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Abstract

An image output by a camera is generally not a faithful representatidneofeal scene, because it undergoes a series of
radiometric disturbances during the imaging process. This paperggs@omethod for obtaining a more accurate measure of
the light seen by a camera. Our method requires no specific calibrajpamaaps and only minimal supervision. Nevertheless,
it is quite comprehensive, since it accounts for response functigrosexe, vignetting, spatial non-uniformity of the sensor
and colour balancing. Our method works in two steps. First, the cameadiisated off-line, in a photoquantity sense. Then,
the photoquantity of any scene can be estimated in-line. Our method isditeeggfared to a wide range of computer vision
applications where a camera is expected to give a measurement ofitie ight. The paper starts by presenting a photoguantity
model of the camera imaging process. It then describes the key $teakbmation and correction method. Finally, results are
given and analyzed to evaluate the relevance of our approach.

1 Introduction

Computer vision handles various kinds of data, from vide®&: medical images. This paper solely deals with 2D stijédally
obtained from a computer-controlled colour camera. Sueg#s can be used, for example, to reconstruct scene ged& ey,
estimate the material reflectances [19] or compute a wide\fiew by image mosaicing [11]. To achieve these tasks ately,
input images generally have to be a quite faithful measutkelfight seen by the camera. However, this is not the case #ire
imaging process introduces geometric and radiometriouishs.

In this paper, we only deal with radiometric distortions. r@bjective is to deploy a comprehensive yet practical métho
which can reduce radiometric distortions and thus give tedaithful measure of the light seen by the camera.

We make several assumptions about the camera:

e electronic gain and optical aperture are constant,
e exposure time is known and controlled,
e optics can be temporarily removed from the camera.

Our method comprises two steps. First, the camera is ctdithraThis step has to be done a single time, off-line. The
correction step then computes the photoquantity of anicsegne, in-line, based on the characterization of the cagieen by
the calibration step.

Our method accounts for:

e non-linear response functions (one response for eachrcohaunnel),

e colour balancing (global adjustment of the colour channels



e spatial non-uniformity of the sensor (due to imperfectionghe building process),
¢ vignetting (spatial non-uniformity due to the internal geiry of the camera).

Furthermore, since the method performs high dynamic ramgging (HDRI) through multiple exposures, it can be usedh wit
highly contrasted scenes and possesses some inhererthega® noise.

The main contribution of this paper is a practical methodharacterize a camera and then measure photoquantity.olt als
proposes an extension of the Goldman-Chen vignetting naukh calibration scheme based on this model.

The remainder of the paper is organized as follows. Secti@vi2ws some related work. Section 3 presents a photodyanti
model of the imaging process. Section 4 details the model#mon, which gives a photoquantity measurement methactiobe
5 details the calibration step. Section 6 presents and skesusome of our results and Section 7 concludes.

2 Related work

There is a wealth of literature on radiometric camera coioac However, work is generally limited to a specific kind of
radiometric distortion (such as, vignetting or cameraoesp), application (mosaicing, HDRI) or technology (CCIM@S).

In [17], Tarel gives a fairly comprehensive study of radidrnescamera distortion, but only considers CCD camerasitegpit
a specific characterization. Based on the study, he alsaiasgiow to radiometrically correct camera acquisitionswelver, no
practical method is given, as it was not the purpose of higpap

High dynamic range imaging is a related field which has gamkxd of attention. In [10], Mann and Picard propose a method
to estimate camera response from multiple exposures. Tethod works as follows. Let us consider a point in the scéhis
point emits a constant light flux. Therefore, by comparirgdélkposures and the corresponding values output by the aagmer
can characterize the camera response for the measuredTiyld, by considering several points in the scene, thedsponse
can be measured.

In [2], Debevec and Malik propose another method to estitteteamera response from multiple exposures. Their method
consists in considering the values of several points unifierent exposures. This makes it possible to define a mization
problem. The resolution of this problem gives the camerpaese.

In [16], Robertson et al. propose a similar method to Debéxalik. However, they use a different formalization, sitagt
out from a statistical approach. They obtain a minimizaposblem, and propose a relaxation method to solve it.

Finally, in [14], Mitsunaga and Nayar propose a polynomial®l of camera response. Using this model, they formulate th
response characterization as an optimization problem eopbpe an iterative algorithm to solve it.

