenon is sometimes called vignetting, but has several forms and origins [3]. In this paper, we
distinguish “sensor non-uniformity” and “vignetting”.

We refer to “sensor non-uniformity” as the variation in sensitivity between cells of the sensor. This stems from the factthat
the industrial sensor building process is not perfect, which means that two different cells exposed to the same irradiance can
output different values.

We refer “vignetting” as the variation in light reaching a cell according to the position of this cell. Vignetting is due to the
geometry of the camera optics, which are generally aligned to the center of the sensor. Thus, at the sensor center, the aperture of
the optical system is maximal, enabling a lot of light to be collected, whereas in the corners of the sensor, the aperture is reduced,
and only allows a little light to be collected, hence the well-known corner darkening.

3.2.2 Exposure and response

Another important radiometric distortion is the response of the imaging system. This means that the value of a pixel is not linear
in relation to the light collected by the cells of this pixel.There are two reasons for this phenomenon.

Firstly, sensor cells have a limited dynamic range. If the input light is too low, a cell detects nothing while if the lightis too
high, the cell outputs the maximum value. Thus, the input light can only be quantified if it maps between these two thresholds.

Secondly, the cells may not give a linear response. This means that there is no linear function that maps the input light tothe
output value of a cell.

3.2.3 Colour balancing

As stated earlier, a sensor can associate different kinds ofcells (colour channels) to quantify colour. Consider a pixel. We call
l the spectral distribution function of the light reaching this pixel andrλ the spectral response of the colour channelλ of the
camera. Thus, the valuelλ output by the camera for this colour channel is :

lλ =

∫

rλ (x)l(x)dx

wherex denotes wavelength.
This means that a camera uses its own, generally 3-dimensional, colour system. Therefore, the values output by a camera

are not radiometric values because we cannot deduce the light spectrum from the values output by the camera. Furthermore,
since the spectral responses of the camera generally do not exactly match the spectral responses of the CIE standard observer, the
camera values cannot be expressed faithfully in a standard CIE colour system. For this reason, in [12], camera values arecalled
photoquantities.

The problem is that we cannot exactly transform the photoquantities output by a camera in a standard device-independent
colour system. As a result, the colours in the output image may be different to the colours label we can really see.

3.2.4 Noise

Finally, as with any measurement devices, cameras are subject to noise. Noise can be seen as a random distortion of the output
values. There are roughly two kinds of noise in a camera imaging system. The first is thermal noise, which depends on heat.
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It can be seen as a biased additive noise and is therefore relatively important at low output levels. The second is measurement
noise, which depends on the output level.

3.3 Model

Here is the photoquantity model we use. First, light comes from the scene to the camera. Then, the camera optics produce
vignetting and the non-uniform sensitivity of the sensor introduces high-frequency spatial variations. Finally, thesensor responses
and exposure introduce non-linearity between the incominglight and the output image. As it converts light into photoquantities,
the sensor introduces colour balancing in the output image.

Let lp be the radiance coming from the scene to a pixelp in the output image. The camera measures this radiance usingthe
corresponding sensor cells. Letrλ be the spectral response of the cells for the colour channelλ . The matching photoquantitylpλ
is therefore:

lpλ =
∫

rλ (x)lp(x)dx

Let cpkλn be the value given by the camera for the pixelp, the exposurek of exposure timetk and during the acquisitionn.
This gives:

cpkλn = aλ fλ (upλ vpλ tklpλ )+bpkλn (1)

wherevpλ is the vignetting atp, upλ the sensor sensitivity atp, fλ the response of the colour channelλ , aλ the colour balancing
factor forλ , andbpkλn the noise.

The radiometric distortions are modeled as follows:

• the sensor responses fit the non-parametric model of Debevecand Malik,

• colour balancing is modeled by a colour-channel-dependentfactor,

• sensor non-uniformity is modeled by a look-up table (LUT) giving the sensitivity attenuation of each pixel,

• vignetting follows an extension of the Goldman-Chen polynomial model.

