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Abstract

We study self regulation through pricing for Vehicle Sharing Systems (VSS). Without
regulation VSS have poor performances. We study possible improvements of the VSS using
(pricing as) incentive. We take as base model a Markovian formulation of a closed queuing
network with finite buffer and time dependent service time. This model is unfortunately
intractable for the size of instances we want to tackle. We present a fluid approximation,
constructed by replacing stochastic demands by a continuous deterministic flow (keeping the
demand rate). It gives a deterministic and continuous dynamics and evolves as a continuous
process. The fluid model can be thought of as the limit of a scaled Markovian model, in
which the fleet, the station capacities and the demands are scaled by a common factor. A
reusable benchmark and an experimental protocol is created for the general Vehicle Sharing
System optimization problem. We discuss the convergence of the scaled model to the fluid
limit. We conduce some experimental studies.

1 Introduction

1.1 Context

Shoup (2005) reports that, based on a sample of 22 US studies, car drivers looking for a parking
spot contribute to 30% of the city traffic. Moreover cars are used less than 2 hours per day on
average but still occupy a parking spot the rest of the time! Could we have less vehicles and
satisfy the same demand level?

Recently, the interest in Vehicle Sharing Systems (VSS) in cities has increased significantly.
Indeed, urban policies intend to discourage citizens to use their personal car downtown by re-
ducing the number of parking spots, street width, etc. VSS seem to be a promising solution to
reduce jointly traffic and parking congestion, noise, and air pollution (proposing bikes or electric
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cars). They offer personal mobility allowing users to pay only for the usage (sharing the cost of
ownership ).

We are interested in short-term one-way VSS where vehicles can be taken and returned at
different places (paying by the minute). Associated with classic public transportation systems,
short-term one-way VSS help to solve one of the most difficult public transit network design
problem: the last kilometer issue (DeMaio, 2009). Round-trip VSS, where vehicles have to be
returned at the station where they were taken, cannot address this important issue.

The first large-scale short-term one-way VSS was the bicycle VSS Vélib’ (2007). It was
implemented in Paris in 2007 and now has more than 1200 stations and 20 000 bikes selling
around 110 000 trips per day. It has inspired several other cities all around the world; Now
more than 300 cities have such a system, including Montréal, Bejing, Barcelona, Mexico City,
Tel Aviv (DeMaio, 2009).

1.2 One-way Vehicle Sharing Systems: a management issue

One way systems increase the user freedom at the expense of a higher management complexity. In
round trip rental systems, while managing the yield, the only stock that is relevant is the number
of available vehicles. In one-way systems, vehicles are not the only key resource anymore: parking
stations may have limited number of spots and the available parking spots become an important
control leverage.

Since first bicycle VSS, problems of bikes and parking spots availability have appeared very
often. Reasons are various but we can highlight two important phenomenons: the gravitational
effect which indicates that a station is constantly empty or full (as Montmarte hill in Vélib’
(2007)), and the tide phenomenon representing the oscillation of demand intensity along the day
(as morning and evening flows between working and residential areas).

To improve the efficiency of the system, in the literature, different perspectives are studied. At
a strategic level, some authors consider the optimal capacity and locations of stations. Shu et al.
(2010) propose a stochastic network flow model to support these decisions. They use their model
to design a bicycle VSS in Singapore based on demand forecast derived from current usage of
the mass transit system. Lin and Ta-Hui (2011) consider a similar problem but formulate it as
a deterministic mathematical model.

At a tactical level, other authors investigate the optimal number of vehicles given a set of
stations. George and Xia (2011) study the fleet sizing problem with constant demand and no
parking capacity. Fricker and Gast (2012), Fricker et al. (2012) consider the optimal sizing of a
fleet in “toy” cities, where demand is constant over time and identical for every possible trip, and
all stations have the same capacity K. They show that even with an optimal fleet sizing in the
most “perfect” city, if there is no operational system management, there is at least a probability
of 2

K+1
that any given station is empty or full.

At an operational level, in order to be able to meet the demand with a reasonable standard
of quality, in most bicycle VSS, trucks are used to balance the bikes among the stations. The
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objective is to minimize the number of users who cannot be served, i.e., the number of users
who try to take a bike from an empty station or to return it to a full station. The problem is
to schedule truck routes to visit stations performing pickup and delivery. In the literature many
papers deal already with this problem. A static version of the bicycle VSS balancing problem is
treated in Chemla et al. (2012) and a dynamic one in Contardo et al. (2012).

1.3 A study on leverage for self regulated VSS

A new type of VSS has appeared lately: one-way Car VSS with Autolib’ (2011) in Paris and
Car2go (2008) in more than 10 cities (Vancouver, San Diego, Lyon, Ulm...). Due to the size
of cars, operational balancing optimization through relocation with trucks seems inappropriate.
Another way for optimizing the system has to be found.

This study is part of a work investigating different optimization leverage for self regulation
in VSS. Using operation research we want to estimate the potential impact of:

• Optimizing the system design (station capacity, fleet size);

• Using pricing techniques to influence user choices in order to drive the system towards its
most efficient dynamic;

• Establishing new protocols, for instance with parking spot reservations and/or users spatial
and temporal flexibility.

1.4 Regulation through pricing

The origin of Revenue Management (RM) lies in airline industry. It started in the 1970s and
1980s with the deregulation of the market in the United States. In the early 1990s RM techniques
were then applied to improve the efficiency of round trip Vehicle Rental Systems (VRS), see
Carroll and Grimes (1995) and Geraghty and Johnson (1997). One way rental is now offered in
many VRS but usually remains much more expensive than round trip rental. One way VRS RM
problem literature is recent. Haensela et al. (2011) model a network of round trip car VRS but
with the possibility of transferring cars between rental sites for a fixed cost.

For trucks rental on the contrary, companies such as Rentn’Drop in France or Budget Truck Rental
in the United States are specialized in the one way rental offering dynamic pricing. This prob-
lem is tackled by Guerriero et al. (2012) that consider the optimal managing of a fleet of trucks
rented by a logistic operator, to serve customers. The logistic operator has to decide whether to
accept or reject a booking request and which type of truck should be used to address it.

Results for one way VRS are not directly applicable to VSS, because they differ on several
points: 1) Renting are by the day in VRS and by the minute in VSS with a change of scale for
the demand time tolerance; 2) One way rental is the core in VSS (for instance only 5% of round
trip rental in Bixi Morency et al. (2011)), and it is classically the opposite in car VRS; 3) There

3



is usually no booking in advance in VSS, it is a first come first served rule, whereas usually trips
are planned several days in advance in VRS.

2 Model: An intractable Markov Decision Process

2.1 Restriction to a simple protocol

In a real context, a user wants to use a vehicle to take a trip between an original (GPS) location
a, and a final one b, during a specified moment. On a station based VSS, he tries to find the
closest station to location a with a vehicle to take and the closest station to location b with a
parking spot to return it. All along this process users decisions rely on several correlated inputs
such as: trip total price, walking distance, public transportation competition, time frame...

A time elastic GPS to GPS demand forecast correlated to a user’s decision protocol ruling
his behavior to take a trip between two specific stations at a specific time seems closer to reality
but introduces of course a big complexity (use of utility function for instance).

