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Abstract

This paper gives a fluid approximation for a Vehicle Sharing System Pricing problem
(VSS-P).

1. The VSS-P is formulated as a Closed Queuing Network with finite buffers, time de-
pendent service time variation and continuous controls on transition rates for the
pricing.

2. Solving the model for general (dynamic) policies seams intractable. Therefore a fluid
approximation giving piecewise static policy is formulated. It is conjectured asymp-
totically optimal when the problem is scaled by a factor tending to infinity.

3. A reusable benchmark and an experimental protocol is created for the general Vehicle
Sharing System optimization problem.

4. Numerical experiments are run on toy cities comparing the classic protocol with reser-
vation of the parking spot at destination and the static policy given by the fluid
approximation.

1 Introduction

1.1 Context

Shoup (2005) reports that, based on a sample of 22 US studies, cars looking for a parking spot
contribute to 30% of the city traffic. Moreover cars are used less than 2 hours per day on average
but still occupy a parking spot the rest of the time! Could we have less vehicles and satisfy the
same demand level?

Recently, the interest in Vehicle Sharing Systems (VSS) in cities has increased significantly.
Indeed, urban policies intend to discourage citizens to use their personal car downtown by re-
ducing the number of parking spots, street width, etc. VSS seem to be a promising solution to

1



reduce jointly traffic and parking congestion, noise, and air pollution (proposing bikes or electric
cars). They offer personal mobility allowing users to pay only for the usage.

We are interested in short-term one-way VSS where vehicles can be taken and returned at
different places (paying by the minute). Associated with classical public transportation systems,
short-term one-way VSS help to solve one of the most difficult public transportation problem:
the last kilometer issue (DeMaio, 2009). This is not the case for round-trip VSS where vehicles
have to be returned at the station where they were taken.

The first large-scale short-term one-way VSS was the bicycle VSS Vélib’. It was implemented
in Paris in 2007 and now has more than 1200 stations and 20 000 bikes selling around 110 000
trips per day. It has inspired several other cities all around the world; Now more than 300 cities
have such a system, including Montréal, Bejing, Barcelona, Mexico City, Tel Aviv (DeMaio,
2009).

1.2 One-way Vehicle Sharing Systems: a management issue

However if freedom increases for the user in the one way model, it implies a higher complexity
in its management. In round trip type rental systems, the only stock that is relevant when
managing yield and reservations is the number of available vehicles. In one-way systems, a new
problem occurs since vehicles aren’t the only key resource any more. In practice, parking stations
have a maximum number of spots, and when the total number of vehicle is comparable to the
total number of parking spots, available parking spots become a new key resource.

Since first bicycle VSS, problems of bikes and parking spots availability have appeared very
often. Reasons are various but we can highlight two important phenomenon: the gravitational
effect which indicates that a station is constantly unbalanced (as Montmarte hill in Vélib’), and
the tide phenomenon representing the oscillation of demand intensity along the day (as morning
and evening flows between working and residential areas).

To improve the efficiency of the system, in the literature, different perspectives are studied.
At a strategic level, some authors consider the optimal capacity and locations of bike rental
stations. Shu et al. (2010) propose a stochastic network flow model to support these decisions.
They use their model to design a bicycle VSS in Singapore based on demand forecast derived
from current usage of the mass transit system. Lin and Ta-Hui (2011) consider a similar problem
but formulate it as a deterministic mathematical model. Their model is aware of the bike path
network and mode sharing with other means of public transportation.

At a tactical level, other authors investigate the optimal number of vehicles given a set of
stations. George and Xia (2011) study the fleet sizing problem with constant demand and no
parking capacity. Fricker and Gast (2012); Fricker et al. (2012) look into the optimal sizing of a
fleet in“toy” cities, where demand is constant over time and identical for every possible trip, and
all stations have the same capacity K. They show that even with an optimal fleet sizing in the
most “perfect” city, if there is no operational system management, there is at least a probability
of 2

K+1
that any given station is empty or full.
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At an operational level, in order to be able to meet the demand with a reasonable standard
of quality, in most bicycle VSS trucks are used to balance the bikes among the stations. The
problem is to schedule vehicle routes to visit some of the stations to perform pickup and delivery
so as to minimize the number of users who cannot be served, i.e., the number of users who try to
take a bike from an empty station or to return it to a full station. In the literature many papers
deal already with this problem. A static version of the bicycle VSS balancing problem is treated
in Chemla et al. (2011) and a dynamic one in Contardo et al. (2012).