There has been a recent surge in work on vignetting correcfitlle methods proposed are generally based on a vignetting
model. For example, in [20], Yu proposes a hypercosine mofleignetting and an antivignetting method based on wavelet
denoising and decimation. In [21], Zheng et al. use the Kaliss model [8] to propose a single-image vignetting cdioac
method.

Vignetting correction is often associated with HDRI and gmanosaics. In [3], Goldman and Chen propose a method to
estimate vignetting, response function and exposures &image mosaic. They propose 8-6rder polynomial vignetting
model and use the empirical model of response given in [3mélate the problem as a non-linear optimization.

In [9], Kim and Pollefeys use the same vignetting and respanedels as Goldman and Chen. However, they decouple
vignetting from the response function and propose a metheddcessively estimate response function and vignetiirsplying
two linear least-square problems.

Finally, in [6, 7], Litvinov and Schechner propose a metho@stimate vignetting, response function and exposures &o
frame sequence. Their method is not based on a model. Inskegduse the fact that regions are represented on sevenad$
to state and resolve a non-parametric linear least-squabtem.

In contrast to previous methods, ours is both general anctipa First, it accounts for the main radiometric disitmms
occurring throughout the camera imaging process. Secbisdyot limited to a specific kind of camera or applicatiomadlly, it
is practical in the sense that it requires no specific cditmaapparatus and only little supervision.

3 Photoquantity model

In this section, we start with a recap on how a camera creatémage. This enables us to explain the main radiometric
distortions, and thus to establish a photoquantity mod#i@imaging process.
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Figure 1: Camera acquision radiometric process.

3.1 Imageformation

The digital imaging process is illustrated Fig. 1. Firsg tight travels from the real scene onto the optics of the caniethen
hits the cells of the light sensor where it is converted imégtic signals. These signals are then amplified, digitered possibly
post-processed. This gives the output image.

In the case of colour imaging, the sensor is composed of akeki@ds of cell. Each cell type has its own spectral response
The colour of a pixel is given by associating cells of diffgrkinds.

3.2 Radiometric distortions

The imaging process introduces radiometric distortiorthéoutput image. The main distortion sources are deschiblelv.

3.2.1 Spatial non-uniformity

Spatial non-uniformity means that for the same input lighe camera can output different values according to thetiposi
reached in the image. This phenomenon is sometimes cali@eting, but has several forms and origins [3]. In this pawpe
distinguish “sensor non-uniformity” and “vignetting”.

We refer to “sensor non-uniformity” as the variation in sénisy between cells of the sensor. This stems from the faat
the industrial sensor building process is not perfect, twmeans that two different cells exposed to the same irradiaan
output different values.

We refer “vignetting” as the variation in light reaching dl@ecording to the position of this cell. Vignetting is duethe
geometry of the camera optics, which are generally alignede center of the sensor. Thus, at the sensor center, therapef
the optical system is maximal, enabling a lot of light to béemted, whereas in the corners of the sensor, the apesuediuced,
and only allows a little light to be collected, hence the wkabwn corner darkening.

3.2.2 Exposure and response

Another important radiometric distortion is the responfthe imaging system. This means that the value of a pixel isimear
in relation to the light collected by the cells of this pix&here are two reasons for this phenomenon.
Firstly, sensor cells have a limited dynamic range. If thmuiright is too low, a cell detects nothing while if the lighkttoo
high, the cell outputs the maximum value. Thus, the inpttlgan only be quantified if it maps between these two threshol
Secondly, the cells may not give a linear response. This s there is no linear function that maps the input lighho
output value of a cell.

3.2.3 Colour balancing

As stated earlier, a sensor can associate different kindslisf (colour channels) to quantify colour. Consider a pixie call
| the spectral distribution function of the light reachingstpixel andr, the spectral response of the colour chamhalf the
camera. Thus, the valug output by the camera for this colour channel is :

N :/rA(x)I(x)dx

wherex denotes wavelength.

This means that a camera uses its own, generally 3-dimeisicolour system. Therefore, the values output by a camera
are not radiometric values because we cannot deduce thespigiostrum from the values output by the camera. Furthermore
since the spectral responses of the camera generally daawityematch the spectral responses of the CIE standardveysthe
camera values cannot be expressed faithfully in a stand&ddour system. For this reason, in [12], camera valuegalted
photoquantities.

