Science Teaching and Learning Activities and Students' Engagement in Science
 Gillian Hampden-Thompson, Judith Bennett

To cite this version:

Gillian Hampden-Thompson, Judith Bennett. Science Teaching and Learning Activities and Students' Engagement in Science. International Journal of Science Education, 2011, pp.1. 10.1080/09500693.2011.608093 . hal-00727046

HAL Id: hal-00727046

https://hal.science/hal-00727046

Submitted on 1 Sep 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Science Teaching and Learning Activities and Students' Engagement in Science

Journal:	International Journal of Science Education		
Manuscript ID:	TSED-2010-0422-A.R2		
Manuscript Type:	Research Paper		
Keywords:			
Keywords (user):	engagement, teaching and learning activities, PISA		

Background

Widespread concern has been voiced across several industrialized countries about the low numbers of young people opting for a career related to Science, Technology, Engineering and Mathematics (STEM) (The Royal Society 2008). Policy makers in countries and regions such as Australia, Canada, Europe, and the USA have monitored, and continued to observe closely, student uptake of these STEM subjects during both compulsory and post-compulsory schooling (e.g., Ainley, Kos \& Nicholas 2008, for Australia; Industry Canada 2007, for Canada; National Science Foundation 2010, for the USA; OECD 2009, for Europe; Sainsbury 2007). This concern is largely linked to shortages in projected workforce requirements (National Science Foundation 2010; Sainsbury 2007), the strategic global positioning of a national economy (Industry Canada 2007; OECD 2009), and concern over long-term consequences of decreasing trends in uptake (The Royal Society 2008). ${ }^{1}$

Specifically in the UK, the government in 2004 set out an ambitious target to increase participation in science and mathematics among the nation's students. The Science and Innovation Framework 2004-2014 (H M Treasury, 2004) stated that by 2014 the number of students taking A-levels in chemistry, physics, and mathematics should increase.

Furthermore, targets were set that would raise student performance at both Key Stage 3 (KS3) and General Certificate of Secondary Education (GCSE) levels ${ }^{2}$. While it is widely claimed that an increase in participation and performance in science, technology, engineering, and mathematics (STEM) subjects is necessary to ensure a flow of skilled workers into these fields, the perceived problem of low participation in these subjects is not new. In the UK, the issue has been debated for at least forty years since the publishing of The Dainton Report in the late 60s (DfES, 1968). However, the perceived mismatch between supply and demand

[^0]continues to be a pressing concern in the $21^{\text {st }}$ century. There is a growing demand in the economy for graduates who have studied STEM subjects at a time when participation in these some of these subjects is declining (Roberts, 2002).

The Roberts report (2002) found that while there was an increase in the number of students studying STEM subjects at secondary and degree levels, this growth was largely because of an increase in students studying biological sciences and information technology (Roberts, 2002). There was, instead, a downward trend in the number of students studying physical sciences. It was reported that between 1991-2000, some 21 percent fewer students were studying A-level ${ }^{3}$ physics and there was a decline of 3 percent of students studying Alevel chemistry. This compares with an increase in those studying biological sciences of 13 percent and an overall 6 percent increase in the number of students studying at A-level (Roberts, 2002). Between 2001-2007, while biology remained in the top four choices of Alevel subjects for students, chemistry fell from $5^{\text {th }}$ to $8^{\text {th }}$ most popular and physics was outside of the top ten during this time (Porter \& Parvin, 2008). In 2005, approximately 375,000 A*-C grades were awarded in double science or single subject science. However, in 2007, only 27,000 students completed A-level physics and 40,000 students completed chemistry (Porter \& Parvin, 2008). For qualifications taken at the end of compulsory education, there has been in recent years a slight recovery in the number of students taking GCSE science subjects. In 2001-2002, the total number of science subject entries per head of population aged 15 in England, for example, was 1.74 . By 2005-2006 this had dipped to 1.66 entries per head of population but then recovered to 1.79 in 2009-2010 (National Audit Office, 2010).

The Roberts report (2002) resulted in a flurry of activity by the government of the day and a number of independent groups to address science participation. The most significant of

[^1]these reports and policy documents was Science and Innovation Investment Framework 2004-2014: Next Steps (HM Treasury, 2004). The Next Steps report set out a number of ambitious targets to be met by 2014. These included targets that would increase the number of students taking A-level physics and chemistry. While the targets outlined in the Next Steps report were clear, the key influence on participation in these subjects at the A-level and how the targets would be attained were somewhat unclear (Royal Society, 2008).

In the last decade, a burgeoning number of reports from governing bodies, examination boards, and funding bodies have raised the concern that young people are disaffected towards STEM subjects, particularly science (HM Treasury, 2004; Smith, 2004). Much of this work has focused on student engagement in science and differences in engagement by various student and school factors.

Students' engagement in their learning experiences in science lessons have been linked to uptake of 16-plus science. In a multi-nation study that included English, Australian, and Swedish student's narratives about science learning, Lyons (2006) found that student's engagement improved when the curriculum dealt with contemporary issues, when the teaching style was less didactic and allowed for the student voice, and when a conscious effort was made to make science less difficult. Stokking's (2000) research in the Netherlands found that regardless of students' views about their school science experiences the main reasons for uptake of post-compulsory physics studies are instrumental (i.e., as a strategic positioning for desirable tertiary courses or desirable careers). A significant amount of research has been conducted in the area of student engagement in science in the UK and in other countries. However, while some recent studies have been relatively large-scale (e.g., Cerini, Murray \& Reiss, 2003; Jenkins \& Nelson, 2005), none has produced nationally representative results. In addition, while some research has focused on the effectiveness of
various teaching methods, few have examined the association between engagement in science and multiple teaching and learning activities.