A new type of VSS has appeared lately: one-way Car VSS with Autolib’ in Paris and Car2go
in more than 10 cities (Vancouver, San Diego, Lyon, Ulm...). With cars, operational balancing
optimization through relocation seems inappropriate due to their size. We have to find another
way to optimize the system.

1.3 Regulation through pricing

The origin of Revenue Management (RM) lies in airline industry. It started in the 1970s and
1980s with the deregulation of the market in the United States. In the early 1990s RM techniques
were then applied to improve the efficiency of round trip Vehicle Rental Systems (VRS), see
Carroll and Grimes (1995) and Geraghty and Johnson (1997). One way rental is now offered in
many VRS, however as one can see in practice for car VRS that it is always much more expensive
than round trip rental. We haven’t found in the literature authors tackling the one way VRS RM
problem. We can only cite Haensela et al. (2011) that model a network of only round trip car
VRS but with the possibility of transferring cars between rental sites for a fixed cost. For trucks
rental on the contrary, companies such as Rentn’Drop in France or Budget Truck Rental in the
United States are specialized in the one way rental offering dynamic pricing. This problem is
tackled by Guerriero et al. (2012) that consider the optimal managing of a fleet of trucks rented
by a logistic operator, to serve customers. The logistic operator has to decide whether to accept
or reject a booking request and which type of truck should be used to address it.

Anyway results for one way VRS are not directly applicable to VSS, because they differ on
several points: 1) Renting are by the day in VRS and by the minute in VSS with a possible
high intensity; 2) One way rental is the core in VSS, for instance only 5% of round trip rental in
Bixi (Morency et al., 2011), and it is classically the opposite in car VRS. 3) There is usually no
booking in advance in VSS, it is a first come first serve rule, whereas usually trips are planned
several days in advance in VRS.

In this paper we are looking at VSS and optimization through pricing. Assuming that demand
is elastic, we want to use prices to influence user choices in order to drive the system towards its
most efficient dynamic.

This work is part of a preliminary study using operation research to 1) Establish the inter-
est of VSS pricing regulation system 2) Give good and possibly simple pricing policies for the
operational management.
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2 Model: An intractable Markov Decision Process

2.1 Restriction to a simple protocol

In a real context, a user wants to use a vehicle to take a trip between an original (GPS) location
a, and a final one b, during a specified moment. On a station based VSS, he tries to find the
closest station to location a with a vehicle to take and the closest station to location b with a
parking spot to return it. All along this process users decisions rely on several correlated inputs
such as: trip total price, walking distance, public transportation competition, time frame...

A time elastic GPS to GPS demand forecast correlated to a user’s decision protocol ruling his
behaviour to take a trip between two specific stations at a specific time seems closer to reality
but introduces of course a big complexity (use of utility function for instance).

Therefore we are here going to consider a simple station to station demand forecast with only
real time reservation for a specified trip. It means that the user will engage himself to return
the vehicle at a specified station and time. Finally it amounts in considering a demand for the
following simplified protocol:

1. A user asks for a vehicle at station a (here and now), with destination b and rental duration
µ−1
a,b;

2. The system offers a price (or rejects the user = infinite price);

3. The user accepts the price, takes the vehicle and a parking spot is reserved (or leaves the
system).

2.2 A Vehicle Sharing System Stochastic Model

2.2.1 Markovian framework

We define in this section a framework to model a stochastic Vehicle Sharing Systems with the
protocol defined in the previous section.

Definition 1 (Vehicle Sharing Systems Markovian Model) In a city there is is a fleet of
N vehicles along a set M (|M| = M) of stations with capacity Ki, i ∈ M. There is an elastic
demand between each station D = M × M. This demand is piecewise constant on time steps
T , it follows a Poisson distribution of parameter λt

a,b(p
t
a,b) to go from station a ∈ M to station

b ∈ M at the period t ∈ T and is function of the proposed price pta,b.

All durations follow an exponential distribution: The transportation time to go from station
a to station b at time step t has for mean 1/µt

a,b; The time step duration t ∈ T has for mean
1/τ t and the total horizon length has for mean T =

∑

t∈T 1/τ t.
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2.2.2 Closed queuing network model

For a given demand λt
a,b for every trips (a, b) ∈ D and every time steps t ∈ T (i.e. for a given

price pta,b). We can model this stochastic Vehicle Sharing System by a Closed Queueing Network
with finite buffers and service time variation, see figure 1.