The problem is that we cannot exactly transform the phototities output by a camera in a standard device-independent
colour system. As a result, the colours in the output imagg Imeadifferent to the colours label we can really see.

3.24 Noise

Finally, as with any measurement devices, cameras arecsubjaoise. Noise can be seen as a random distortion of tipeibut
values. There are roughly two kinds of noise in a camera intpgystem. The first is thermal noise, which depends on heat.



It can be seen as a biased additive noise and is therefotveblamportant at low output levels. The second is measianet
noise, which depends on the output level.

3.3 Modé

Here is the photoquantity model we use. First, light comemfthe scene to the camera. Then, the camera optics produce
vignetting and the non-uniform sensitivity of the senstrdduces high-frequency spatial variations. Finally,46esor responses
and exposure introduce non-linearity between the incoriging and the output image. As it converts light into photantities,

the sensor introduces colour balancing in the output image.

Let |, be the radiance coming from the scene to a pjx&l the output image. The camera measures this radiance tng&ng
corresponding sensor cells. Ligtbe the spectral response of the cells for the colour channghe matching photoquantity,
is therefore:

Iox :/rA (X)1p(x)dx

Let cyan be the value given by the camera for the pipethe exposuré of exposure timey and during the acquisition.
This gives:
Cpk/\n =a f)\ (Up}\ Vp)\tkI pA ) + bpk/\n (1)
wherevp, is the vignetting ap, up, the sensor sensitivity g, f, the response of the colour chaniela, the colour balancing
factor forA, andby, , the noise.

The radiometric distortions are modeled as follows:
¢ the sensor responses fit the non-parametric model of DelaeneMalik,
e colour balancing is modeled by a colour-channel-depenfdetr,
e sensor non-uniformity is modeled by a look-up table (LU Wi the sensitivity attenuation of each pixel,

¢ vignetting follows an extension of the Goldman-Chen potyiad model.

4 Modd inversion

In the previous section, we gave a photoquantity model ofrtteging process. We now give a camera correction method by
inverting the photoquantity model. The problem is to coregghe photoquantitly,, assuming the camera outmyk, , is known.

4.1 Denoising

First, we have to remove noisby{,n). There is a wealth of research into how to denoise imagels [6re, we exploit the
fact that we can easily control the camera. Indeed, we doxmicély know the by, but if we assume that thermal noise is
negligible and that measurement noise is unbiased, thedeth@ised value of a pixel can be estimated by computing iemme
value. Thus, we can compute the denoised valg from N valuescy, of the same scene (with constant exposure time and

view direction) with:
N

_ 1
Cod = = » Cpia 2
p Nnlen

Note that a greateM value translates better noise reduction. However, thigireg more image acquisitions. In practice, we can
useN = 1 to focus on speed (during the correction step for exampléNa> 1 to focus on accuracy (during the calibration step
for example).
We can thus rewrite Equation 1 as:
Cora = & Fx (UpaVpatil pa) )

In the following, we considety, = Cp and just writecy .



4.2 Linearization
Now, we have to cancel the response functions and colountialg Our statement is:
Cp)\ = Upa Vpa | pA (4)
Therefore, Equation 3 is equivalent to:
Coin = &) Fa (Cpati)
We cannot consider that any sensor is linear but we can cantidt the more input light there is, the higher the outplie/af
the sensor will be. We can thus assume thas monotonous and write:

C
1 pkA '\
h ( & ) ~wk

—1{ Cpka
nt, ! (;) = In(cp) +In(t) 5)
We use the method proposed by Debevec and Malik in [2] to thbosmputec, :

Y kek W(Cpir) [In fit (%“) - |ntk}
> kek W(Cpia )

Cpr = EXP

(6)

wherew is a weighting function that discards under-exposed and-expeosed values:

w(c) = C—Cmin if c< %(Cmin + Cmax)
Cmax— C otherwise

Cmin @ndcmax are respectively the minimum and the maximum values the @mable to provide.