4 Model inversion

In the previous section, we gave a photoquantity model of theimaging process. We now give a camera correction method by
inverting the photoquantity model. The problem is to compute the photoquantitylpλ assuming the camera outputcpkλn is known.

4.1 Denoising

First, we have to remove noise (bpkλn). There is a wealth of research into how to denoise images [15]. Here, we exploit the
fact that we can easily control the camera. Indeed, we do not explicitly know thebpkλn, but if we assume that thermal noise is
negligible and that measurement noise is unbiased, then thedenoised value of a pixel can be estimated by computing its mean
value. Thus, we can compute the denoised value ¯cpkλ from N valuescpkλn of the same scene (with constant exposure time and
view direction) with:

c̄pkλ =
1
N

N

∑
n=1

cpkλn (2)

Note that a greaterN value translates better noise reduction. However, this requires more image acquisitions. In practice, we can
useN = 1 to focus on speed (during the correction step for example) and N > 1 to focus on accuracy (during the calibration step
for example).

We can thus rewrite Equation 1 as:
c̄pkλ = aλ fλ (upλ vpλ tklpλ ) (3)

In the following, we consider ¯cpkλ = cpkλ and just writecpkλ .
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4.2 Linearization

Now, we have to cancel the response functions and colour balancing. Our statement is:

cpλ = upλ vpλ lpλ (4)

Therefore, Equation 3 is equivalent to:
cpkλ = aλ fλ (cpλ tk)

We cannot consider that any sensor is linear but we can consider that the more input light there is, the higher the output value of
the sensor will be. We can thus assume thatfλ is monotonous and write:

f−1
λ

(

cpkλ

aλ

)

= cpλ tk

i.e.

ln f−1
λ

(

cpkλ

aλ

)

= ln(cpλ )+ ln(tk) (5)

We use the method proposed by Debevec and Malik in [2] to robustly computecpλ :

cpλ = exp





∑k∈K w(cpkλ )
[

ln f−1
λ

(

cpkλ
aλ

)

− ln tk
]

∑k∈K w(cpkλ )



 (6)

wherew is a weighting function that discards under-exposed and over-exposed values:

w(c) =

{

c− cmin if c ≤ 1
2(cmin + cmax)

cmax− c otherwise

cmin andcmax are respectively the minimum and the maximum values the camera is able to provide.
We may notice that the photoquantitycpλ is computed from several camera valuescpkλ . Thus,cpλ has values inR where as

cpkλ has values in[cmin,cmax]. In other words, the images output by the camera are low dynamic range (LDR) images where as
the images obtained after linearization are high dynamic range (HDR) images.

4.3 Uniformization

Finally, we have to cancel spatial non-uniformity. From Equation 4, we have:

lpλ =
cpλ

upλ vpλ

which gives us the photoquantitylpλ we are looking for.

5 Calibration

In the previous section, we described a method to compute photoquantity based on the photoquantity model of the camera. In this
section, we explain how to estimate the model parameters fora given camera. Our calibration method consists in acquiring a set
of images from which response functions, colour balancing,sensor spatial non-uniformity and vignetting are then successively
estimated.

5.1 Image acquisition

5.1.1 Acquisition scenes

To characterize a camera using our model, we have to take images of several scenes:

1. a scene to estimate the response functions,

2. a scene containing a white chart (such as a simple sheet of paper) to estimate colour balancing,

3. a scene captured from a numberV of slightly different view directions to estimate vignetting.

4. a “irradiance scene” captured by the sensor, with no optics, to estimate sensor spatial non-uniformity,

In practice, we can place a white chart in the real environment and take images from theV view directions. This enables us
to estimate response functions, vignetting and colour balancing1 (items 1, 2 and 3). Finally, we have to use one more image from
the scene, with no optics, to estimate sensor spatial non-uniformity (item 4). This means a total ofV +1 scenes is required.

1The light reflected by the white chart depends on the material and on the incident light. The chart should therefore be placed at a position where the light
can be considered as a reference.
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5.1.2 Exposures

To estimate the camera response functions and measure the photoquantity of a scene, we have to capture this scene using several
exposure times. Here, we consider that a scene is capturedK times and we calltk the exposure time of thekth capture. In fact,K
and thetk do not have to be the same for all the scenes considered.