Therefore we are here going to consider a simple station to station demand forecast with only
real time reservation for a specified trip. It means that the user will engage himself to return
the vehicle at a specified station and time. Finally it amounts in considering a demand for the
following simplified protocol:

1. A user asks for a vehicle at station a (here and now), with destination b and rental duration
µ−1
a,b;

2. The system offers a price (or rejects the user = infinite price);

3. The user accepts the price, takes the vehicle and a parking spot is reserved (or leaves the
system).

2.2 A Vehicle Sharing System Stochastic Model

2.2.1 Stochastic framework

We define now a framework to model a stochastic VSS with the protocol defined in the Section 2.1.
In a city, there is is a fleet of N vehicles and a set M (|M| = M) of stations with capacity
Ka, a ∈ M. There is an elastic demand D = M × M between each station. This demand is
periodic piecewise constant on time steps T . To go from station a ∈ M to station b ∈ M at
the period (t mod |T |) ∈ T , the demand follows a Poisson distribution of parameter λt

a,b(p
t
a,b)

function of the proposed price pta,b. All durations follow general distributions: Transportation
time to go from station a to station b at time step t has for mean 1/µt

a,b; The time step duration
t ∈ T has for mean 1/τ t. Hence the total periodic horizon length has for mean T =

∑

t∈T 1/τ t.
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2.2.2 Closed queuing network model

For a given demand λt
a,b for every trips (a, b) ∈ D and every time steps t ∈ T (i.e. for a given

price pta,b). We model this stochastic VSS by a closed queueing network with finite buffers and
periodic time-varying service times, see Figure 1.

Station a ∈ M is represented by a server a with a buffer of size K′
a. Time dependent service

time λt
a of server a is equal to the average number of users willing to take a vehicle at station a:

λt
a =

∑

(a,b)∈D λt
a,b.

Vehicles are N jobs routing in the network. At time t, a user taking a vehicle for a trip

(a, b) ∈ D is represented by a job processed by server a with routing probability
λt
a,b

λt
a
. Before

going to the destination station (server) b, vehicles (jobs) pass by a transportation state (infinite
server) (a− b) with a service time proportional to the number of vehicles na,b in transit (in the
buffer): na,bµ

t
a,b.

To represent the reservation constraint, there is a joint capacity on the buffer of server a
and servers (b − a) representing vehicles in transportation towards a: K′

a +
∑

b∈M K′
b,a ≤ Ka.

Another way to represent it is to consider that vehicles in transit occupy already a parking spot:
K ′

a = Ka −
∑

b∈M nb,a ≥ 0.

a

a-a

b-a b-b

b

a-b

K′
a,bK′

a,a

K′
b,bK′

b,a

K′
a K′

b

λt
b,a

λt
a,b

λt
a,a

λt
b,b

na,aµ
t
a,a na,bµ

t
a,b

nb,aµ
t
b,a

nb,bµ
t
b,b

Figure 1: VSS stochastic model: A closed queuing network with periodic time-varying rates.

2.2.3 Continuous-time Markov chain formulation

If we assume that all durations follow exponential distributions, our stochastic model become
Markovian. If a price pta,b is set for all trips (a, b) ∈ D at all time steps t ∈ T , we can then model

5



the closed queuing network by a continuous-time Markov chain on a set of states S:

S =
{(

na ∈ N : a ∈ M, na,b ∈ N : (a, b) ∈ D, t ∈ T
)

/
∑

i∈M∪D
ni = N & na +

∑

b∈M
nb,a ≤ Ka, ∀a ∈ M, ∀t ∈ T

}

.

A state s = (na : a ∈ M, na,b : (a, b) ∈ D, t ∈ T ) represents the vehicles distribution in the
city space (in station or in transit) at a given time. At time step t, na is the number of vehicles
in station a ∈ M, na,b the number of vehicles in transit between stations a and b serving a trip
demand (a, b) ∈ D.

The transition rates between states are either:

• The taking of a vehicle at a station a to go to a station b which gives a transition rate
λt
a,b(p

t
a,b) between states (. . . , na, . . . , na,b . . . , t) and states (. . . , na−1, . . . , na,b+1, . . . , t)

with na > 0 and nb +
∑

c∈M nc,b < Kb;

• The arrival of a vehicle at a station b from a station a which gives a transition rate na,bµ
t
a,b

between states (. . . , nb, . . . , na,b . . . , t) and states (. . . , nb + 1, . . . , na,b − 1, . . . , t) with
na,b ≥ 1;

• The changing between two piecewise constant demand time steps gives a transition rate τ t

between states (. . . , t) and states (. . . , t + 1 mod|T |).

There is an exponential number of states: in the literature this phenomenon is called the
curse of dimensionality. Indeed, even with only one time-step, without transportation time and
with infinite station capacities there are

(

N+M−1
N

)

states. For instance for a relatively small
system with N = 150 vehicles and M = 50 stations it gives roughly 1047 states! This number
grows linearly with the number of time steps and exponentially with the number of different
transportation times considered.

2.3 Model optimization

2.3.1 Stochastic VSS pricing problem

We want to maximize the VSS average revenue. We use for leverage the possibility to change the
price to take a trip which will, assuming an elastic demand, influence the demand for such trip.
Seeing the VSS as a closed queuing network, its evolution can be described explicitly through a
continuous-time Markov chain. This VSS Markovian model is our reference to evaluate a policy.
We call this problem the stochastic VSS pricing problem.

Prices can be discrete, i.e. selected in a set of possibilities, or continuous i.e. chosen in a
range. Pricing policies can be dynamic, i.e. dependent on system’s state (vehicles distribution),
or static i.e. independent on system’s state, set in advance and only function of the trip.
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2.3.2 Markov Decision Process curse of dimensionality

The continuous-time Markov chain of the VSS Markovian model leads to a Markov Decision
Process (VSS MDP model). There is a set Q of possible discrete prices for each trip at each time
step. A trip (a, b) ∈ D at price pqa,b, q ∈ Q has a demand (transition rate) λa,b(p

q
a,b) = λq

a,b.

Solving the VSS MDP model computes the best dynamic system state dependent discrete
pricing policy, i.e. the price for a trip depends on the current state of the system (vehicles
distribution). MDPs are known to be polynomially solvable in the number of states |S| and the
number of actions |A| available in each state. There exists efficient solutions methods such as
value iteration, policy iteration algorithm or linear programming, we refer to Puterman (1994)
textbook.

The VSS MDP model is a pricing problem where the action space A(s) in each state s ∈ S
is the Cartesian product of the available prices for each trip, i.e. A(s) = QM . However, to avoid
suffering from this exponential explosion, we can model this problem as an Action Decomposable
Markov Decision Process (Waserhole et al., 2012b). It is a general method based on the event-
based dynamic programming (Koole, 1998) to reduce the complexity of the action space to
A(s) = Q×M .

However, there is another problem with the VSS MDP model, the explosion of the state
space with the number of vehicles and stations. This phenomenon is known as the curse of
dimensionality. The VSS Markovian model can be efficiently evaluated though Monte-Carlo
simulation however for its optimization we have to look at approximations or simplifications to
produce solutions in a reasonable time.