We may notice that the photoquantity, is computed from several camera valegg, . Thus,c,) has values ifiR where as
Coka has values ificmin,Cmax/- In other words, the images output by the camera are low dimeange (LDR) images where as
the images obtained after linearization are high dynanrigegHDR) images.

4.3 Uniformization

Finally, we have to cancel spatial non-uniformity. From &tjon 4, we have:
Iy =
P Up)\ Vp)\

which gives us the photoquantity, we are looking for.

5 Calibration

In the previous section, we described a method to computimghantity based on the photoquantity model of the camarthid
section, we explain how to estimate the model parameteis goren camera. Our calibration method consists in acquaiset
of images from which response functions, colour balanciegsor spatial non-uniformity and vignetting are then essively
estimated.

5.1 Image acquisition
5.1.1 Acquisition scenes
To characterize a camera using our model, we have to takeeprafgseveral scenes:
1. ascene to estimate the response functions,
2. ascene containing a white chart (such as a simple sheapef)to estimate colour balancing,
3. a scene captured from a numbeof slightly different view directions to estimate vigneii.
4. a‘irradiance scene” captured by the sensor, with no spiiicestimate sensor spatial non-uniformity,

In practice, we can place a white chart in the real envirortraad take images from thé view directions. This enables us
to estimate response functions, vignetting and coloumuétg' (items 1, 2 and 3). Finally, we have to use one more image from
the scene, with no optics, to estimate sensor spatial ndaromity (item 4). This means a total &f + 1 scenes is required.

1The light reflected by the white chart depends on the matemidica the incident light. The chart should therefore be mlaatea position where the light
can be considered as a reference.



5.1.2 Exposures

To estimate the camera response functions and measuredtogjphntity of a scene, we have to capture this scene usiegate
exposure times. Here, we consider that a scene is captutietes and we cali, the exposure time of thé" capture. In factk
and thet, do not have to be the same for all the scenes considered.

5.1.3 Denoaising

Since the calibration step is done once and its result is ossuy times, it can be profitable to take some time to improve
calibration accuracy by reducing noise. This can be donaking each imagal times (withN > 1) and computing Equation 2.

5.2 Responsefunctions

As stated earlier, we use the method proposed by Debevec alikliM[2] to estimate the response functiofys Knowing the
response functions enables us to linearize the pixel vandghen to estimate the other factors of radiometric distor Thus,
we first consider each colour channel independently, whieana that we can saj = 1. We seig, (c) =1In f;l(c) and rewrite
Equation 5 with:

) (Cpk)\) = Incp/\ +Inty (7)

From this equation, Debevec and Malik propose to minimizedbjective function:

Cmax—

1
Or =S (W(cpa)[0r (Cpn) —nCpr —tJ2+B S W(O)g (O)]2
peP~ C=Cmint1
keK

whereP~ is a subset of the set of image points ajds the second derivative @f, defined by:

gy(c)=ar(c—1)—2g5(c)+gr(c+1)

The objective functior, can be expressed as an over-determined quadratic systerh edn be solved by singular value
decomposition. The first term @f, forces the unknowng, andc, to match the measured valugg, andty in Equation 7.
The second term aof, smoothes the computed response function. Finally, thenetea defines the weight of the smoothing.

5.3 Colour balancing

As explained before, the colours given by the camera arecinfled by the spectral responses of the different kinds banel
by the spectral density of the light. In our method, we adjeddur channels according to the reference white pointrginethe
white chart we have placed in one of the captured scenes. drhesponding pixel should have approximately the sameegalu
for all colour channels. If this is not the case, we selectanakel as a reference (for example, the green channel) amg app
specific correcting factor to each other channel. [Rat Gy By]" be the linearized colour (i.e. the colour given by Equatipn 6
of the white point. We define the green-based colour balarfeictorsa, by:

a = Gw/Rw
ag=1
ap = Gw/Bw

Note here that the colour balancing factors can be includtmthe camera response functions. Thus, inverting regpons
functions also performs colour correction.

5.4 Sensor spatial non-uniformity

Sensor spatial non-uniformity can be calibrated usingttagliance scene captured with no optics. Indeed, in thesditoans,
sensor cells are exposed to an overall irradiance, whichiremoughly constant over the sensor.