In this study we use the Programme for International Student Assessment (PISA) 2006 UK data, which is nationally representative, to explore the associations between (1) student engagement and teaching and learning activities in the UK and (2) student engagement and student and school factors in the UK. This study can be viewed as an exemplary case study in which we not only explore factors associated with student engagement in the UK but we also highlight the utility of the PISA data for researchers worldwide and demonstrate what the international science community can learn from the data.

Engagement in Science
Engagement is a multidimensional concept that broadly encompasses the three components of behavioural engagement, emotional engagement, and cognitive engagement (Finn, 1989; Fredricks, Blumenfeld \& Paris, 2004). This research focuses on emotional engagement as measured by reports of students' enjoyment of science and cognitive engagement as measured by students' instrumental motivation and their future orientation towards science.

Emotional engagement is concerned with students' affective reactions (i.e., anxiety, happiness, interest, enjoyment) to school and school activities (Connell, Spencer, \& Aber, 1994; Connell \& Wellborn, 1991). It should be noted that the literature on emotional engagement has strong links with a large body of work that is concerned with student attitudes (Fredricks, Blumenfeld \& Paris, 2004). The research reported in this paper focuses specifically on one indicator of emotional engagement, namely students' self-reported enjoyment of science. For example, students in the PISA student questionnaire were asked

Deleted: Using the Programme for International Student Assessment (PISA) 2006 UK data, which is nationally representative data, the aim of this study was to explore the associations between (1) student engagement and teaching and learning activities in the UK and (2) student engagement and student and school factors in the UK.II
about their level of agreement with statements such as "I generally have fun when I am learning science topics" and "I like reading about science". Research has suggested that students who enjoy science are emotionally attached to learning the subject and consider learning to be meaningful (Laukenmann et al., 2003).

Cognitive engagement is concerned with a student's "psychological investment in an effort directed towards learning, understanding, or mastering the knowledge, skills, or crafts that academic work is intended to promote" (Newman, Wehlage, \& Lamborn, 1992, p. 12). This research focuses on two aspects of cognitive engagement. These are (1) instrumental motivation ${ }^{4}$ to learn science and (2) future-orientated motivation to learn science.

To examine levels of instrumental motivation, students in the PISA survey were asked about their level of agreement with such statements as "making an effort in my science subject(s) is worth it because this will help me in the work I want to do later on" and "what I learn in my science subject(s) is important for me because I need this for what I want to study later on". Prior research by Eccles (1994), Eccles and Wigfield (1995) and later by Wigfield, Eccles, and Rodriguez (1998) has indicated that instrumental motivation is a salient predictor of students' careers choices and course selection.

To determine students' future-oriented motivation to learn science (i.e. their interest in pursuing further studies in science and/or a career in science), students in the PISA survey were asked about their level of agreement with such statements as "I would like to work in a career involving science" and "I would like to spend my life doing advanced science".

Science Teaching and Learning Activities and Engagement in Science

Much of the research in this area has focused specifically on practical work and students' engagement in science. Osborne and Collins (2000) in their study of 144 English

[^2]students found that "without exception, pupils expressed a greater interest in work that included opportunities for experimentation and investigation" (p. 36). In a large-scale survey conducted by Cerini, Murray and Reiss (2004) of mainly 14 to 19 year olds in the UK, the researchers found that when it came to doing a science experiment, 71 percent reported that they found this teaching and learning method "enjoyable".

Research by Abrahams (2009) examined whether practical work in science resulted in affective outcomes. The results indicated that the majority of students had high levels of short-term situational engagement in science. However, practical work was found to produce no long-term gains in generating engagement in science. This finding is largely consistent with recent work by Toplis (in print) in which some of the 13 to 16 year olds students he interviewed viewed practical work as nothing more than a welcome break from other teaching and learning approaches.

Some of this lack of long-term engagement may be the result of the nature of practical work in schools. For example, Abrahams and Millar (2008) suggest that much practical work in science classrooms seems to be preoccupied with pupils being able to "produce the intended phenomenon" (p. 1955). Students might therefore be able to recall the experiment and what happened, but be unable to explain why they got the results they did and what scientific ideas were behind the exercise. Practical exercises and scientific theory were not always linked together effectively.

In terms of investigations, Cerini, Murray and Reiss (2004) found that 50 percent of students in their study reported that they found doing a science investigation enjoyable and similarly Nott and Wellington (1998) found that year 12 students also viewed investigations positively. However, Nott and Wellington found differences by sex with boys more likely to find investigations interesting than girls. Interestingly, they reported that while there was a
general positivity towards doing investigations in science lessons, both the students and teachers they interviewed were sceptical about their value.