2.3.3 Literature review

VSS stochastic optimization In the VSS literature, only simple forms of this closed queuing
network model with the relationship to the underlying continuous-time Markov chain have been
studied. George and Xia (2011) consider a VSS with only one time step (stable demand), one
price (no pricing) and infinite station capacities. Under these assumptions, they establish a com-
pact form to compute the system performance using the BCMP network theory (Baskett et al.,
1975). They solve an optimal fleet sizing problem considering a cost to maintain a vehicle and a
gain to rent it.

Fricker and Gast (2012) consider simple cities that they call homogeneous. These cites have
a unique fixed station capacity (Ka = K), a stable (one time step) arrival rate, uniform routing
matrix (λt

a,b =
λ
M
) and a unique travel time (µt

a,b
−1

= µ−1). With a mean field approximation,
they obtain some asymptotic results when the number of stations tends to infinity (M → ∞): if
there is no operational regulation system, the optimal sizing is to have a fleet of K

2
+ λ

µ
vehicles

per station which corresponds in filling half of the stations plus the average number of vehicles
in transit (λ

µ
). Moreover, they show that even with an optimal fleet sizing, each station has still

a probability 1
K+1

to be empty or full which is pretty bad since this cities are perfectly balanced.
In another paper, Fricker et al. (2012) extend to inhomogeneous cities modeled by clusters some
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analytical results and verify experimentally some others.

For homogeneous cities, Fricker and Gast (2012) also study a heuristic using incentives called
“the power of two choices” that can be seen as a dynamic pricing. When a user arrives at a
station to take a vehicle, he gives randomly two possible destination stations and the system is
directing him to the least loaded one. They show that this policy allows to drastically reduce
the probability to be empty or full for each station to 2−

K

2 .

Finally none of these models dedicated to VSS includes time-varying service demands, pricing
or full heterogeneity.

Queuing network with time-varying rates In a more general context, there is a wide
literature on queuing networks and MDPs. We refer to the textbooks of Puterman (1994) or
Bertsekas (2005) to provide the foundation for using MDP for the exact optimization of stationary
queueing systems. We focus here our review here on infinite horizon, average reward criterion
and time-varying rates.

In the literature, queuing networks with time-dependent parameters are called either dynamic
rates queues, time varying rates queues or unstationnary queues. . . . When dealing with Marko-
vian systems we also speak about inhomogenous MDP (in opposition to classic MDP called
homogeneous). There are many researchers who have extended the MDP framework to develop
policies for nonhomogeneous stochastic models with infinite actions spaces. Yoon and Lewis
(2004) consider both pricing and admission controls for a multiserver queue with a periodic
arrival and service rate over an infinite time horizon. They use a pointwise stationary ap-
proximation (Green and Kolesar, 1991) of the queueing process . An optimization problem is
then solved over each disjoint time interval where stationarity is assumed. In his PhD thesis,
Liu (2011) develops deterministic heavy-traffic fluid approximations for many-server stochastic
queueing models. His main focus is on systems that have time-varying general arrival rates and
service-times distributions.

Blocking effect When considering queuing networks with finite capacities arises blocking
effects when a queue is full. Balsamo et al. (2000) define various blocking mechanisms. They
differ either in the moment the job is considered to be blocked (e.g. before or after-service) or
in the routing mechanism of blocked jobs. For our VSS queuing network model, we have to
distinguish two cases depending on the rental reservation policy:

• If the user has to reserve a parking spot at destination, the blocking mechanism is of type
Blocking Before Service (BBS).

• If there is no parking spot reservation, when a user tries to return a vehicle at a full station
we are facing a Repetitive Service Blocking (RS). Two solutions might be investigated then:
1) Either the user can choose a new destination independently from the one he had selected
previously, until he finds one not full. This is know as RS-RD (random destination). This
is the blocking mechanism chosen by Fricker and Gast (2012). 2) Or if he can’t modify the

8



destination station, then he has to wait for a free parking spot. This is known as RS-FD
(fixed destination).

Osorio and Bierlaire (2009) review the existing models and present an analytic queueing network
model which preserves the finite capacity of the queues and uses structural parameters to grasp
the between-queue correlation.

3 A fluid approximation

The fluid model is constructed by replacing stochastic demands by a continuous flow with the
corresponding deterministic rate. It gives a deterministic and continuous dynamics and evolves
as a continuous process. Optimizing the fluid model to give heuristics on the stochastic model is a
well know technique. It is derived as a limit under a strong-law-of-large numbers, type of scaling,
as the potential demand and the capacity grow proportionally large; see Gallego and van Ryzin
(1994).

Applications of this principle are available in the literature to deal with revenue management
problems, see Maglaras (2006) for instance. However, to the best of our knowledge, there is
no direct approach available for a general case including our application. Nevertheless, there
are some papers on theorizing the fluid approximation scheme: Meyn (1997) describes some
approaches to the synthesis of optimal policies for multiclass queueing network models based
upon the close connection between stability of queueing networks and their associated fluid limit
models; Bäuerle (2002) generalizes it to open multiclass queueing networks and routing problems.

To sum up, what goes out of all studies is that the fluid model might not be easily constructed
and, even if found, the convergence might not be trivial to prove. Sometimes, little modifications,
called tracking policy, have to be made on the solution to be asymptotic optimal but in any case
the fluid approximation is known to give a good approximation and also an upper bound on
optimization, see Bäuerle (2000).

3.1 The fluid Model

3.1.1 A plumbing problem

The fluid approximation can be seen as a plumbing problem. Stations are represented by tanks
connected by pipes representing the demands. Vehicles are considered as continuous fluid evolving
in this network. The volume of a tank represents the capacity of a station. The length of a pipe
represents the transportation time between two stations. The section of a pipe between two
tanks a and b represents the demand between stations a and b; it ranges over time from 0 to the
maximum demand Λt. Figure 2 schemes an example with 2 stations.

We model a system that has no dynamic interaction with the user. The decisions are static
and have to be taken before, once for all. They amount to setting the width of a pipe by
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changing the price to pass flow in it: the higher the price is, the smaller the pipe (demand) will
be. However, a free system does not mean that it is possible to do everything! Indeed, if a pipe
(a demand) exists and there is some flow (vehicles) available in the tank (station), according
to gravity first come first serve law : First, the flow has to pass through the pipe until no flow
is available; Secondly, if there is not enough flow to fulfill all pipes (demands), there should be
some equity between them. Hence, the proportion of filling up of all pipes should be equal.

Actually, it is more complex than these simple rules. If it the arrival tank of a pipe is full,
it might be impossible to fulfill this pipe. In this case, another equity rule should be applied to
all pipes discharging into this tank. In other words, for each pipe, if its discharging tank is full,
it has the same proportion of filling up as the other pipes discharging in this tank, otherwise, it
has the same proportion of filling up as the other pipes coming from its source tank.

λt
a,b

λt
b,a

Ka Kb

µb,a
−1

Control

Station a Station b

Figure 2: A Plumbing Problem.