5.1.3 Denoising

Since the calibration step is done once and its result is usedmany times, it can be profitable to take some time to improve
calibration accuracy by reducing noise. This can be done by taking each imageN times (withN > 1) and computing Equation 2.

5.2 Response functions

As stated earlier, we use the method proposed by Debevec and Malik in [2] to estimate the response functionsfλ . Knowing the
response functions enables us to linearize the pixel valuesand then to estimate the other factors of radiometric distortion. Thus,
we first consider each colour channel independently, which means that we can setaλ = 1. We setgλ (c) = ln f−1

λ (c) and rewrite
Equation 5 with:

gλ (cpkλ ) = lncpλ + ln tk (7)

From this equation, Debevec and Malik propose to minimize the objective function:

Oλ = ∑
p∈P−
k∈K

(w(cpkλ )[gλ (cpkλ )− lncpλ − ln tk])
2 +β

cmax−1

∑
c=cmin+1

[w(c)g′′λ (c)]2

whereP− is a subset of the set of image points andg′′λ is the second derivative ofgλ defined by:

g′′λ (c) = gλ (c−1)−2gλ (c)+gλ (c+1)

The objective functionOλ can be expressed as an over-determined quadratic system which can be solved by singular value
decomposition. The first term ofOλ forces the unknownsgλ andcpλ to match the measured valuescpkλ andtk in Equation 7.
The second term ofOλ smoothes the computed response function. Finally, the parameterβ defines the weight of the smoothing.

5.3 Colour balancing

As explained before, the colours given by the camera are influenced by the spectral responses of the different kinds of cell and
by the spectral density of the light. In our method, we adjustcolour channels according to the reference white point given by the
white chart we have placed in one of the captured scenes. The corresponding pixel should have approximately the same values
for all colour channels. If this is not the case, we select a channel as a reference (for example, the green channel) and apply a
specific correcting factor to each other channel. Let[Rw Gw Bw]T be the linearized colour (i.e. the colour given by Equation 6)
of the white point. We define the green-based colour balancing factorsaλ by:

ar = Gw/Rw

ag = 1
ab = Gw/Bw

Note here that the colour balancing factors can be included into the camera response functions. Thus, inverting response
functions also performs colour correction.

5.4 Sensor spatial non-uniformity

Sensor spatial non-uniformity can be calibrated using the irradiance scene captured with no optics. Indeed, in these conditions,
sensor cells are exposed to an overall irradiance, which remains roughly constant over the sensor.

Thus, to estimate sensor spatial non-uniformity, we can compute linearized colour-corrected colours in the scene captured
with no optics. After normalization, this gives us theupλ , which we can store in a LUT.

5.5 Vignetting

The last part of the model we have to calibrate is vignetting.We assume the vignettingvpλ of a pixel p = (px, py) is:

vpλ = 1+m1λ Rλ (p)+m2λ Rλ (p)2 +m3λ Rλ (p)3

where
Rλ (p) = m4λ (px −m5λ )2 +(py −m6λ )2
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This vignetting model is an extension of the polynomial model proposed by Goldman and Chen in [3]. This model presents an
axis-aligned elliptical symmetry. The parametersm1λ , m2λ andm3λ are the polynomial factors. The parametersm5λ andm6λ
define the center of the symmetry. Finally,m4λ is the scale factor of the elliptical symmetry.

The vignetting model parameters can be determined by considering a scene from different view directions. Lets be a point
of the scene andlisλ the photoquantity going froms to the camera in the view directioni. Since we know all the components of
the photoquantity model of the camera except vignetting, wehave:

cisλ = visλ lisλ

wherecisλ is the colour coming froms, seen by the camera in the view directioni, after linearization, colour correction and
sensor uniformization. The corresponding vignetting factor is visλ .