DeWitt and Osborne (2008) found that certain classroom activities were more likely to encourage and motivate students to pursue science at higher levels of study - what they termed 'points of engagement' (p. 110). The activities that engaged and motivated the most were those requiring a greater amount of autonomous, self-directed learning, collaboration with classmates and also continuous collaboration with students overseas, activities that were active, hands-on and that are extended beyond the scope of one lesson

Methods

As previously stated, the data used for this study was taken from the Program for International Student Assessment (PISA), which is one of several international assessments in which the UK has participated over 40 years. PISA was first implemented in 2000 and is carried out by contractors for the Organization for Economic Cooperation and Development (OECD). PISA measures 15-year-olds' capabilities in reading literacy, mathematics literacy, and science literacy every 3 years. Each PISA data-collection effort assesses one area in depth, although all three are assessed in each cycle so that participating countries have an ongoing source of achievement data in every subject. In 2006, science literacy was the subject area assessed in depth across the 57 participating countries. The average UK score in science literacy was 515 score points (on a scale of $0-1,000$ with an average of 500 scale points and a standard deviation of 100). Of the OECD countries, Finnish students (563 score points) recorded the highest average literacy score and Mexican students (410 score points) recorded the lowest (see OECD, 2007 for complete results).

Measuring student's engagement and attitudes in science was a major component of PISA 2006. Data were gathered from students in four areas that included (1) support for scientific enquiry (2) self-belief as science learners (3) interest in science and (4)
responsibility towards resources and environments. These areas were selected according to OECD (2007) because "they provide a summary of students' general appreciation of science, personal beliefs as science learners, specific scientific attitudes and values, and responsibility towards selected science-related issues that have national and international ramifications" (p. 122).

The survey collected data on these four areas through a combination of the student questionnaire and through items embedded in the actual assessment (for a fuller explanation of this embedded approach please see Drechsel, Cartensen, \& Prenzel, 2011; OECD, 2007). All four areas were measured using the non-contextualised instrument (i.e., the student questionnaire). The analysis in this paper focuses on the area of interest in science as measured by the items contained in the student questionnaire.

Objective, Analytic Strategy, and Measures

The objective of this analysis was to describe the variation in students' reports of engagement in science across science teaching and learning activities. In addition, this study examined student and school characteristics that may be associated with students' levels of engagement in science ${ }^{5}$.

For the purposes of this analysis, student engagement consists of measures of students' motivation in science, students' enjoyment of science, and students' future orientation towards science. These measures of student engagement are described below along with the student, school, and science teaching and learning activity variables used in this analysis.

The analytical sample for this study was 15 -year-old students in the UK who attended school in 2006 which results in an overall sample size of 11,775 . All estimates are weighted

[^3]to be nationally representative and adjustments have been made for the sampling design in the statistical tests using Fay's Balanced Repeated Replication method. Comparisons made in the text have been tested for statistical significance to ensure that the differences are larger than might be expected due to sampling variation. The statistical significance of the differences between estimates is at the 0.05 level as measured by two-tailed Student's t tests. All differences reported are statistically significant at the 0.05 level unless stated otherwise. Ordinary Least Squares (OLS) regression was used to estimate the association between science teaching and learning activity measures and student engagement.

Measures

In PISA 2006, information concerning students' engagement in science, student background characteristics, and science classroom activities were all reported by the student using a questionnaire. The school characteristics were also collected using a questionnaire, which was completed by a school administrator. The analysis comprised of three dependent variables, five student characteristics variables, six school characteristic variables, and four science classroom activity variables. The student engagement and the science teaching and learning activity variables are indices. The indices were constructed for these analyses and tested for reliability using Cronbach's alpha.

Dependent Variables

The index for students' motivation in science was derived from students' responses about their level of agreement with the following statements (1) making an effort in my science subject(s) is worth it because this will help me in the work I want to do later on (2) what I learn in my science subject(s) is important for me because I need this for what I want to study later on (3) I study science because I know it is useful for me (4) studying my
science subject(s) is worthwhile for me because what I learn will improve my career prospects and (5) I will learn many things in my science subject(s) that will help me get a job. This index has a Cronbach alpha of 0.92 . The index for students' enjoyment of science was derived from students' responses about their level of agreement with the following statements (1) I generally have fun when I am learning science topics (2) I like reading about science (3) I am happy doing science problems (4) I enjoy acquiring new knowledge in science and (5) I am interested in learning about science. This index has a Cronbach alpha of 0.92 . The index for students' orientation towards a future in science was derived from students' responses about their level of agreement with the following statements (1) I would like to work in a career involving science (2) I would like to study science after secondary school (3) I would like to spend my life doing advanced science (4) I would like to work on science projects as an adult. This index has a Cronbach alpha of 0.89 . These indices were constructed specifically for these analyses and the reliability statistics are based on the UK data only.

A four-point scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used in PISA. The indices for student motivation, student enjoyment, and student orientation were created by inverting the response scores so that "strongly agree" had a point value of 4, "agree" had a point value of 3 , "disagree" had a point value of 2 and "strongly disagree" had a point value of 1 . The values for each student were summed to create the indices for each of the three measures of student engagement. The index for student motivation, therefore, has a range of 5-20; the indices for student enjoyment and student orientation have ranges of 4-16.