Thus, to estimate sensor spatial non-uniformity, we canprdelinearized colour-corrected colours in the sceneucagt
with no optics. After normalization, this gives us tixg , which we can store in a LUT.

5.5 Vignetting
The last part of the model we have to calibrate is vignettiNg.assume the vignetting,, of a pixelp = (px, py) is:
Vpr = 1+mMp Ry () + Mpy Ry (p)% + Mgy Ry (p)?

where
Ry () = Map (Px— Msp )2+ (py — Mg )?



This vignetting model is an extension of the polynomial mqaeposed by Goldman and Chen in [3]. This model presents an
axis-aligned elliptical symmetry. The parameters , m,, andmg, are the polynomial factors. The parameters andmg),
define the center of the symmetry. Finalty,, is the scale factor of the elliptical symmetry.

The vignetting model parameters can be determined by cemsgla scene from different view directions. Isdte a point
of the scene anti,, the photoquantity going frorato the camera in the view directianSince we know all the components of
the photoquantity model of the camera except vignettinghawes:

Cisn = Vislisa
wherec;g, is the colour coming frons, seen by the camera in the view directigrafter linearization, colour correction and
sensor uniformization. The corresponding vignettingdae vig, .

Similarily, in another view directior), we have:

Cisn =Vjsrljma
Since theV scenes we use to estimate vignetting are seen from the sanegacaiewpoint but from different camera directions,
we can consider thas, is constant for all directionk. Therefore, we havi, = ;5 and:

CisA VisA — CjsaVisy =0

We cannot estimate the vignetting model from this equatlonea However, if we consider several points and view dioas,
we have the following optimization problem:

arg min > lcsvis —CisVisa |
My .M .My My ,Ms) M) i<]
SESNS;

whereS is a set of points visible from the camera in the directoiTo solve this optimization problem we use the Levenberg-
Marquardt method [13].

Note that after calibration, the vignetting model can bdwated for all the pixels and included in the spatial norfamity
LUT to optimize the correction step.

Note also that this vignetting calibration method requirego identify the position of a scene point in the differenages
(taken from different view directions). This can be doneoaudtically (using feature detection or geometric calibrgt or
manually.

6 Resultsand analysis

In this section, we present and analyze some of our resules.fifdt consider the calibration step, then the correctiep,st
and finally, we analyze our approach from different stanadigoi We also give the computation times we obtained with our
non-optimized Matlab implementation. We used a 1024x76®€6lour camera (MATRIX VISION mvBlueFox-121C).

6.1 Calibration

I mage acquisition

We recall that the calibration method requires us to comaide 1 scenes. Each scene is captured ukirdifferent exposure
times. For one scene and one exposiNdmages are taken to reduce noise. Thus, the calibrationadédthplies taking
NK(V +1) images. In the experiment presented here, we used expaseranging from 1 ms to 200 ms and took a total of
320 imagesN = 10,K = 8 andV = 3). This may seem a lot, but with a computer-controlled camtre calibration (image
acquisition and model computation) can be performed intless 5 minutes. Furthermore, with= 4 andK = 4, we only need
64 images while still getting good results.

Fig. 2 presents selected denoised images of the calibratieme under different exposure times and view directioms, a

some denoised images of the irradiance scene (taken witpticsp WithN = 10, denoising all our images takes less than 1 s.

Response Functions
Using K exposure times and one view direction, the calibration pthen computes the camera response functions (10 s
using 500 reference points) (Fig. 3) and the correspondireatized high dynamic range image (10 s per image) (Fig. 4).
Computing the response functions and the HDR images thertdkes less than 1 minute.
Note that a CCD sensor has a quasi-linear response funetioch is not the case for a CMOS sensor.

Colour balancing

Using the white chart (the sheet of paper to the left of this @i adhesive tape in Fig. 4), the method then computes colou
factors (1 ms). These factors are then included in the respfimctions (Fig. 3) to give the colour-corrected imageg.(B)
(20 ms per image). Computing the colour-corrected imaga®fore takes less than 1 s.



Sensor spatial non-unifor mity

Using the colour-corrected linearized image of the irradeascene, the method computes a LUT (Fig. 3) (0.13 s) for the
sensor spatial non-uniformity correction (Fig. 4) (20 msipgage). Computing the colour-corrected images therefikes less
than1s.