Similarily, in another view directionj, we have:

c jsλ = v jsλ l jsλ

Since theV scenes we use to estimate vignetting are seen from the same camera viewpoint but from different camera directions,
we can consider thatlksλ is constant for all directionsk. Therefore, we havelisλ = l jsλ and:

cisλ v jsλ − c jsλ visλ = 0

We cannot estimate the vignetting model from this equation alone. However, if we consider several points and view directions,
we have the following optimization problem:

arg min
m1λ ,m2λ ,m3λ ,m4λ ,m5λ ,m6λ









∑
i< j

s∈Si∩S j

‖cisλ v jsλ − c jsλ visλ‖









whereSk is a set of points visible from the camera in the directionk. To solve this optimization problem we use the Levenberg-
Marquardt method [13].

Note that after calibration, the vignetting model can be evaluated for all the pixels and included in the spatial non-uniformity
LUT to optimize the correction step.

Note also that this vignetting calibration method requiresus to identify the position of a scene point in the different images
(taken from different view directions). This can be done automatically (using feature detection or geometric calibration) or
manually.

6 Results and analysis

In this section, we present and analyze some of our results. We first consider the calibration step, then the correction step,
and finally, we analyze our approach from different standpoints. We also give the computation times we obtained with our
non-optimized Matlab implementation. We used a 1024x768 CCD colour camera (MATRIX VISION mvBlueFox-121C).

6.1 Calibration

Image acquisition
We recall that the calibration method requires us to consider V +1 scenes. Each scene is captured usingK different exposure

times. For one scene and one exposure,N images are taken to reduce noise. Thus, the calibration method implies taking
NK(V +1) images. In the experiment presented here, we used exposure times ranging from 1 ms to 200 ms and took a total of
320 images (N = 10, K = 8 andV = 3). This may seem a lot, but with a computer-controlled camera, the calibration (image
acquisition and model computation) can be performed in lessthan 5 minutes. Furthermore, withN = 4 andK = 4, we only need
64 images while still getting good results.

Fig. 2 presents selected denoised images of the calibrationscene under different exposure times and view directions, and
some denoised images of the irradiance scene (taken with no optics). WithN = 10, denoising all our images takes less than 1 s.

Response Functions
Using K exposure times and one view direction, the calibration method then computes the camera response functions (10 s

using 500 reference points) (Fig. 3) and the corresponding linearized high dynamic range image (10 s per image) (Fig. 4).
Computing the response functions and the HDR images therefore takes less than 1 minute.

Note that a CCD sensor has a quasi-linear response function,which is not the case for a CMOS sensor.

Colour balancing
Using the white chart (the sheet of paper to the left of the rolls of adhesive tape in Fig. 4), the method then computes colour

factors (1 ms). These factors are then included in the response functions (Fig. 3) to give the colour-corrected images (Fig. 4)
(20 ms per image). Computing the colour-corrected images therefore takes less than 1 s.
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Sensor spatial non-uniformity
Using the colour-corrected linearized image of the irradiance scene, the method computes a LUT (Fig. 3) (0.13 s) for the

sensor spatial non-uniformity correction (Fig. 4) (20 ms per image). Computing the colour-corrected images thereforetakes less
than 1 s.

Figure 2: The calibration scene under different view directions (columns 1 to 3) and the irradiance scene (column 4), under
different exposure times (first row: 2 ms; second row: 5 ms; third row: 20 ms).

0 50 100 150 200 250
0

1

2

3

4

5

f−
1
(c

λ
/a

λ
)

cλ
Response functions Spatial sensor non-uniformity Vignetting

Figure 3: Calibration of the mvBlueFox-121C camera.

HDR acquisition Colour correction Sensor uniformization Vignetting correction

Figure 4: Correction of the different components of the model.

Vignetting
Finally, using the different view directions of the calibration scene, the method estimates the vignetting model for the camera

and computes a correction LUT (Fig. 3) which is combined withthe sensor spatial non-uniformity LUT (40 s with 10 reference
points). This enables us to compute the photoquantity of thecalibration scene (Fig. 4).
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Figure 5: Images of a test scene under different exposure times (columns 1 to 3). Linearly tone-mapped photoquantity of the test
scene obtained with our method (column 4).