Independent Variables of Interest

The PISA 2006 science teaching and learning variables consisted of four indices. These include the index of interaction, the index of hands on activities, the index of student
investigations, and the index of applications in science. The index of interaction was derived from students' responses about the frequency with which the following four activities occur when learning science topics at school (1) students are given opportunities to explain their ideas (2) the lessons involve students' opinions about the topics (3) there is class debate or discussion (4) the students have discussions about the topics. This index has a Cronbach alpha of 0.77 . The index of hands on activities was derived from students' responses about the frequency with which the following four activities occur when learning science topics at school (1) students spend time in the laboratory doing practical experiments (2) students are required to design how a science question could be investigated in the laboratory (3) students are asked to draw conclusions from an experiment they have conducted (4) students do experiments by following the instructions of the teachers. This index has a Cronbach alpha of 0.68. The index of student investigations was derived from students' responses about the frequency with which the following three activities occur when learning science topics at school (1) students are allowed to design their own experiments (2) students are given the chance to choose their own investigations (3) students are asked to do an investigation to test out their own ideas. This index has a Cronbach alpha of 0.73. The index of applications was derived from students' responses about the frequency with which the following four activities occur when learning science topics at school (1) the teacher explains how a school science idea can be applied to a number of different phenomena (e.g. the movement of objects, substances with similar properties) (2) the teacher uses science to help students understand the world outside school (3) the teacher clearly explains the relevance of science concepts to our lives (4) the teacher uses examples of technological application to show how school science is relevant to society. This index has a Cronbach alpha of 0.77.

A four-point scale with the response categories "in all lessons", "in most lessons", "in some lessons" and "never or hardly ever" was used in PISA for all the science teaching and
learning activity measures. The indices were created by inverting the response scores so that "in all lessons" had a point value of 4 , "in most lessons" had a point value of 3 , "in some lessons" had a point value of 2 and "never or hardly ever" had a point value of 1 . The values for each student were summed and the average was calculated for each student across each of the science teaching and learning activity measures.

Additional Independent Variables

The analysis used five student characteristic variables that include sex, parental education, parental occupational status, whether the parent is in a science-related career, and whether the student expects to be in a science-related career. These variables capture the students' socioeconomic context and the student and parent's expectations for a career in science. All the student characteristic variables are reported by the student. The school characteristic variables include school control (i.e., public and private), class size, school selectivity, teacher-student ratio, whether the school has a shortage of science teachers, and the number of science activities such as science fairs and clubs that take place at the school. These school variables capture the context of the school environment for each of the students in the analyses. All the school characteristic variables were reported by the school administrator.

Results

Descriptive analysis

Teaching and learning activities. Table 1 contains the percentage distributions for the four the science teaching and learning activity indices. Eighty-nine percent of students reported that student investigations (designing own experiments, choose own investigations, and investigations to test out their own ideas) occurred in most or all lessons. In comparison,
less than 50 percent reported that interactions (i.e., class debates and discussions), hands on activities (i.e., draw conclusions from experiment), and applications in science (i.e., teacher explains how a school science idea can be applied to a number of different phenomena) occurred in most or all lessons.

(insert table 1 about here)

Table 2 shows that across all three measures of student engagement, higher mean levels of engagement were reported by those students who also reported that interaction, hands on activities, and applications in science occurred in all lessons compared to students who reported that these teaching and learning activities never or hardly happened, happened in some lessons, or happened in most lessons. For the indices of interaction, hands on activities, and applications in science the pattern of the association is uniform. Higher reported frequencies of these teaching and learning activities resulted in higher reported levels of enjoyment, future orientation, and motivation towards science. For example, students reported higher levels of enjoyment of science where interactions were reported to occur in all lessons than in most lessons, some lessons, none or hardly any lessons (14.22 vs. 13.22, 12.19, and 10.84, respectively). The results for student investigations are less uniform. For the engagement measures of enjoyment and future orientation, there are statistically significant differences between never or hardly ever and the three other frequency measures (some lessons, most lessons, and all lessons). For example, for enjoyment of science index scores for in all lessons (13.70), in most lessons (13.26), and in some lessons (13.17) were significantly greater than for never or hardly ever (12.42). However, there were no significant differences between the index scores for in all lessons (13.70), in most lessons (13.26), and in some lessons (13.17). This same pattern was found for students' future orientation towards science. Differences were found in students' levels of motivation by frequency of student investigations. Higher levels of motivation towards science were found where students report
that student investigations occurred in all lessons and in most lessons compared to in some lessons or never or hardly ever (15.96 and 15.26 versus 14.47 and 13.52, respectively). (insert table 2 about here)

Student and School Characteristics

Consistent with prior research (e.g., Nott \& Wellington, 1998), males reported higher levels of student engagement (enjoyment, orientation, and motivation) than females (table 3). There also seems to be a clear association between the three measures of student engagement and measures of parents' educational and occupational status. For example, students whose parents have had more years of education and have higher occupational status are more likely to say they enjoy science, have a future orientation towards science, and be motivated in studying science. Students who have either one or both parents working in a science-related career report higher levels of enjoyment, future orientation, and motivation than students who do not. Interestingly, students who expressed an expectation to be working in the future in a science-related career did not report significantly higher levels of enjoyment, future orientation, and motivation towards science.