3.1.2 The model

In the Appendix A, we propose a mathematical formulation for a discrete controls (prices) fluid
optimization. However, this formulation is rather complicated, and it seems complex to model
the evolution of the fluid process for discrete prices. Indeed, for a fixed price and finite station
capacities, the equity issues between arrival and departure give a non linear dynamic. An example
is provided in the Appendix A.

To avoid dealing with the equity issues, we develop a continuous pricing fluid optimization
model. The trick is to always fill the pipes, in other words to set the flow between two stations
exactly to the demand for taking this trip. If Λt

a,b is the maximum demand of users that want
to take a trip at time step t between stations a and b. If we assume that for any demand
λt
a,b ∈ [0,Λt

a,b] there exists a price p(λt
a,b) to obtain it exactly, with a proper price selection

it becomes always possible to fill all pipes. In a nutshell, it amounts to considering that the
demand is continuous and surjective in [0,Λt

a,b]. An example is schemed Figure 3. Note that the
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maximum demand Λ can be obtained with the minimum price, possibly negative if the system
pays the user.

0 Price

Demand

λ

Λ

p(λ)p(Λ)

Figure 3: Elastic demand λt
a,b ∈ [0,Λt

a,b].

More formally we can define the fluid model for continuous prices as follows:

Continuous price fluid model:

• A continuous space replaces the discrete one:

SF =
{(

na ∈ R : a ∈ M, na,b ∈ R : (a, b) ∈ D, t ∈ [0, T ]
)

/
∑

i∈M∪D
ni = N & na +

∑

b∈M
nb,a ≤ Ka, ∀a ∈ M, ∀t ∈ [0, T ]

}

.

• A continuous flow with deterministic rate λt
a,b replaces the discrete stochastic demand.

• A deterministic transportation time of length µt
a,b

−1
replaces the stochastic one.

• A continuous control on the prices pta,b implies an admission of a deterministic demand
stream λt

a,b ∈ [0,Λt
a,b].

In the literature, e.g. (Maglaras, 2006), it is classic to interpret this model as an asymptotic
limit of a s-scaled problem sequence.

s-scaled stochastic continuous pricing problem:
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• A scaled discrete space, with R := {1, . . . , s} and for any set X : X
s
= {1

s
, 2
s
, . . . , |X|}:

S(s) =
{

(

na ∈
N

s
: a ∈ M, nr

a,b ∈
N

s
: ((a, b), r) ∈ D ×R, t ∈ T

s

)

/
∑

i∈M∪D×R

ni = N & na +
∑

r∈R

∑

b∈M
nr
b,a ≤ Ka, ∀a ∈ M, ∀t ∈ T

s

}

.

• We rescale the state space so it now contains fractions instead of integers and the basic
unit corresponding to a vehicle (job) and a time step is 1/s.

• Each time step is divided is s part with durations following a general distribution with
mean (sT )−1.

• The transportation times and route from station a to station b is represented by s server
in series with rate µt,r

a,b(s) = sµt
a,b.

• The maximum time-varying transition rates are accelerated by a factor s: Λt
a,b(s) = sΛt

a,b.

• There is a continuous control on the prices for each trip, at each time step. Any demand
λt
a,b(s) ∈ [0,Λt

a,b(s)] can be obtained at a price 1
s
pta,b(λ

t
a,b(s)/s).

The above scaling allows the convergence of not only the rewards, but also of the state process.
In this paper, we do not include a mathematical study of the convergence model to the fluid
model, this is beyond our scope.

3.2 SCSCLP formulation

We build now a mathematical programming model for the fluid approximation of the stochastic
VSS pricing problem with continuous prices.

3.2.1 A Continuous Quadratic Program

For all time t ∈ [0, T ], we define the following variables:
λa,b(t) the demand to go from station a to station b at time t+ µ−1

a,b at price p(λa,b(t));

sa(t) the available stock at station a;
ra(t) the number of parking spots reserved at station a.

We build now a Continuous Quadratic Program (CQP) giving the best fluid policy. We use
the trick to set the prices p such that, at any time, the demand λ is exactly equal to the flow y
passing between two stations, i.e. yta,b = λt

a,b.
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Fluid CQP (1)

max
∑

(a,b)∈D

∫ T

0
λa,b(t)× price(λa,b(t)) dt (Gain)

(1a)

s.t.
∑

a∈M
sa(0) = N, (Flow initialization)

(1b)

sa(0) = sa(T ), ∀a ∈ M, (Flow stabilization)
(1c)

sa(t) = sa(0) +

∫ t

0

∑

(b,a)∈D
λb,a(θ − µ−1

b,a)− λa,b(θ) dθ, ∀a ∈ M, ∀t ∈ [0, T ], (Flow conservation)

(1d)

0 ≤ λa,b(t) ≤ Λt
a,b, ∀a, b ∈ M, ∀t ∈ [0, T ], (Max demand)

(1e)

ra(t) =
∑

b∈M

∫ µ−1

b,a

0
λb,a(t− θ) dθ ∀a ∈ M, ∀t ∈ [0, T ], (Reserved Park Spot)

(1f)

sa(t) + ra(t) ≤ Ka ∀a ∈ M, ∀t ∈ [0, T ], (Station capacity)
(1g)

sa(t) ≥ 0, ra(t) ≥ 0 ∀a ∈ M, ∀t ∈ [0, T ], (1h)

Equations (1b) initialize the flow with the N vehicles available. Equations (1c) constrain
the solution to be stable, i.e. cyclic over the horizon. Equations (1d) is a continuous version
of the classic flow conservation. Equations (1e) constrain the flow on a demand edge to be less
or equal than the maximum demand. Equations (1f) set the reserved parking spot variable.
Equations (1g) constrain the maximum capacity on a station and the parking spot reservation:
For a station the number of reserved parking spots plus the number of vehicles already parked
should not exceed its capacity.

Note that this model assumes that there is an “off period” between the cycling horizons where
all vehicles are parked at a station. However, if it is not the case, only some small changes have
to be made in the flow equations.

3.2.2 Literature review on Continuous Linear Program

Because the CQP (1) is not linear, it is hard to solve as it is. To obtain an efficient solutions
technique we can transform CQP (1) into a special call of Continuous Linear Programs (CLP).

CLP are introduced by Bellman (1953). Although many studies have been made on general
CLP, they remain difficult to solve exactly (Anderson and Nash, 1987). Recently Bampou and Kuhn
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(2012) propose a generic approximation scheme for CLP, where they approximate the policies
by polynomial and piecewise polynomial decision rules. Fluid relaxations are a specially struc-
tured class of CLP called State Constrained Separated Continuous Linear Programs (SCSCLP).
Luo and Bertsimas (1999) introduce SCSCLP, establish strong duality, and proposed a con-
vergent class of algorithms for this problem. Their algorithm is based on time discretization
and removes redundant breakpoints but, solves quadratic programs in intermediate steps. The
complexity of solving SCSCLP is still open, in fact, the size of the optimal solutions may be
exponential in the input size. In the absence of upper bounds on storage, SCSCLP are called
Separated Continuous Linear Programs (SCLP). Anderson et al. (1983) characterize extreme
point solutions of SCLP. For problems with linear data, they show the existence of an optimal
solution in which the flow-rate functions are piecewise constant with a finite number of pieces.
Weiss (2008) presents an algorithm which solves SCLP in a finite number of steps, using an ana-
log of the simplex method. Fleischer and Sethurama (2005) provide a polynomial time algorithm
with a provable approximation guaranty for SCLP.