Each demand (a, b) ∈ D is represented by a server (a− b) which has a time dependent service
rate equal to the average number of clients willing to take a trip from station a to station b: λt

a,b.
Demands with same station of origin a ((a, b) ∈ D, ∀b ∈ M) are sharing the same finite buffer
of size Ka: the capacity of station a. When a vehicle (a job) is picked up to take the trip (a, b)
(is processed by server (a, b)) before going to station (server) b it has to pass by a transportation
state (server) (a − b) with a service time proportional to the number of vehicles na,b in transit
(in the buffer): na,b × µt

a,b.

1

1-1

2-1 2-2

2

1-2

n1,1 × µ1,1

n1,2 × µ1,2

n2,1 × µ2,1

n2,2 × µ2,2

λ2,1

λ1,2λ1,1

λ2,2

Figure 1: A closed queuing network model with servers for demands and transportation times.

2.2.3 Continuous-Time Markov Chain (CT-MC) formulation

If a price pta,b is set for all trips (a, b) ∈ D at all time steps t ∈ T , we can model the closed
queuing network by a Continuous Time-Markov Chain on a set of states S:

S =

{

(

na : a ∈ M, na,b : (a, b) ∈ D, t ∈ T
)

/
∑

i∈M∪D

ni = N & na +
∑

b∈M

nb,a ≤ Ka, ∀a ∈ M, ∀t ∈ T

}

A state s = (na : a ∈ M, na,b : (a, b) ∈ D, t ∈ T ) represents the repartition of the vehicles
in the city space (in station or in transit) at a given time. At time step t, na is the number of
vehicles in station a ∈ M, na,b the number of vehicles in transit between stations a and b serving
a trip demand (a, b) ∈ D.

The transition rates between states are either:
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• The taking of a vehicle at a station a to go to a station b which gives a transition rate
λt
a,b(p

t
a,b) between states (. . . , na, . . . , na,b . . . , t) and states (. . . , na−1, . . . , na,b+1, . . . , t)

with na > 0 and nb +
∑

c∈M nc,b < Kb;

• The arrival of a vehicle at a station b from a station a which gives a transition rate na,b×µt
a,b

between states (. . . , nb, . . . , na,b . . . , t) and states (. . . , nb + 1, . . . , na,b − 1, . . . , t) with
na,b ≥ 1;

• The changing of piecewise constant demand time step which gives a transition rate τ t

between states (. . . , t) and states (. . . , t + 1 mod|T |).

We can note that there is an exponential number of states. Even with only one time-step,
without transportation time but with infinite station capacities there is

(

N+M−1
N

)

states. For
instance for a small system with N = 150 vehicles and M = 50 stations it gives roughly 1047

states! This number grows linearly with the number of time steps and exponentially with the
number of different transportation times considered.

2.3 Model optimization

2.3.1 Vehicle Sharing System Pricing Problem

In the previous section we modelled the system by a closed queuing network with finite buffer
and service time variation that can be described explicitly through a Continuous-Time Markov
Chain. Through this model we want now to optimize the Vehicle Sharing System in order to
maximize the average revenue. To do so we have as leverage the possibility to change the price
to take a trip which will, assuming an elastic demand, influence the demand for such trip. We
call this problem the Stochastic Vehicle Sharing System Pricing Problem.

Definition 2 (VSS Pricing Problem) The Stochastic Vehicle Sharing System Pricing Prob-
lem amounts in setting price for every trip in order to maximize the gain of the Vehicle Sharing
System Markovian Model.

Prices can be Discrete, i.e. selected in a set of possibilities, or Continuous i.e. chosen in a
range. Pricing policies can be Dynamic, i.e. dependent on system’s state (vehicle repartition and
period of the day), or Static i.e. independent on system’s state, set in advance and function of
the trip and the time of the day.