(insert table 3 about here)

In terms of school characteristics and their association with measures of student engagement, differences were found by school control (i.e., public or private), shortage of science teachers, class size, and the number of science activities at the school (e.g., science fairs and science clubs). There were no discernable differences found for school size (see table 3).

For enjoyment and future orientation, students who attended private schools reported higher levels on these two indices of engagement than students in state schools (see table 4).

Students in schools that report no shortage of science teachers reported higher levels of enjoyment, future orientation, and motivation than students in schools that reported high levels of shortage. Interestingly for these same two measures of student engagement, students in larger classes (31-35 and 36 or more students) reported higher levels of enjoyment and future orientation than those in class sizes of 15 students of fewer. While there were statistically significant differences for all three measures of student engagement with the number of school science activities, there was no consistent pattern. In other words, having more science activities in the school did not result in higher levels of student engagement in science.

$$
\text { (insert table } 4 \text { about here) }
$$

OLS Regression Analysis

Table 5 contains the OLS regression coefficients for the enjoyment of science (dependent variable). Four models are estimated in total. Model 1 is a reduced model in which only the science teaching and learning activities are included. Model 2 includes the student background characteristic variables. Model 3 contains the science teaching and learning activities and the school characteristics and Model 4 is the full model in which the science teaching and learning activities and the student and school characteristics are included. The same models are fitted for the other two engagement measures of future orientation to science (see table 5) and instrumental motivation towards science (see table 6).
(insert table 5 about here)

Model 1 indicates that there is a positive association between increased frequency of science and teaching and learning activities that involve: interactions (e.g., students are given opportunities to explain their ideas); hands on activities by students (e.g., students are
required to design how a science question could be investigated in the laboratory); and applications of science (e.g., the teacher uses science to help students understand the world outside school). For teaching and learning activities that involve student investigations (e.g., students are asked to do an investigation to test out their own ideas), the relationship is negative (-0.28). In other words, an increase in the frequency in which student investigations occur results in lower student enjoyment. The same pattern of results was found for students' future orientation towards science (see table 6) and motivations towards science with one exception. For students' motivation towards science, the coefficient for student investigations is not significant (0.09) (see model 1 , table 7).

$$
\text { (insert table } 6 \text { and table } 7 \text { about here) }
$$

The student background characteristics are entered into model 2 for each of the three engagement measures (see tables 5, 6, and 7). The socio-economic measures (parent's occupational status and parent's education in years) are positively associated with all three engagement measures with one exception (parent occupational status and motivation towards science). In other words, students with parents who have more prestigious occupations and are educated to a higher level report greater levels of enjoyment in science, future orientation and motivation towards science. Being a male is also positively associated with all three engagement measures. There is a positive association between students who reported that they had either parent in a science-related career and student's enjoyment (0.25) and futureorientation towards science (0.22). As expected, there is a positive association between students' expectations to be in a science-related career and their engagement in science. For example, it is predicted that students' who expect to be in a science related career in the future would score nearly three points higher (2.90) on the motivation towards science index.

Model 3 includes the teaching and learning variables along with school characteristics. There is a positive association between being in a private school and students' enjoyment of science and future orientation towards science. In addition, there was negative association between schools that reported shortages of science teachers and students' enjoyment of science and future orientation towards science. No significant associations were found for the engagement measure of motivation towards science.

Model 4 is the fully specified model for each of the student engagement measures. In this model the science teaching and learning activities are included along with the student and school characteristics variables. As can be seen in tables 5, 6, and 7, once all variables are included in the model, the effect of the school characteristic variables are no longer significant. The pattern for the science teaching and learning measures are similar to the reduced model (model 1). For example, there are positive associations between teaching and learning activities that involve interactions, hands on activities, and application in science for all three engagement measures. In other words, the greater the frequency of these three teaching and learning activities, the greater the student's enjoyment of science, and futureorientation and motivation towards science (tables 5, 6, and 7). There is also a positive association between student investigations and students' motivation towards science (table 7). However, there is a negative association for students' enjoyment of science and their futureorientation towards science (table 5 and 6). For these two student engagement measures, the greater the frequency of student investigations occurring in class, the lower the levels of enjoyment of science and future orientation towards science.

Summary of Findings and Discussion

There were two aims to this research. These were to explore the associations between
(1) student engagement and teaching and learning activities and (2) student engagement and
student and school factors. The results of this research indicate that teaching and learning activities are associated with students' engagement in science. Greater levels of student motivation, enjoyment, and future-orientation towards science were found in classrooms where students reported that various measures of interaction, hands on activities, and applications in science took place frequently. The regression analysis indicated that there was a positive association between the frequency of measures of student investigations in class and student's motivation in science. However, conversely, increased reports of student investigations resulted in lower levels of enjoyment of science and future orientation towards science. As previously reported (see table 1), 47 percent of students indicted that investigations occurred in all their lessons. This is in contrast to the other three science teaching and learning activities in which 5 percent or less reported that measures of application in science (5 percent), interaction (5 percent), and hands on activities (2 percent) occurred in all lessons. This may suggest that it is not necessarily the case that student investigations are associated with lower levels of enjoyment and future orientation to science, instead it may be the situation that this mono-approach to teaching and learning in science has contributed to this finding.