3.2.3 A SCSCLP for transit optimization

Assuming a continuous surjective demand, to maximize the average number of trips sold by
the system, we can consider an implicit pricing. The optimization problem amounts then only
to setting the demand λ ∈ [0,Λ] in order to maximize the throughput of the system. In this
approach we let to an economist the task to set the proper price in order to obtain a demand of
λ.

To obtain a CLP that maximizes the number of trips sold, we only need to change the
objective function of CQP (1), keeping all its constraints since they linear. It gives the following
SCSCLP program.

Fluid SCSCLP (2) – Transit maximization

max
∑

(a,b)∈D

∫ T

0

λa,b(t) dt (Transit) (2a)

s.t. (1b)− (1h). (Fluid linear dynamic) (2b)

3.2.4 An approximate SCSCLP for revenue optimization

If the price/demand function gives a concave gain function, to formulate a CLP that maxi-
mizes the revenue of the system, we can make a linear approximation of CQP (1) to obtain an
approximate SCSCLP.
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Approximate Fluid SCSCLP – Revenue maximization

max
∑

(a,b)∈D

∫ T

0

gaina,b(t) dt (Gain)

s.t. gaina,b(t) ≤

∣

∣

∣

∣

∣

∣

a1(a, b, t)× λa,b(t) + b1(a, b, t)
. . .

ak(a, b, t)× λa,b(t) + bk(a, b, t)

∣

∣

∣

∣

∣

∣

(! gaina,b(t) ≤ λa,b(t)× price(λa,b(t)))

(1b)− (1h). (Fluid linear dynamic)

3.3 Discussion

3.3.1 Advantages/drawbacks of fluid approach

The main advantage of this model is that it considers time dependent demands giving a macro
management of the tide phenomenon. It gives static policies but may also help designing dynamic
ones (Maglaras and Meissner, 2006), a simple way is to make a multiple launch heuristic.

To provide an efficient solution method for the revenue maximization, we assumed a contin-
uous surjective demand function and a concave gain. For instance p(λ) = λ−α with α ∈ [0, 1].
Nevertheless, if we tolerate randomized pricing policy, our solutions technique can works for
general demand functions.

In the end, a weakness of this approach is that there is no control on the static policy time
step. Indeed, the optimal solution might lead to change the price every 5 minutes which seams
not suitable in practice.

Moreover, since it is a deterministic approximation, this model doesn’t take into account the
stochastic aspect of the demand. We suspect that for stations with small capacities, it can be a
problem since the variance of the demand could often lead to the problematic states: empty or
full.

3.3.2 Questions & Conjectures

Fluid model as an asymptotic limit To the best of our understanding, CQP (1) is a fluid
approximation of the VSS stochastic problem. It is classic to formulate it as the asymptotic limit
of a s-scaled problem when s → ∞. Simulation results (section 4.4) corroborate this conjecture,
however, we don’t have any mathematical proof.

Conjecture 1 Static optimal policies (and their values) of the s-scaled problem converges toward
optimal policies of fluid model CQP (1) when s → ∞.
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Fluid model as an upper bound One would expect that the uncertainty in sales in the
stochastic problem results in lower expected revenues. It is shown in many applications, as in
Gallego and van Ryzin (1994). However, for our application, as we show in the next section, we
have been able to prove it only for stable demands.

Conjecture 2 The value of CQP (1) optimal solution is an upper bound on dynamic policies of
the s-scaled problem (∀s).

Note that if Conjecture 1 and 2 are verified, it implies that static policies given by CQP (1)
are asymptotically dominant over dynamic ones for the s-scaled problem when s → ∞.

3.4 Stable demand case

If we consider a stable demand λt = λ, the steady-state fluid model can be reduced to the
following LP (3).

Stable demand fluid LP (3)

max
∑

(a,b)∈D
λa,b (Transit) (3a)

(3b)

s.t.
∑

(a,b)∈D
λa,b =

∑

(b,a)∈D
λb,a, ∀a ∈ M, (Flow conservation) (3c)

0 ≤ λa,b ≤ Λa,b, ∀(a, b) ∈ D, (Maximum Demand) (3d)
∑

(a,b)∈D

1

µa,b

λa,b ≤ N, (Nb. of vehicles) (3e)

∑

b∈M

1

µa,b

λa,b ≤ Ka, ∀a ∈ M. (Station capacity) (3f)

The objective function (3b) maximizes the throughput. Equations (3c) preserve the flow con-
servation. Equations (3d) constrain the maximal demand on each trip. Equation (3e) constrains
the number of vehicles in the system belong Little’s law. Equations (3f) constrain the reservation
of parking spot with respect to the station capacity.

To understand better stable demand fluid LP (3), a more natural formulation is to consider
explicitly where are all the N vehicles: either in a station, represented by variables s > 0; or
in transit, no more than 1

µa,b
λa,b at the same time for trip (a, b). The number of vehicles in

the system and the parking spot reservation constraint under station capacities can then be
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represented by the following equations:
∑

(a,b)∈D

1

µa,b

λa,b +
∑

a∈M
sa = N,

∑

b∈M

1

µa,b

λa,b + sa ≤ Ka, ∀a ∈ M.

However, if N ≤ ∑

a∈M Ka, these equations are defining the same space as Equation (3e) and
(3f).

Theorem 1 For stable demands, stable demand fluid LP (3) optimal value function gives an
upper bound on dynamic policies.

Proof : We show that we can construct from any dynamic policies a solution of stable stable
demand fluid LP (3) with same value. Consider a dynamic pricing policies (state dependent)
implying a continuous-time Markov chain with for all state s ∈ S a transition rates λs

a,b ≤ Λa,b

for trip (a, b) ∈ D. Under this policy, the system is stationary and ergodic under very general
conditions. Therefore, we can look at its stationary distribution π on its state space S that
satisfies the following equations:

∑

(a,b)∈D
πsλ

s
a,b =

∑

(b,a)∈D
πs−{(b,a)}λ

s
b,a, ∀s ∈ S,

∑

s∈S
πs = 1.

Let λ′
a,b be the average throughput for the trip (a, b) ∈ D:

λ′
a,b =

∑

s∈S
πsλ

s
a,b, ∀(a, b) ∈ D.

The average throughput of the system is equal to
∑

(a,b)∈D λ′
a,b. λ

′ satisfies the flow conservation

constraints and the capacity constraints of the stable demand fluid LP (3):
∑

(a,b)∈D
λ′
a,b =

∑

(b,a)∈D
λ′
b,a, ∀a ∈ M,

0 ≤ λ′
a,b ≤ Λa,b, ∀(a, b) ∈ D.