6.2 Correction

Image acquisition
First, we acquire some images of the scene. Since we are considering a single view direction, we needNK images only (Fig.

5). We may notice thatN, K and the exposure times can be different than the ones used during the calibration step. We may even
stateN = 1 while having good results because the correction method inherently performs noise reduction (this is detailed below).

Image correction
The previouly estimated response functions enable us to compute a linearized colour-corrected HDR image. Then, using the

estimated LUT, we can uniformize this image. This results inthe expected photoquantity (Fig. 5).

6.3 Analysis

In this section, we analyze the method from several standpoints: the accuracy of the linearization and colour-correction processes,
the influence of noise and the accuracy of the vignetting modeling.

We callep therelative error for a pixel p of an imageP:

ep =
||cp − ĉp||2
||cp||2

(8)

wherecp is the reference colour and ˆcp the computed colour. Letemax be the maximal value of the relative error,emeanthe mean
value of the relative error andestd the standard deviation of the relative error:

emax = max
p∈P

(ep) , emean=
1

#P ∑
p∈P

ep , estd =
1

#P−1

√

∑
p∈P

(ep − emean)2

Linearization and colour-correction
In order to analyze the linearization and colour-correction accuracy of the correction method, we use a scene containing a

ColorChecker. A ColorChecker has a set of patches, reflectances of which are calibrated. The manufacturer gives the CIE-RGB
values for the reflected light under the D65 CIE Standard Illuminant. Our scene is exposed to daylight conditions, which corre-
sponds to this illuminant. Thus, the measured values shouldmatch the given values (ground-truth). However, the valuesmeasured
by a camera rely on exposure time, sensor response. . . so thatwe cannot expect absolute equality but an affine relationship.

Thus, for each channel of each ColorChecker patch, we have the measured value and the ground-truth (i.e. a 2D point). We
report all these points on a graph and compute the best affine function between the measured values and ground-truth (by linear
regression). The measured values are accurate if the pointsare aligned (linear correlation).

Fig. 6 (a) shows the uncorrected LDR image, directly output by the camera (exposure time: 20 ms), and Fig. 7 (a), its
correlation to ground-truth. We may notice that below 230, the measured values are quite well correlated to ground-truth. This
can be explained by the linear response of CCD sensors (CMOS sensors give less correlated values because of their non-linear
response). However, above 230, the sensor is over-exposed and the measured values do not match ground-truth (outliers). The
graph also reveals colour shifting of the measured values (blue channel data points are below the regression line).

Fig. 6 (b) shows the corrected HDR image (linearly tone-mapped in a displayable range), given by our correction method,
and Fig. 7 (a), its correlation to ground-truth. Here, the measured values are quite well aligned with no significant outliers (more
generaly, the method also linearizes data from CMOS sensors). Moreover, the points of each colour channel are distributed on
both sides of the regression line, which means that the method corrects colour shifting.

Noise
We first investigate how many images (i.e. the value ofN) are required to significantly reduce the noise. Theoritically, the

standard deviation of ¯cpkλ drops with 1/
√

N (see Appendix A). In our experiments, settingN = 4 was sufficient to obtain
emean< 0.5% (emax = 2.4%,emean= 0.4% andestd = 0.2%).

We also consider another question about noise: is the correction method inherently robust enough to useN = 1? We compared
correction results obtained withN = 10 (cp in Equation 8) and withN = 1 (ĉp). The relative errorep is shown Fig. 8 (emax= 4.9%,
emean= 0.8% andestd = 0.4%).
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Table 1: Correlation between output values and ground-truth (the higher the better).
CCD outdoor CCD indoor CMOS outdoor CMOS indoor

uncorrected values 0.85 0.63 0.84 0.67
corrected values 0.87 0.84 0.9 0.86
Hugin values 0.84 0.76 0.9 0.75

Vignetting
Finally, we evaluate the accuracy of the vignetting modeling. Fig. 9 (a) shows the vignetting model that we find in our

experiment (m1 = 0.48,m2 = 0.66,m3 = −1.09,m4 = 1.48,m5 = 0.5 andm6 = 0.69). This figure gives the quantity of lightup

that reaches the pixel(px, py) of the sensor after vignetting. We compare this result with the vignetting ground-truth (Fig. 9 (b)),
obtained in experimental conditions (using an industrial uniform 20×30 cm light source). We findemax= 9%,emean= 1.6% and
estd = 1% (Fig. 9 (c)).