In terms of differences by student background characteristics, socio-economic status is positively associated with student engagement. In addition, males reported higher levels of engagement than females. There was a clear association between student engagement and whether the student had one or more parents in a science-related career. Not surprisingly, students who reported that they expected to go in to a science-related career also reported greater engagement in science.

For the school measures, there was a positive association between students who attended private schools and students' enjoyment of science and future-orientation towards science. In contrast, there was a negative association between these two student engagement
measures and science teacher shortage. In other words, students in schools where there is a shortage of science teachers reported lower levels of enjoyment of science and futureorientation towards.

Clearly, more research in this area is needed, particularly studies that examine science teaching and learning activities other than practical work and their ability to engage students in science.

As in much research, there are limitations to this study. Using self-administered questionnaires restricts the depth of responses or clarification of responses from the students that a face-to-face interaction can achieve. In addition, cross sectional data, as used in this research, is very much a snap shot of 15 -year-olds in 2006. The PISA data do not allow for longitudinal or causal analysis. However, this study contributes to our understanding of the role of teaching and learning activities on student engagement in several ways. First, this study uses large-scale nationally representative data. All estimates are weighted to population levels and are representative of 15-year-old students in 2006. Second, the teaching and learning activities are student reported. This is important because this gives us a student perspective on the teaching and learning activities they perceive to be taking place during science lessons. Of course, if the teachers were also asked to report on the teaching and learning activities that took place in their classrooms, there might be a mismatch in responses. Given that this study is examining students' engagement in science, it is important to rely on students' reports and perceptions of what activities take place during their lessons. Third, this study looks at three types of student engagement and four types of science teaching and learning activities rather than single constructs. This research also provides a national picture in the UK of students' engagement in science and the factors that influence their motivation in science, enjoyment of science, and future-orientation towards science. More research needs to be completed, not only in the UK but in other countries, which focuses on the

Deleted: that

association between student engagement and the various teaching and learning activities that take place in the classroom. A starting point could be for other researchers to explore their own country's PISA 2006 data. Understanding student engagement in science, and the factors that influence it, is essential in addressing the issue of uptake of science in post compulsory schooling.

References

Abrahams, I. (2009). Does practical work really motivate? A study of the affective value of practical work in secondary school science. International Journal of Science Education, 31(17), 2335-2353.

Abrahams, I., \& Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945-1969.

Butz, W. P., Bloom, G. A., Gross, M. E., Kelly, T. K., Kofner, A., \& Rippen, H. E. (2003). Is There a Shortage of Scientists and Engineers? How Would We Know? Santa Monica, CA.: Rand Corporation.

Cerini, B., Murray, I., \& Reiss, M. (2003). Student review of the science curriculum. Major findings. London: Planet Science. Retrieved March 9, 2011, from
http://archive.planet-science.com/sciteach/review/Findings.pdfConnell, J.P., Spencer, M.B., \& Aber, J.L. (1994). Educational risk and resilience among African-American youth: Context, self, action, and outcomes in school. Child Development, 65, 493-506.

Connell, J. P., \& Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A motivational analysis of self-system processes. In M. R. Gunnar \& L. A. Sroufe (Eds.), Minnesota Symposium on Child Psychology (Vol. 23). Chicago: University of Chicago Press.

Department of Education and Science (1968) Enquiry into the flow of candidates in science and technology into higher education. (The Dainton Report.) London: HMSO.

DeWitt, J., \& Osborne, J. (2008). Engaging students with science: In their own words. School Science Review, 30(331), 109-116.

Eccles, J. S. (1994). Understanding women's educational and occupational choice: applying the Eccles et al. model of achievement related choices. Psychology of Women Quarterly, 18, 585-609.

Eccles, J.S., \& Wigfield, A. (1995). In the mind of the achiever: the structure of adolescents’ academic achievement-related beliefs and self-perceptions. Personality and Social Psychology Bulletin, 21, 215-225.

Finn, J. D. (1989). Withdrawing from school. Review of Educational Research, 59, 117-142.
Fredricks, J. A., Blumenfeld, P. C., \& Paris, A. H. (2004). School engagement: potential of the concept, state of the evidence. Review of Educational Research, 74, 59-109.

H M Treasury (2004) Science and innovation investment framework 2004-2014. London: H M Treasury.

Jenkins, E., \& Nelson, N. W. (2005). Important but not for me: students' attitudes towards secondary school science in England. Research in Science \& Technological Education, 23(1), 41-57

Laukenmann, M., Bleicher, M., Fuß, S., Gläser-Zikuda, M., Mayring, P., \& von Rhöneck, C. (2003). An investigation on the influence of emotions on learning in physics. International Journal of Science Education, 25, 489-507.

Lyons, T. (2006). Different countries, same science classes: Students' experiences of school science in their own words. International Journal of Science Education 28 (6), 591613.National Audit Office (2010). Educating the next generation of scientists. London: The Stationary Office.

Newman, F. M., Wehlage, G. G., \& Lamborn. S. D. (1992). The significance and sources of student engagement. In F. M. Newmann (Ed.), Student engagement and achievement in American secondary schools (pp. 11-39). New York: Teachers College Press.

Nott, M., \& Wellington, J. (1999). The state we're in: issues in key stage 3 and 4 science. School Science Review 81(294), 13-18.