Flow conservation constraints are respected because otherwise it would mean that in the dynamic
policy’s stationary state, a station would receive more vehicles that it is sending which is absurd.
The capacity constraints are also respected since

∑

s∈S πs = 1. The constraints regarding the
number of vehicles available and the reservation limitation with respect to the station capacities
are also trivially respected in the continuous-time Markov chain:

∑

(a,b)∈D

1

µa,b

λ′
a,b ≤ N,

∑

b∈M

1

µa,b

λ′
a,b ≤ Ka, ∀a ∈ M.
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Finally, λ′
a,b is solution of stable fluid demand LP (3) with the same objective value. It proves

that stable demand fluid LP (3) is an upper bound on any dynamic policies. �

For time-varying demand we can use stable fluid LP (3) to make a pointwise stationary
approximation Green and Kolesar (1991) heuristic. It won’t give an upper bound anymore,
however it is an heuristic policy easy to compute.

Remark 1 For infinite capacities, when the number of vehicles tends to infinity, stable fluid
LP (3) amounts to solving a Maximum Circulation problem. Waserhole and Jost (2012)
show that Maximum Circulation gives the best dynamic policy when the number of vehicles
tends to infinity.

4 Simulation

To measure the real performance of our optimization strategies, we would need the have access
to the VSS global demand. However, the only precise data available are the trips sold by current
system. The unserved demand is hidden and it is an issue to build it from the exploitation data
(a problem of censored demand). Anyway, even if rebuild, new leverage on user influence, such
as a protocol with reservation in advance, is hard to estimate. It involves complex psychological,
social and economical issues. We would hence need real life experiments to validate our strategies.
However, these experiments are expensive so we have a need to roughly estimate their impacts.
Therefore, we propose in this article a simple benchmark to evaluate and compare our different
strategies. The instances composing it are toy cities, simple on purpose, in order to understand
and isolate the impact of the different characterized phenomenons.

4.1 Creation of benchmark

4.1.1 Sources

In the literature, many data-mining studies have been done on bike VSS such as Côme (2012).
They generally focus on stations clustering analyses. Their goal is to find groups of stations with
similar temporal usage profiles (incoming and outgoing activity/hour) taking into account the
week-days /week-end discrepancy. They usually report the same phenomenon: there is roughly
two day patterns, a week day and a week-end day. For instance, as Figure 4a schemes, a typical
week day has two tides: a morning and an evening commute. Côme (2012) develops also a trips
activity recognition. He correlates trips clustering and spatial analysis. Figure 4b represents
the spatial distribution of morning tides. We are going to use these analysis to specify our
benchmark.
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(a) A week day. A two tides demand approximation.
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(b) Spatial distribution of morning tides. A two
types of station approximation.

Figure 4: Source Côme (2012).

4.1.2 Instances

A city formed with stations on a grid We consider a VSS implemented in a city where
stations are positioned on a grid of width w, length l and travel time unity tmin = 15 (closest
distance between two points of the grid). A number M = l × w of stations are positioned at
regular interval on this grid and the distance to go from one to another is computed thanks to
the Manhattan distance in time. There is a unique station capacity K = 10 and a number of
vehicles N = M × Vp ×K with Vp being the proportion of vehicles per station.

Demand Since from the many data-mining studies done bike VSS such as Côme (2012), it
appears that demand is pretty regular along the weeks we focus on a typical week day, see
Figure 4a, that we approximate as follows. A day lasts 12 hours (say from 6h00 to 18h00).
At the end of each day, all vehicles must return to a station. We take as a base case a fully
homogeneous city, i.e. there is same demand for all trips: Λt

a,b = Λ, ∀(a, b) ∈ D, ∀t ∈ T . We
only consider one way trips: Λt

a,a = 0, ∀a ∈ M, ∀t ∈ T .

Instance “M w× l IΛs [GΓ] [TΘ]” has to be read as follows: it is an homogeneous city with
M stations spread on a grid of size w times l, with a demand intensity Λs per station per minute
(Λs = (M − 1) × Λ) and with possibly a gravitational effect of intensity Γ or a tide effect of
intensity Θ.

Tides pattern We introduce a morning and an evening tides of equal intensity of factor Θ.
We divide the day into three periods, morning from 6h to 9h, middle of the day from 9h to 15h
and evening from 15h to 18h. The city is split into two equal sub grids: L and R.

1. In the morning there is Θ times more demands for trips going from a station l ∈ L to a
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station r ∈ R, Θ2 less in the opposite direction and between stations in R, i.e. Λ
[6,9]
l,l = Λ,

Λ
[6,9]
l,r = ΘΛ and Λ

[6,9]
r,l = Λ

[6,9]
r,r = Θ−2Λ.

2. In the middle of the day, there is no demand between L and R and Θ2 less demand between
stations in L, i.e. Λ[9,15]

l,r = Λ
[9,15]
r,l = 0, Λ

[6,9]
l,l = Θ−2Λ and Λ

[9,15]
r,r = Λ.

3. In the evening, there is an opposed tide as in the morning from r ∈ R to l ∈ L, i.e.
Λ

[15,18]
r,r = Λ, Λ

[15,18]
r,l = ΘΛ and Λ

[15,18]
l,r = Λ

[15,18]
l,l = Θ−2Λ.

In the following we use a tide Θ = 6.

Gravitation pattern We introduce a gravitation of factor Γ. We increase by a factor Γ the
demands for trips going from a station l ∈ L to a station r ∈ R while we decrease the opposite
demand by the same factor Γ, i.e. Λa,b = Γ × Λ and Λb,a = Γ−1 × Λ for (a, b) ∈ L × R and
Λa,b = Λ otherwise. In the following we use a gravitation Γ = 3.

Normalization To decorrelate the tide phenomenon from the simple increase of demands, we
normalize the overall demand in order to keep in average the same number of demands as in a
full homogeneous city, i.e. the average number of trip requests per day is the same for instances
24 6x4 I0.3, 24 6x4 I0.3 T3 and 24 6x4 I0.3 G3.

4.1.3 Sizing

Demand intensity and fleet sizing To simulate the behaviour of a VSS we have to set the
number of vehicles available. Fricker and Gast (2012) studied the relationship between demand
intensity and the vehicles proportion Vp in function of the station capacity K. For a perfect
homogeneous city with an arrival rate Λs per station and a unique transportation time of mean
µ−1 the best sizing for a system without any control is Vp = 1

K(
K
2
+ Λs

µ
). Contrary to us,

they consider a protocol without reservation of parking spot at destination. Moreover, in our
homogeneous cities the transportation time is not unique. Anyway, as shown in Figure 5a, we
observe a similar dependence to the demand intensity: The more intense the demand is, the
more the vehicles proportion need to be.

When considering unbalanced city, with gravitation phenomenon, as shown in Figure 5b,
we observe a mustache effect with two local optimums. It corroborates the observation of
Fricker et al. (2012) with unique transportation times and no reservation protocol. With a tide
phenomenon, we also observe a similar mustache in Figure 5c. The best vehicle proportion
depends on the demand intensity but seams to be around 0.45%.

George and Xia (2011) prove that for infinite station capacities the number of trips sold
is concave in function of the number of vehicles. When considering station capacity, for non
homogeneous cities, as in Figure 5b or 5c, we observe that the function doesn’t seam to be
concave anymore.
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(a) Homogeneous city

(b) With gravitation (c) With tide

Figure 5: Sizing the number of vehicles in the system varying demand intensity.

From these observation, a proper fleet sizing has to be considered when studying other lever-
age.