2.3.2 An intractable Markov Decision Process (MDP) Resolution

We can solve this queuing network model through the well known Markov Decision Process
framework based on the Continuous-Time Markov Chain given in the previous section. To do
so define a set Q of possible discrete prices for each trip at each time step. A trip (a, b) ∈ D at
time step t ∈ T at price pt,qa,b, q ∈ Q have a demand (transition rate) λt

a,b(p
t,q
a,b) = λt,q

a,b.
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Solving this MDP computes the best Dynamic System State Dependent Trip Discrete Pricing
policy, i.e. the price for a trip depends of the current state of the system (vehicle repartition).
MDP are known to be polynomially solvable on the number of states |S| and the number of actions
|A| available in each state. For example through Value Iteration, Policy Iteration algorithm or
Linear Programming techniques, c.f. book of Puterman (1994).

In this particular case, we are dealing with a pricing problem and the action space A(s) in
each state s ∈ S is the Cartesian product of the available prices for each trip i.e. A(s) = QM .
However to not suffer from this exponential explosion we can model this problem as a Action
Decomposable Markov Decision Process, c.f. Waserhole et al. (2012). It is a general method
based on the Event Based Dynamic Programming, c.f. Koole (1998), to reduce the complexity
of the action space to A(s) = Q×M . It allows to use Value Iteration, Policy Iteration algorithm
or Linear Programming solution techniques.

Lemma 1 (Dynamic Pricing MDP) The previous MDP gives the best Dynamic System State
Dependent Discrete Pricing Policy for the stochastic VSS Pricing problem.

Anyway the state space is still exponential so it does not give a polynomial algorithm. We
have therefore to look into approximations or simplifications to tackle the problem.

2.3.3 State of the art on this model

In the literature only simple forms of this closed queuing network model with the relationship
to the underlying CT-MC have already been studied for VSS. George and Xia (2011) consider a
VSS with only one time step, one price and infinite station capacities. Under these assumptions
they establish a compact form to compute the system performance using the BCMP network
theory (Baskett et al., 1975). They solve an optimal fleet sizing problem considering a cost to
maintain a vehicle and a gain to rent it.

Fricker and Gast (2012) consider simple cities that they call homogeneous. These cites have a
unique fixed station capacity Ka = K, a constant (one time step) arrival rate and uniform routing
matrix: λt

a,b =
λ
M
; they also have a unique travel time following an exponential distribution of

mean µt
a,b

−1
= µ−1. With a Mean Field Approximation, they obtain some asymptotic results

when the number of stations tends to infinity (M → ∞): If there is no operational regulation
system, the optimal sizing is to have K

2
+ λ

µ
vehicles per station which corresponds in filling

half of the station plus the average number of vehicles in transit (λ
µ
). Moreover they show that

even with an optimal sizing each station has still a probability 1
K+1

to be empty or full which
is considered pretty bad. In another paper Fricker et al. (2012) extend to inhomogeneous cities
modelled by clusters some analytical results and verified experimentally some others.

Fricker and Gast (2012) also study in homogeneous cities a heuristic called “The power of two
choices” using incentives that can be seen as a Dynamic Station State Pricing. When a user is
showing at a station and is taking a vehicle, he gives randomly two possible destination stations
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and the system is directing him to the least loaded one. They show that this policy allows to
drastically reduce the probability to be empty or full for each station to 2−

K

2 .

Finally none of these models includes time dependent demands, pricing or full heterogeneity
which is the subject of this paper with the fluid approximation.

3 A fluid approximation

3.1 A plumbing problem

We use the term plumbing because we are considering continuous vehicles that can in fact be
seen as a flow passing through pipes. The stations are tanks with capacity the size of the station,
and the demands between stations are pipes with width the amount of these demands. Finally
the length of the pipes represents the duration of the trip reservation. Figure 2 gives an example
for two stations.

We are modelling a system which has no direct interaction with the user. The decisions are
static and have to be taken before, once for all. They amount in setting the width of a pipe by
changing the price to pass flow in it: the higher the price is, the smaller the pipe (demand) will
be.

However a free system does not mean that it is possible to do everything! Indeed first, if a
pipe (a demand) exists and there is some flow (vehicle) available in the tank (station), according
to gravity first come first serve law, the flow has to pass through the pipe until no flow is available.

Secondly if there is not enough flow to fulfil all pipes (demands), according to the same law
there should be some equity between them. Hence the proportion of filling up of all pipes should
be equal.

However there is some restrictions to this rule. If it the arrival tank of a pipe is full, it might
be impossible to fulfil this pipe. In this case another equity rule should be applied to all pipes
discharging into this tank.