Figure 2: The calibration scene under different view dimet (columns 1 to 3) and the irradiance scene (column 4)eund
different exposure times (first row: 2 ms; second row: 5 misgittow: 20 ms).
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Figure 3: Calibration of the mvBlueFox-121C camera.
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Vignetting

Finally, using the different view directions of the calibom scene, the method estimates the vignetting model tocéimera

and computes a correction LUT (Fig. 3) which is combined lith sensor spatial non-uniformity LUT (40 s with 10 referenc
points). This enables us to compute the photoquantity of#fieration scene (Fig. 4).



Figure 5: Images of a test scene under different exposuesst{solumns 1 to 3). Linearly tone-mapped photoquantitheftést
scene obtained with our method (column 4).

6.2 Correction

I mage acquisition

First, we acquire some images of the scene. Since we aredeoingj a single view direction, we ne®&K images only (Fig.
5). We may notice thadll, K and the exposure times can be different than the ones usied) doe calibration step. We may even
stateN = 1 while having good results because the correction methHwatémtly performs noise reduction (this is detailed below)

I mage correction
The previouly estimated response functions enable us tgutara linearized colour-corrected HDR image. Then, udieg t
estimated LUT, we can uniformize this image. This resulthaéexpected photoquantity (Fig. 5).

6.3 Analysis

In this section, we analyze the method from several stamtfacthe accuracy of the linearization and colour-corogctirocesses,
the influence of noise and the accuracy of the vignetting firogle
We callep, therelative error for a pixel p of an imageP:

o — |lcp —Cpll2
M

lIcpl|2
wherec, is the reference colour arg the computed colour. Lednax be the maximal value of the relative errggeanthe mean
value of the relative error arelq the standard deviation of the relative error:

®)

1 1
€max = Max (ep) ;  Gmean= 5 €, Gtd= 5 (ep— €mean)?
peP #P pgp #HP—-1 pgb

Linearization and colour-correction

In order to analyze the linearization and colour-corratti@curacy of the correction method, we use a scene corgainin
ColorChecker. A ColorChecker has a set of patches, refleesanf which are calibrated. The manufacturer gives the REEB
values for the reflected light under the D65 CIE Standardriihant. Our scene is exposed to daylight conditions, wharhee
sponds to this illuminant. Thus, the measured values shoatdh the given values (ground-truth). However, the vatneasured
by a camera rely on exposure time, sensor response. . . s@dlennot expect absolute equality but an affine relatignshi

Thus, for each channel of each ColorChecker patch, we hawa#asured value and the ground-truth (i.e. a 2D point). We
report all these points on a graph and compute the best affirién between the measured values and ground-truthr{bgui
regression). The measured values are accurate if the @oatdigned (linear correlation).

Fig. 6 (a) shows the uncorrected LDR image, directly outputhe camera (exposure time: 20 ms), and Fig. 7 (a), its
correlation to ground-truth. We may notice that below 2B8@, tneasured values are quite well correlated to grount-tithis
can be explained by the linear response of CCD sensors (CM@ ks give less correlated values because of their nearlin
response). However, above 230, the sensor is over-exposkeithe@ measured values do not match ground-truth (outligis
graph also reveals colour shifting of the measured values @hannel data points are below the regression line).

Fig. 6 (b) shows the corrected HDR image (linearly tone-negpip a displayable range), given by our correction method,
and Fig. 7 (a), its correlation to ground-truth. Here, theasueed values are quite well aligned with no significantiergl(more
generaly, the method also linearizes data from CMOS senddiareover, the points of each colour channel are disteuin
both sides of the regression line, which means that the rdetbaects colour shifting.

Noise
We first investigate how many images (i.e. the valudpfare required to significantly reduce the noise. Theolflticthe
standard deviation of,, drops with VN (see Appendix A). In our experiments, settiNg= 4 was sufficient to obtain
Emean< 0.5% (Emax = 2.4%, €mean= 0.4% andegq = 0.2%).
We also consider another question about noise: is the ¢mmauoethod inherently robust enough to ie- 1? We compared
correction results obtained with= 10 (cp in Equation 8) and wittN = 1 (Cp). The relative erroey is shown Fig. 8max=4.9%,
€mean= 0.8% andegq = 0.4%).