A reasonable demand? Figure 6a represents the number of trips sold in function of the
demand intensity for an homogeneous city and a tide city with for both their optimal fleet sizing.
The number of trips sold is compared to the average number of requests. We observe that for
both cities the number of trips sold seams to be concave when considering the best sizing for
each intensity. However, for a given proportion of vehicles, for a tide city it doesn’t seam to be
concave anymore as scheme in Figure 6b.

In Vélib’ (2007) Paris there is approximately 150 000 trips sold per day for about 1400
stations. Considering that the majority of the trips are made during 18 hours of the day it gives
approximately an arrival intensity of 0.1 clients per station per minute. In Vélib’ (2007) this
number represents the final satisfied demand, that is sold without special pricing policy. By
simulation, as shown in Figure 6a, to serve 0.1 clients per minute amounts to serving ≈ 1750
trips sold per day. In an homogeneous city, to serve 0.1 clients per minute we would hence need
an actual demand around 0.15 clients, but for a city with tide the function is almost flat and it
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(a) Number of trips sold compared to the num-
ber of requests for cities with optimal fleet siz-
ing.

(b) The number of trips sold in function of the de-
mand intensity is not concave for a given fleet size.

Figure 6: Number of trips sold in function of demand intensity: A flat function.

is not even sure that it is possible to serve this number of clients.

4.2 Is there any potential gain for pricing policy? An experimental
study

4.2.1 Experimental protocol

Optimizing the Number of trip sold In this experimental study, to avoid to consider a
complex demand elasticity function we focus on optimizing the number of trips sold by the
system. Therefore, we only have to consider that there exists a continuous surjective demand
function, with a maximum possible demand Λ, i.e. there exists a price to obtain any demands
between 0 and Λ. We take as reference the number of trips sold by a generous policy, setting
all prices to their minimum value in order to have for all trips the maximum demand possible
λ = Λ. We evaluate the performance, in term of relative gain in number of trips sold, of two
pricing policies and two Upper Bounds (UB): 1) The fluid SCSCLP (2) model (Fluid) gives a
static policy and an UB conjectured for dynamic policies and time-dependent demand. 2) The
stable fluid (3) PSA model (S-Fluid) gives a static policy and an UB on dynamic policies only
for stable demand.

Note that in practice, if we consider that the maximum demand Λ could be obtained at
a negative price (paying the user), we should rather compare our heuristics to the minimum
acceptable price. We would then need to pay attention to the trade off number of trips sold /
generated gain of our pricing policies but this is beyond the scope of this paper.
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(a) Varying demand intensity: Instance 24 4x6 I1-6. (b) Gravitation: Instance 24 4x6 I3 G3.

(c) Tide low intensity: Instance 24 4x6 I1 T6. (d) Tide higher intensity: Instance 24 4x6 I1 T6.

Figure 7: Sizing the number of vehicles in the system with a pricing regulation.

Simulation We compare our 2 pricing policies and 2 UBs to the generous policy on the same
scenario: a simulation of the stochastic base model process on 250 days with similar demand
patterns (using a 10 days warm up). We use a reservation protocol, i.e. users have to book a
parking spot at destination in order to take a vehicle.

Figure 7 reports the number of trips sold of our pricing policies on different instances with
all 24 stations of capacity K = 10. In Figure 7a and 7b, the demand is stable therefore Fluid
and S-Fluid are almost equivalent. There is only a little difference due to the off period (night)
between two following days considered by Fluid but not by S-Fluid. In Figures 7c and 7d, we
introduce a tide phenomenon implying hence a time-dependent demand. The value given by
stable fluid solution method is hence not giving an UB anymore.
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4.2.2 Preliminary results

Influence of the demand intensity We look at the influence of the demand intensity in an
homogeneous city. In Figure 7a we compare the performance on an homogeneous citiesof the
generous policy and the fluid heuristic policy (Fluid≈S-Fluid). Each policy is simulated either
with its best fleet sizing computed greedily or with a sizing 50%.

When considering the generous policy with the optimal fleet sizing, we note the fluid policy
is decreasing the performance. But for a given fleet sizing, here 50% of the parking spot, we see
that the performance of the optimization is related to demand intensity: the higher the demand
intensity is, the higher the improvement of the fluid heuristic will be.

We explain this phenomenon as follows. Since we are working on an homogeneous city, the
only leverage available is to use the different transportation times. If the fleet sizing is not
optimized for the demand the fluid can increase the number of trips sold by the system by
favoring short distance trips.

Influence of the gravitation In Figure 7b we compare the performance of the generous
policy and the fluid and stable fluid heuristic policies on a city with gravitation. Note that Fluid
and S-Fluid are drown on this figure to show that they are almost equivalent. We can see that
applying static fluid policies can provide an increase of roughly 30% while the UB on for any
dynamic policies is around 90%.

Influence of the tides In Figure 7c and 7d we study the optimization gap of the fluid poli-
cies on a tide city with two different intensities. Note that since we are here considering time
dependent demand S-Fluid is not giving an UB anymore. We note that Fluid performs slightly
better than S-Fluid. On Figure 7d Fluid improves only a little S-Fluid but for sizing implying
33% less vehicles.

4.3 SCSCLP uniform time discretization

In the previous simulations, to be able to compute the fluid SCSCLP (2), we have used a discrete
time approximation (with 5 minutes time step) to transform the SCSCLP (2) into a LP solvable
by a classic solver. It is a classic way to approximate a CLP through a time discretization with
time steps of fixed length. It is not optimal, however, since in our case we are looking at a general
behavior having a small error isn’t a big issue and as we see on Table 1 taking a 5 minutes time
step seems to ensure to have reasonable results.

Note that there is monotonic increases in the Fluid simulated value and the Fluid UB gap
when looking at time step divisors. However, even if the general tendency is in the increase there
are examples of smaller time step being less efficient than a bigger one (for instance 2 and 5
minutes time step in table 1).
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Time step 180 90 60 45 30 20 15 12
Fluid Rel. Gain. -82.8% -55.6 % -33.9% -10.3% -1.8% -2.2% 6.4% 2.5%

Fluid UB Rel. Gain. -70.5 % -38.4% -6.2% 23.4 % 38.6% 36.1% 57.3% 45.3%

Time step 10 8 6 5 4 3 2
Fluid Rel. Gain. 5.4% 5.9% 6.2% 7% 6.1% 7.3% 6.8%

Fluid UB Rel. Gain. 52.3% 52.9% 54.5% 58.4% 54.4% 58.6% 57.2%

Table 1: Time discretization (in min.) convergence for the instance 024 4x6 I3 T3 with station
capacity 10.

Figure 8: Asymptotic convergence of s-scaled problem and fluid model on instance 4 2x2 I3 T3.

4.4 Fluid as an ∞-scaled problem

In Figure 8 we study the convergence of the s-scaled problem toward the fluid model when s
tends to infinity. We look at the difference between a s-scaled problem policy and the fluid model
value (conjectured to be an UB for all s). We can see that the less variance the system has (as
the scale increases), the more each policy sells trips and the more the Fluid model was accurate
in its expectation. Note that the absolute number of trips sold by the upper bound is constant
since the fluid model doesn’t take into account the variance of the demands.