In other words for each pipe, if its discharging tank is full it has the same proportion of filling
up as the other pipes discharging in this tank, otherwise it has the same proportion of filling up
as the other pipes coming from its source tank.

3.2 More formally

The fluid model is constructed by replacing stochastic demands by a continuous flow with the
corresponding deterministic rate. It gives a deterministic and continuous dynamics and evolves
as a continuous process. Optimizing the fluid model to give heuristics on the stochastic model is a
well know technique. It is derived as a limit under a strong-law-of-large numbers, type of scaling,
as the potential demand and the capacity grow proportionally large; see Gallego and van Ryzin
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λt
a,b

Ki

1
µb,a

Figure 2: A Plumbing Problem.

(1994). Lots of application of this principle are available in the literature to deal with revenue
management problems, see Maglaras (2006) for instance. However to the best of our knowledge
there is no direct classic approach available for a general case including our application. Never-
theless there is some work on theorizing the fluid approximation scheme: Meyn (1997) describes
some approaches to the synthesis of optimal policies for multiclass queueing network models
based upon the close connection between stability of queueing networks and their associated
fluid limit models; Bäuerle (2002) generalizes open multi class queueing networks and routing
problems.

What goes out of all studies is that the fluid model might not be easily constructed and,
even if found, the convergence is not be trivial to prove. Sometimes little modifications, called
tracking policy, have to be made on the solution to be asymptotic optimal. In any case the fluid
approximation is known to give a good approximation and also an upper bound on optimization,
see Bäuerle (2000).

In the next section we propose a continuous prices (controls) fluid approximation giving a
static continuous prices policy directly usable in our Markovian Model. We conjecture that the
value of this flow approximation gives an upper bound on any type of policy (even dynamic
ones).

N.B. We propose a discrete control (prices) fluid formulation in appendix but this formulation
is rather complicated and does not straight forwardly lead to a polynomial optimization. Since
we have no reason to prefer continuous or discrete prices, we therefore focus on continuous ones.

3.3 SCLP model

In this section we are building a Mathematical Programming Model for the fluid approximation
of the Stochastic VSS Pricing Problem with continuous prices.

For each trip (a, b) ∈ D, at each time step t ∈ T , we assume the existence of a continuous
surjective function, strictly decreasing and covering all values in [0, Λt

a,b], computing the demand
for a given price: demand(price). Where Λt

a,b is the maximum demand from station a at time t
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to station b at time t + µ−1
a,b.

3.3.1 A Continuous Convex Program

To build the flow model we define variables:
ya,b(t) the flow leaving station a at time step t to go to station b at time step t+ µ−1

a,b

at price price(ya,b(t));
sa(t) the available stock at station a;
ra(t) the number of parking spots reserved at station a.

We can now build a Continuous Convex Program (CCP) giving the best fluid policy with the
trick that we set the prices to have a demand exactly equal to the flow passing: yta,b = λt

a,b. This
avoid “arrival equity” issues, which occur for discrete prices.

Fluid CCP

max
∑

(a,b)∈D

∫ T

0

ya,b(t)× price(ya,b(t)) dt (Gain)

(1a)

s.t.
∑

a∈M

sa(0) = N (Flow initialization)

(1b)

sa(0) = sa(T ) + ra(T ) ∀a ∈ M (Flow stabilization)
(1c)

sa(t) = sa(0) +

∫ t

0

∑

(b,a)∈D

yb,a(θ − µ−1
b,a)− ya,b(θ) dθ ∀a ∈ M, ∀t ∈ [0, T ] (Flow conservation)

(1d)

0 ≤ ya,b(t) ≤ Λt
a,b ∀a, b ∈ M, ∀t ∈ [0, T ] (Max demand)

(1e)

ra(t) =
∑

b∈M

∫ µ−1

b,a

0

yb,a(t− θ) dθ ∀a ∈ M, ∀t ∈ [0, T ] (Reserved Park Spot)

(1f)

sa(t) + ra(t) ≤ Ka ∀a ∈ M, ∀t ∈ [0, T ] (Station capacity)
(1g)

sa(t) ≥ 0 ∀a ∈ M, ∀t ∈ [0, T ] (1h)

Equations (1b) initialize the flow with the N vehicles available. Equations (1c) constrain
the solution to be stable, i.e. cyclic over the horizon. Equations (1d) is continuous version
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of the classic flow conservation. Equations (1e) constrain the flow on a demand edge not to
be greater than the maximum demand. Equations (1f) set the reserved parking spot variable.
Equations (1g) constrain the maximum capacity on a station and the parking spot reservation:
For a station the number of reserved parking spots plus the number of vehicles already parked
should not exceed its capacity.