6.4 Other results

We apply the proposed method using different kinds of camera(CCD, CMOS) and lighting conditions (outdoor scene lit by the
sun, indoor scene lit by a halogen lamp). To evaluate the method, we consider some reference points and compare the uncorrected
values, the values corrected by the proposed method and the values corrected using Hugin2 [1]. The corrected values are defined
in a high dynamic range therefore we compute correlation between output values and ground-truth (Table 1).

We may notice that our test scenes are not very constrasted which makes the uncorrected values quite representative of
ground-truth, excepted when lighting conditions are not neutral (indoor scene). Hugin has many parameters and should give
better results using a finer tuning. Finally, the method proposed in this paper gives good results, independently of lighting
conditions, while requiring only minimal supervision.

(a) (b)

Figure 6: Study of the linearization and colour-correctionaccuracy of the method: uncorrected LDR image (a) and corrected
HDR image (b).
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Figure 7: Correlation to ground-truth: uncorrected LDR image (linear regression:y = 0.7x−29.47, residual norm: 215.35) (a)
and corrected (linearly tone-mapped) HDR image (linear regression:y = 1.09x−11.68, residual norm: 126.34) (b). Each point
corresponds to one colour channel (indicated by the colour of the point) of one patch of the ColorChecker.

2Image stitching software accounting for sensor response, vignetting and colour balancing.
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Figure 8: Relative error resulting from ignoring noise during photoquantity computation (same scene as Fig. 6).
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Figure 9: Vignetting modeling (a) vs measured ground-truth(b) (px and py are pixel coordinates). Relative error between
modeling and ground-truth (c).

7 Conclusion

This paper described a practical method for measuring photoquantity using a camera. First, we proposed a photoquantitymodel
of the imaging process. This model accounts for non-linear response functions, sensor exposure, colour balancing, sensor spatial
non-uniformity and vignetting. Then, by inverting this model, we gave a photoquantity correction method which uses a small
set of images together with the model parameters of the camera. We then gave a method to estimate these parameters using the
camera. Finally, we presented and discussed some of our results.

Our method is general as well as practical. It accounts for the main radiometric distortions occurring during the end-to-end
camera imaging process. Furthermore, the method is not limited to a specific kind of camera or application. Finally, it ispractical
in the sense that it requires no specific calibration apparatus and only minimal supervision.
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A Analysis of the denoising technique

We model the noise termsbpkλn (Equation 1) as independent random variables with expectedvalue 0 and standard deviation
σpkλ . Therefore, thecpkλn are also independent random variables, with expected valuecpkλ and standard deviationσpkλ .

In Equation 2, we define ¯cpkλ as:

c̄pkλ =
1
N

N

∑
n=1

cpkλn

Since the expected value is linear, we have:

E(c̄pkλ ) = E

(

1
N

N

∑
n=1

cpkλn

)

=
1
N

N

∑
n=1

E(cpkλn) =
1
N

N

∑
n=1

cpkλ =
1
N

Ncpkλ = cpkλ

This means that the denoised value effectively converges tothe desired value.
Finally, the variance of ¯cpkλ is:

Var(c̄pkλ ) = Var

(

1
N

N

∑
n=1

cpkλn

)

=
1

N2

N

∑
n=1

Var(cpkλn) =
1

N2

N

∑
n=1

σ2
pkλ =

1
N2 Nσ2

pkλ =
σ2

pkλ

N
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This means that standard deviation of the denoised value isσpkλ /
√

N and therefore drops with 1/
√

N.
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