For continuous prices optimization, the fluid model value and the fluid heuristic can be
computed thanks to the SCSCLP (2). We see on Figure 8 that the s-scaled problem optimal
dynamic policy for which the gain is in between the fluid policy simulated value and the fluid
model value converges toward the conjectured UB.

For the generous price policy, we have no efficient algorithm to compute the fluid model value
for one price, because its behavior is non linear. However, we see that it seams also to converge
toward conjectured fluid model.
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(a) Linear scale. (b) Logarithmic scale.

Figure 9: Influence of fluid model reservation constraint on computation time.

4.5 Real size utilization – what about optimizing real scale systems

The UB given by the fluid model with or without reservation is surprisingly exactly the same on
the tested instance. The heuristic produced are them giving slightly different results. Another
surprise is that within 0.55% of difference the model without reservation is even giving better
heuristic policies.

When designing heuristics it is important to be careful at their ability to handle real size
system. In Figure 9 we compare the computation time of fluid with and without reservation.
The fluid with reservation is much slower in practice, see Figure 9a, even if it seams to be in the
same order of complexity, see Figure 9b.
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A Mathematical formulation of the fluid model for dis-

crete prices

A.1 A non linear model

Data:
M the set of stations,
Ka capacity of station a,
D the set of possible trips (= M×M),
ta,b(t) the transportation time between station a and b = µ−1

a,b

λa,b(t) the transition rate of demands from station a at time t to station b,
Pa,b(t) the set of prices to go from station a to b at time t

at time t+ ta,b at price p(λa,b(t)),
N the number of cars available,
Λ(price) the function giving the demand for a given price.

Variables at time t:
p+a (t) the proportion of requests accepted among those willing to leave station a,
p−a (t) the proportion of requests accepted among those willing to arrive at station a,

that have been accepted to take a vehicle at their departure station,
ya,b(t) the flow leaving station a at time t and arriving at station b at time t+ ta,b,

ydepa,b (t) the flow accepted to leave station a but not yet accepted to arrive at station b,

yrefa,b (t) the flow refused by station b returning to station a (one has ydepa,b (t) = yrefa,b (t) + ya,b(t)),

sa(t) the available stock at station a,
ra(t) the number of parking spots reserved at station a (flow in transit toward a).

Figures 10 and 11 schemes an instance with its corresponding variables.
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max
∑

(a,b)∈D

∫ T

0

ya,b(t)× pricea,b(t) dt (Gain)

s.t.
∑

a∈M

sa(0) = N, (Flow initialization)

sa(0) = sa(T ), ∀a ∈ M, (Flow stabilization)

δ+a (t) =
∑

b

ya,b(t), ∀a ∈ M, ∀t ∈ [0, T ], (Output Flow)

δ−a (t) =
∑

b

yb,a(t− tb,a) +
∑

b

y
ref
a,b (t), ∀a ∈ M, ∀t ∈ [0, T ], (Input Flow)

y
dep
a,b (t) = y

ref
a,b (t) + ya,b(t), ∀(a, b) ∈ D, ∀t ∈ [0, T ], (Flow conservation)

sa(t) = sa(0) +

∫ t

0

δ−a (θ) − δ+a (θ) dθ, ∀a ∈ M, ∀t ∈ [0, T ], (Flow conservation)

p+a (t) =

{

1 if sa(t) > 0,

min
{

1,
δ−a (t)∑
b λa,b(t)

}

otherwise,
∀a ∈ M, ∀t ∈ [0, T ], (Departure equity)

p−a (t) =







1 if sa(t) + ra(t) < Ka,

min

{

1,
δ+a (t)

∑
b
y
dep

a,b
(t)

}

otherwise,
∀a ∈ M, ∀t ∈ [0, T ], (Arrival equity)

y
dep
a,b (t) = p+a (t)× λa,b(t), ∀(a, b) ∈ D, ∀t ∈ [0, T ],

ya,b(t) = p−b (t)× y
dep
a,b (t), ∀(a, b) ∈ D, ∀t ∈ [0, T ], (Pushing flow with equity )

ra(t) =
∑

b

∫ tb,a

0

yb,a(t− θ) dθ, ∀a ∈ M, ∀t ∈ [0, T ], (Reserved Park Spot)

sa(t) + ra(t) ≤ Ka, ∀a ∈ M, ∀t ∈ [0, T ], (Station Capacity)

λa,b(t) = Λ(pricea,b(t)), ∀a ∈ M, ∀t ∈ [0, T ], (Demand elasticity)

pricea,b(t) ∈ Pa,b(t), ∀a ∈ M, ∀t ∈ [0, T ], (Discrete price)

λa,b(t), sa(t), ra(t), ya,b(t), y
dep
a,b (t), y

ref
a,b (t) ≥ 0,

p+a (t), p−a (t), δ+a (t), δ−a (t) ≥ 0.

Remark 2 Without the flow stabilization constraint, it would be easy to compute the value of
a solution with one price. A simple iterative algorithm on the horizon would work. With flow
stabilization constraint it is not clear that cycling on that iterative algorithm would lead to a
stationary solution.

A.2 A non linear dynamic

The previous non linear program might not the simplest formulation of the discrete price op-
timization. However, since discrete price optimization is not a linear problem. Therefore, the
discrete price dynamic can’t be model with a linear program.

Lemma 1 The discrete price dynamic can’t be model with a linear program.
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Figure 10: Variables for 2 stations.

K

t_ij

λt
a,b λt

a,c

yta,b

ytx,a

yta,c

ytz,a

Figure 11: An equity issue.

Proof : A simple evaluation for a given price, hence a given demand λ, presents a non linear
dynamic. Figure 12 shows an example with integer data where the instantaneous flow is an
irrational number.

�

The example is built as follows: There is 6 stations, at time t a and d are not empty, c and f
are not full, b is empty and e is full. All instant demands (λt) have for intensity 1. For a matter
of simplicity, in the sequel, the time parameter (t) will be implicit. Using the paradigm of arrival
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and departure equity we can deduce the instantaneous value of the flow as follows:

ydepa,b = ya,b = λa,b → ya,b = 1 (b is empty, no arrival equity)

ydepb,c

λdep
b,c

=
ydepb,e

λdep
b,e

→ ydepb,c = ydepb,e = x (departure equity in b)

yrefb,c = 0 (c is not full)

ydepb,c + ydepb,e = ya,b + yrefb,d → yrefb,d = 2x− 1 (flow conservation in b)

ydepb,e = yrefb,e + yb,e → yrefb,e = 1− x (flow conservation in b-e)

yb,e + yd,e = 1 → yd,e = x (flow conservation in e)

ydepd,e = 1 (d is not empty)

yb,e

ydepb,e

=
yd,e

ydepd,e

→ x2 + x− 1 = 0 ↔ x =
−1±

√
5

2
(arrival equity in e)

−1−
√
5

2
< 0, therefore yb,e =

−1+
√
5

2
which is an irrational number. The flow dynamic for a given

price is hence not linear.
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Figure 12: Discrete price plumber is non linear dynamic. Exhibition of an irrational solution,
here x = −1±

√
5

2
.
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