Note that this model assume that there is an “off period” between the cycling horizons where
all vehicles are parked at a station. However if it is not the case only some small changes have
to be made in flow equations.

3.3.2 A SCLP approximation

If we consider a concave gain, we can approximate the Continuous Convex Program by a Sepa-
rated Continuous Linear Program (SCLP) polynomially solvable, see Weiss (2008) who gives an
extension of the simplex to solve it.

We keep all constraints of the previous Continuous Convex Program since they are linear and
there is only few of them. We now simply make a linear approximation of the objective concave
function adding a series of linear constraints:

gaina,b(t) ≤ ya,b(t)× price(λa,b(t)) ! gaina,b(t) ≤

∣

∣

∣

∣

∣

∣

a1(a, b, t)× ya,b(t) + b1(a, b, t)
. . .

ak(a, b, t)× ya,b(t) + bk(a, b, t)

∣

∣

∣

∣

∣

∣

That gives us finally a SCLP program with the following objective:

max
∑

(a,b)∈D

∫ T

0

gaina,b(t) dt.

3.4 Discussion

The main advantage of this model is that it considers time dependent demands and that hence
will give a macro management of the tide phenomenon. It gives static policies but nevertheless
it can also help designing Dynamic ones, see Maglaras and Meissner (2006). N.B. A simple way
is to make a multiple launch heuristic.

We assumed continuous surjective demand function and a concave gain. For instance price(λ) =
λ−α with α ∈ [0, 1]. Note that if we tolerate randomized pricing policy, our solution technique
still works for general demand functions.

In the end, a weakness of this approach is that we have no control on the static policy time
step. Indeed the optimal solution might lead to change the price every 5 minutes which is in
practice not suitable.
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Moreover since it is a deterministic approximation, this model doesn’t take into account the
stochastic aspect of the demand. For stations with small capacities it can be a problem since
the variance of the demand could often lead to the problematic states: empty or full.

3.5 Questions & Conjectures

To the best of our understanding the Convex Continuous Program (1) is a fluid approximation
of the stochastic VSS problem. It is classic in the literature, as in Maglaras (2006), to formally
prove it linking the fluid model to an asymptotic limit of a scaled problem.

Definition 3 (s-Scaled VSS Pricing) The s-Scaled VSS Pricing problem is the VSS Pricing
problem when demand rates, station capacities and number of vehicles are multiplied by a coeffi-
cient s while the gain to serve each trip and variance in transportation time are divided also by
s.

Remark 1 The reduction of the variance in the transportation time can be modelled by replacing
the trip length transition rate µ by a succession of s trips with transition rates s× µ.

However in our case when s tends to infinity there still exists some degenerated instances
where the gap between the s-scaled problem and the fluid approximation cannot be reduce. For
instance for 2 vehicles and 2 stations of capacity 1, a s-scaled problem would never be able to
sell any trip contrary to the fluid model. For the instances dealt with this study, simulation
results indicate that the s-scaled problem converges not too far from the fluid model as s tends
to infinity.

One would expect that the uncertainty in sales in the stochastic problem results in lower
expected revenues. It was indeed shown in many applications, as in Gallego and van Ryzin
(1994).

Conjecture 1 (Fluid CCP UB) The Convex Continuous Program (1) optimal solution gives
an Upper Bound on the Dynamic VSS Pricing problem.

We think that one could prove the convergence of dynamic s-scaled problem toward the fluid
model in some subclass of instances, such as system with infinite station capacity. Indeed in
general we conjecture that as s grows, the variance of the demand diminishes, and hence the
optimal value of the dynamic s-scaled problem increases. When s tends to infinity the optimal
solution tends to be static and could be the solution of the fluid CCP formulation in some
sub-classes of instances. The fluid CCP formulation would hence gives an Upper Bound on the
s-scaled problem and notably the 1-scaled problem.