OECD (2007). PISA 2006: Science competencies for tomorrow's world. OECD: Paris.
Osborne, J., \& Collins, S. (2000). Pupils' and parents' views of the school science curriculum. London: Kings College London.

Porter, C., \& Parvin, J. (2008). Learning to love science: Harnessing children's scientific imagination. Chemical Industry Education Centre: University of York.

Roberts, G. (2002). SET for success: The supply of people with science, technology, engineering and mathematics, skills. HM Treasury: London.

Royal Society (2008). Science and mathematics education, 14-19. Royal Society: London.
Smith, A. (2004) Making mathematics count: the report of Professor Adrian Smith's inquiry into post-14 mathematics education. Retrieved April 27, 2010, from http://www.mathsinquiry.org.uk/report/

Stokking, K. (2000). Predicting the choice of physics in secondary education. International Journal of Science Education 22 (12), 1261-83.

Toplis, R. (in print). Student's views about secondary school science lessons: the role of practical work. Research in Science Education (online first).

Wigfield, A., Eccles, J. S., \& Rodriguez, D (1998). The development of children's motivation in school context. Review of Research in Education 23, 73-118.

Table 1. Percentage distribution of student's reports of science teaching and learning activities: 2006

Frequency of science teaching and	In all lessons	In most lessons	In some lessons	Never or hardly ever
Index of interaction	5	36	49	10
Index of hands on activities by students	2	39	54	5
Index of student investigations	47	42	10	1
Index of applications in science	5	44	43	7

Note: Weighted percentages adjusted for design effects.
Data Source: Programme for International Student Assessment (2006). OECD.

Table 2. Mean index scores for UK student's engagement in science by frequency of science teaching and learning activity: 2006

Indices of frequency of science teaching and learning activities	Enjoyment	Orientation	Motivation
\quad Total	$\mathbf{1 2 . 8 0}$	$\mathbf{1 0 . 0 7}$	$\mathbf{1 4 . 1 2}$
Index of interaction	14.22	11.20	15.55
In all lessons	13.22	10.40	14.58
In most lessons	12.19	9.59	13.45
In some lessons	10.84	8.51	11.72
Never or hardly ever			
Index of hands on activities by students	13.99	11.05	15.94
In all lessons	13.30	10.48	14.59
In most lessons	12.25	9.63	13.47
In some lessons	9.83	7.74	11.04
Never or hardly ever			
Index of student investigations	13.70	10.77	15.96
In all lessons	13.26	10.45	15.26
In most lessons	13.17	10.37	14.47
In some lessons	12.42	9.76	13.52
Never or hardly ever			
Index of applications in science	14.75	11.61	16.34
In all lessons	13.47	10.61	14.88
In most lessons	12.20	9.59	13.42
In some lessons	10.31	8.08	11.24
Never or hardly ever			

Note: Weighted means adjusted for design effects.
Data Source: Programme for International Student Assessment (2006). OECD.

Table 3. Mean index scores for UK student's engagement in science by student characteristics: 2006

Student characteristics	Enjoyment	Orientation	Motivation
Total	$\mathbf{1 2 . 8 0}$	$\mathbf{1 0 . 0 7}$	$\mathbf{1 4 . 1 2}$
Sex	12.40	9.75	13.88
\quad Female	13.20	10.40	14.36
\quad Male			
Parents education in years	12.08	9.45	13.30
\quad Less than 11 years	12.66	9.95	13.94
11-13 years	13.13	10.34	14.44
\quad 14-16 years			
Parent occupational status	12.22	9.61	13.82
\quad Lowest quarter	12.77	10.05	14.08
\quad Middle quarters	13.38	10.53	14.51
\quad Highest quarter			
Either parent in science-related career	12.67	9.97	14.00
\quad No	13.38	10.55	14.68
\quad Yes			
Students' expectation to be in science-related			
career	12.03	9.41	10.84
\quad No	12.31	9.69	13.37
Yes			

Note: Weighted means adjusted for design effects.
Data Source: Programme for International Student Assessment (2006). OECD.

Table 4. Mean index scores for UK student's engagement in science by school characteristics: 2006

School characteristics	Enjoyment	Orientation	Motivation
Total	$\mathbf{1 2 . 8 0}$	$\mathbf{1 0 . 0 7}$	$\mathbf{1 4 . 1 2}$
School control Public	12.75	10.03	14.17
Private	13.48	10.63	13.94
School size			
0-759 students	12.80	10.08	14.08
750-999 students	12.84	10.09	14.24
1000-1249 students	12.82	10.10	14.21
1250 or more students	12.76	10.04	14.13
Shortage of science teachers			
Not at all	12.82	10.09	14.20
Very little	12.93	10.18	14.07
To some extent	12.79	10.05	14.28
A lot	12.11	9.54	13.43
Class size			
15 students or fewer	12.69	9.99	14.37
16-20 students	13.18	10.38	14.11
21-25 students	12.76	10.04	14.10
26-30 students	12.76	10.03	14.20
31-35 students	13.84	10.98	14.80
36 or more students	14.23	11.38	14.81
School science activities			
0 activities	13.05	10.22	14.27
1 activity	12.60	9.92	14.20
2 activities	12.77	10.03	14.08
3 activities	12.82	10.09	14.18
4 activities	12.67	9.97	14.05
5 activities	13.13	10.35	14.39

Note: Weighted means adjusted for design effects.
Data Source: Programme for International Student Assessment (2006). OECD.