Table 1: Correlation between output values and groundi{the higher the better).
CCD outdoor CCD indoor CMOS outdoor CMOS indoor

uncorrected values 0.85 0.63 0.84 0.67
corrected values 0.87 0.84 0.9 0.86
Hugin values 0.84 0.76 0.9 0.75

Vignetting

Finally, we evaluate the accuracy of the vignetting modglifrig. 9 (a) shows the vignetting model that we find in our
experimentify = 0.48,mp, = 0.66,mg = —1.09, my = 1.48, ms = 0.5 andmg = 0.69). This figure gives the quantity of light,
that reaches the pixépy, py) of the sensor after vignetting. We compare this result wighmignetting ground-truth (Fig. 9 (b)),

obtained in experimental conditions (using an industnidarm 20x 30 cm light source). We finénax = 9%, €mean= 1.6% and
estg = 1% (Fig. 9 (c)).

6.4 Other results

We apply the proposed method using different kinds of carf@&D, CMOS) and lighting conditions (outdoor scene lit bg th
sun, indoor scene lit by a halogen lamp). To evaluate theadethe consider some reference points and compare the entzar
values, the values corrected by the proposed method anailiesvcorrected using Hudifil]. The corrected values are defined
in a high dynamic range therefore we compute correlatiowden output values and ground-truth (Table 1).

We may notice that our test scenes are not very constrastamh wiakes the uncorrected values quite representative of
ground-truth, excepted when lighting conditions are nattra (indoor scene). Hugin has many parameters and shogd g

better results using a finer tuning. Finally, the method psegl in this paper gives good results, independently otitigh
conditions, while requiring only minimal supervision.

(@) (b)

Figure 6: Study of the linearization and colour-correctamturacy of the method: uncorrected LDR image (a) and dedec
HDR image (b).

N
a
=]

N
=3
=]

ground-truth
8 &
ground-truth

0 50 0 250 0 50

100 150 20
output value

(@) (b)

100 150 20! 0 250
output value

Figure 7: Correlation to ground-truth: uncorrected LDR gadlinear regressiony = 0.7x — 29.47, residual norm: 2135) (a)
and corrected (linearly tone-mapped) HDR image (linearasgjon:y = 1.09x — 11.68, residual norm: 1284) (b). Each point
corresponds to one colour channel (indicated by the colbtimeopoint) of one patch of the ColorChecker.

2Image stitching software accounting for sensor respongegtting and colour balancing.
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w
Error (%)

Figure 8: Relative error resulting from ignoring noise dgrphotoquantity computation (same scene as Fig. 6).

Error (%)

1000

1 B8
A,

(©)

Figure 9: Vignetting modeling (a) vs measured ground-ti@h(px and py are pixel coordinates). Relative error between
modeling and ground-truth (c).

7 Conclusion

This paper described a practical method for measuring patatity using a camera. First, we proposed a photoquantiel
of the imaging process. This model accounts for non-linegpense functions, sensor exposure, colour balancingpsspatial
non-uniformity and vignetting. Then, by inverting this neddwe gave a photoquantity correction method which usesadl sm
set of images together with the model parameters of the @arifée then gave a method to estimate these parameters using th
camera. Finally, we presented and discussed some of outstesu

Our method is general as well as practical. It accounts mnthin radiometric distortions occurring during the engkal
camera imaging process. Furthermore, the method is ndaelind a specific kind of camera or application. Finally, jpiactical
in the sense that it requires no specific calibration apparatd only minimal supervision.
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A Analysisof thedenoising technique

We model the noise termsy,, (Equation 1) as independent random variables with expeake 0 and standard deviation
Op - Therefore, they,, are glso independent random variables, with expected eglyeand standard deviatiooyy, .
In Equation 2, we defingg, as:

1

Cpk)\ - N Cpk)\n

M=

Since the expected value is linear, we have:

IE:(Cpk/\ < Z Cpk)\ n) N

This means that the denoised value effectively convergteetdesired value.
Finally, the variance o€ is:

Var(Cpa) Var< Z%k/\n)

-

HMZ

Cpk/\n Z Cpk/\ NCpk,\ = Cpk)\



This means that standard deviation of the denoised valagjis/ v/N and therefore drops with/1/N.
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