Conjecture 2 (s-scaled increasing) The value of the solution of the dynamic s-scaled problem
is increasing with s.
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C. Morency, M. Trépanier, and F. Godefroy. Insight into the montreal bikesharing system. In
TRB-Transportation Research Board Annual Meeting,Washington, USA, pages Paper #11–
1238, 17 pages, January 2011.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, New York, NY, 1994.

Rentn’Drop. http://www.rentanddrop.com/.

D.C. Shoup. The High Cost of Free-Parking. Planners Press, Chicago, 2005.

J. Shu, M. Chou, O. Liu, C.P Teo, and I-L Wang. Bicycle-sharing sys-
tem: Deployment, utilization and the value of re-distribution. , 2010. URL
http://bschool.nus.edu/Staff/bizteocp/BS2010.pdf.
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A Mathematical formulation of the fluid model for dis-

crete prices

Data:
M the set of stations
Ka capacity of station a
D the set of possible trips (= M×M)
ta,b(t) the transportation time between station a and b = µ−1

a,b

λa,b(t) the transition rate of demands from station a at time t to station b
at time t + ta,b at price p(λa,b(t))

N the number of cars available

Variables:
p+a (t) the proportion of requests accepted among those willing to leave station a at t
p−a (t) the proportion of requests accepted among those willing to have departure at time t,

with a as destination and that have not been refused a departure at their departure station.
ya,b(t) the flow leaving station a at time step t (and arriving at station b at time step t+ ta,b)

ydepa,b (t) the flow accepted by station a (but not yet accepted by station b)

yrefa,b (t) the flow refused by station b returning to station a (one has ydepa,b (t) = yrefa,b (t) + ya,b(t))

sa(t) the available stock at station a
ra(t) the number of parking spots reserved at station a (flow in transit toward a)

Figures 3 and 4 gives an instance with its corresponding variables.
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max
∑

(a,b)∈D

∫ T

0

ya,b(t)× price(a, b, t)) dt (Gain)

s.t.
∑

a∈M

sa(0) = N (Flow initialization)

sa(0) = sa(T ) ∀a ∈ M (Flow stabilization)

δ+a (t) =
∑

b

ya,b(t) ∀a ∈ M, ∀t ∈ [0, T ] (Output Flow)

δ−a (t) =
∑

b

yb,a(t− tb,a) +
∑

b

y
ref
a,b (t) ∀a ∈ M, ∀t ∈ [0, T ] (Input Flow)

y
dep
a,b (t) = y

ref
a,b (t) + ya,b(t) ∀(a, b) ∈ D, ∀t ∈ [0, T ] (Flow conservation)

sa(t) = sa(0) +

∫ t

0

δ−a (θ) − δ+a (θ) dθ ∀a ∈ M, ∀t ∈ [0, T ] (Flow conservation)

δsa(t)

δθ
= δ−a (t)− δ+a (t) ∀a ∈ M, ∀t ∈ [0, T ] (Flow conservation V)

p+a (t) =

{

1 if sa(t) > 0,

min
{

1,
δ−a (t)∑
b λa,b(t)

}

otherwise.
∀a ∈ M, ∀t ∈ [0, T ] (Departure equity)

p−a (t) =







1 if sa(t) + ra(t) < Ka,

min

{

1,
δ+a (t)

∑
b
y
dep

a,b
(t)

}

otherwise.
∀a ∈ M, ∀t ∈ [0, T ] (Arrival equity)

y
dep
a,b (t) = p+a (t)× λa,b(t) ∀(a, b) ∈ D, ∀t ∈ [0, T ]

ya,b(t) = p−b (t)× y
dep
a,b (t) ∀(a, b) ∈ D, ∀t ∈ [0, T ] (Pushing flow with equity )

ra(t) =
∑

b

∫ tb,a

0

yb,a(t− θ) dθ ∀a ∈ M, ∀t ∈ [0, T ] (Reserved Park Spot)

sa(t) + ra(t) ≤ Ka ∀a ∈ M, ∀t ∈ [0, T ] (Station Capacity)

λa(t) = Λ(price(a, b, t)) ∀a ∈ M, ∀t ∈ [0, T ] (Demand elasticity)

Remark 2 Without the flow stabilization constraint, it would be easy to compute the value of
a solution with one price. A simple iterative algorithm on the horizon would work. With flow
stabilization constraint it is not clear that cycling on that iterative algorithm would lead to a
stationary solution.
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Figure 3: Variables for 2 stations.
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Figure 4: An equity issue.
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