Table 5. OLS regression coefficients for Enjoyment of Science: 2006

	Models							
	I		II		III		IV	
Intercept	8.09	**	6.40	**	7.59	**	6.35	**
Science teaching and learning activities								
Index of interaction	0.48	**	0.51	**	0.54	**	0.53	**
Index of hands on activities by students	0.50	**	0.45	**	0.39	**	0.38	**
Index of student investigations	-0.28	**	-0.21		-0.25	**	-0.22	**
Index of applications in science	1.05	**	0.86	**	1.00	**	0.82	**
Student characteristics								
Parent occupational status			0.30	**			0.28	**
Parents education in years			0.16	*			0.12	
Sex (male)			0.76	**			0.79	**
Either parent in science-related career			0.25	**			0.24	*
Students' expectation to be in sciencerelated career			1.72	**			1.78	**
School characteristics								
School control (private)					0.50	*	0.16	
School size					-0.02		-0.05	
Shortage of science teachers					-0.14	*	-0.10	
Class size					0.08		0.07	
Number of school science activities					0.05		0.03	
Sample size	11,758		10,697		9,754		8,934	
Adjusted r square	0.10		0.18		0.10		0.18	

* $p=0.05, * * p=0.01$

Note: Weighted estimates adjusted for design effects.
Data Source: Programme for International Student Assessment (2006). OECD.

Table 6. OLS regression coefficients for Orientation to Science: 2006

	Models							
	I		II		III		IV	
Intercept	6.31	**	4.93	**	5.92	**	4.90	**
Science teaching and learning activities								
Index of interaction	0.37	**	0.39	**	0.42	**	0.41	**
Index of hands on activities by								
students	0.41	**	0.37	**	0.33	**	0.32	**
Index of student investigations	-0.22	**	-0.15	**	-0.20	**	-0.16	**
Index of applications in science	0.84	**	0.68	**	0.79	**	0.65	**
Student characteristics								
Parent occupational status			0.23	**			0.22	**
Parents education in years			0.15	*			0.11	
Sex (male)			0.61	**			0.64	**
Either parent in science-related career			0.22	**			0.20	*
Students' expectation to be in sciencerelated career			1.32	**			1.37	**
School characteristics								
School control (private)					0.40	*	0.13	
School size					-0.02		-0.04	
Shortage of science teachers					-0.11	*	-0.08	
Class size					0.06		0.05	
Number of school science activities					0.05		0.03	
Adjusted r square	0.10		0.18		0.10		0.18	
Number of observations	11,775		10,712		9,768		8,947	
*p=0.05, **p=0.01								
Note: Weighted estimates adjusted for de	ign effects							
Data Source: Programme for Internationa	Student	Ass	sment (2006	. OECD			

Table 7. OLS regression coefficients for Motivation towards to Science: 2006

	Models							
	I		II		III		IV	
Intercept	8.77	**	7.74	**	8.94	**	8.04	**
Science teaching and learning activities								
Index of interaction	0.42	**	0.39	**	0.53	**	0.48	**
Index of hands on activities by								
students	0.48	**	0.36	**	0.37	**	0.29	**
Index of student investigations	0.09		0.20	**	0.08		0.16	*
Index of applications in science	1.13	**	0.97	**	1.13	**	0.96	**
Student characteristics								
Parent occupational status			0.01				0.03	
Parents education in years			0.18	*			0.22	**
Sex (male)			0.41	**			0.44	**
Either parent in science-related career			0.23				0.19	
Students' expectation to be in sciencerelated career			2.90	**			2.84	**
School characteristics								
School control (private)					-0.13		-0.41	
School size					0.01		0.01	
Shortage of science teachers					-0.07		-0.03	
Class size					0.04		0.04	
Number of school science activities					0.01		0.01	
Adjusted r square	0.11		0.23		0.11		0.24	
Number of observations	11,732		10,672		9,732		8,912	
* $p=0.05, ~ * * p=0.01$								
Note: Weighted estimates adjusted for de	ign effects							
Data Source: Programme for Internationa	Student	Ass	sment	206	OECD			

[^0]: ${ }^{1}$ It should be noted that there is some evidence in the United States to suggest that the STEM shortage is overstated (e.g., Butz et al., 2003).
 ${ }^{2}$ KS 3 is years 7, 8, and 9 of pupils schooling in England and Wales. Pupils in these three years usually range in age between 11 and 14 years. GCSEs are an academic subject qualification in England and Wales. Pupils are usually aged between 14 and 16 years when they take the examination.

[^1]: ${ }^{3}$ The Advanced Level General Certificate of Education (more commonly referred to as the A-level). The Alevel is made up of AS level and A2 level. A-levels typically take two years and a student at the end of the first year (AS level year) has essentially two options. They can take the AS level as their final qualification or they can continue in to a second year of study (A2) and complete the full A-level qualification.

[^2]: ${ }^{4}$ Instrumental motivation in this context refers to a student being encouraged to learn science because of external benefits such as achieving a good job in a science related area (i.e., becoming a medical doctor).

[^3]: ${ }^{5}$ It should be noted that all analyses were conducted by the authors using the PISA 2006 student and school databases.

