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Abstract

This paper gives a fluid approximation for a Vehicle Sharing System Pricing problem
(VSS-P).

1. The VSS-P is formulated as a Closed Queuing Network with finite buffers, time de-
pendent service time variation and continuous controls on transition rates for the
pricing.

2. Solving the model for general (dynamic) policies seams intractable. Therefore a fluid

approximation giving piecewise static policy is formulated. It is conjectured asymp-
totically optimal when the problem is scaled by a factor tending to infinity.

3. A reusable benchmark and an experimental protocol is created for the general Vehicle
Sharing System optimization problem.

4. Numerical experiments are run on toy cities comparing the classic protocol with reser-
vation of the parking spot at destination and the static policy given by the fluid
approximation.

1 Introduction

1.1 Context

Shoup [20] reports that, based on a sample of 22 US studies, cars looking for a parking spot
contribute to 30% of the city traffic. Moreover most cars are not in use 90% of the time (use
2 hours per day) but still occupying parking spots! Could we have less vehicles for the same
demand satisfaction?

Recently, the interest in Vehicle Sharing Systems (VSS) in cities has increased significantly.
Indeed nowadays, urban policies intend to discourage citizens to use their personal car downtown



by reducing the number of parking spots, street width, etc. VSS seem to be a promising solution
to reduce traffic congestion (parking issues), noise, and air pollution (using bikes or electric cars).
They offer personal mobility allowing users to pay only for the usage.

We are interested in short-term one-way VSS where vehicles can be taken and returned at
different places paying by the minute. Associated with classical public transportation systems,
short-term one-way VSS help to solve one of the most difficult public transportation problem:
the last kilometer issue [9]. This is not the case for round-trip VSS, where vehicles have to be
returned at the station where they were taken.

The first large scale short-term one-way VSS was the Bicycle Sharing System (BSS) Vélib’ [3].
It was implemented in Paris in 2007 and now has more than 1200 stations and 20 000 vehicles
selling around 110 000 trips per day. It has inspired several other cities all around the world,

and now more than 300 cities have such a system, including Montréal, Bejing, Barcelona, Mexico
City, Tel Aviv [9].

1.2 One-way Vehicle Sharing Systems: a management issue

However if the freedom increases for the user in the one way model, it implies a higher complexity
in its management. In round trip type rental systems, the only stock that is relevant when
managing yield and reservations is the number of available vehicles. In one-way systems, a new
problem occurs because vehicles aren’t the only key resources any more. In practice, parking
stations have a maximum number of spots, and when the total number of vehicle is comparable
to the total number of parking spots, available parking spots become a new key resource.

Since first BSS, problems of bikes and parking spots availability have appeared very often.
Causes are various but we can highlight two important phenomenons: the gravitational effect
which indicates that a station is constantly unbalanced (as Montmarte hill in Vélib’), and the
tide phenomenon representing the oscillation of demand intensity along the day (as morning and
evening flows between working and residential areas).

To improve the efficiency of the system in the literature different perspectives have been
studied. At a strategic level, some authors considered the optimal capacity and locations of
bike rental stations. Shu et al. [21] proposed a stochastic network flow model to support these
decisions. They used their model to design a BSS in Singapore based on demand forecast derived
from current usage of the mass transit system. Lin and Ta-Hui [I5] considered a similar problem
but formulated it as a deterministic mathematical model. Their model is aware of the bike path
network and mode sharing with other means of public transportation.

At a tactical level, other authors have investigate the optimal number of vehicles given a set
of station. George and Xia [13] have studied the fleet sizing problem with constant demand and
no parking capacity. Fricker and Gast [10] [I1] looked into the optimal sizing of a fleet in“toy”
cities, where demand is constant over time and identical for every possible trip, and all stations
have the same capacity K. They showed that even with an optimal fleet sizing in the most
“perfect” city, if there is no operational system management, there is at least a probability of
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o1 that any given station is empty or full.

At an operational level, when the system is not able to meet the demand with a reasonable
standard of quality, currently in BSS, trucks are used to balance the bikes among the stations.
The problem is to schedule vehicle routes to visit some of the stations to perform pickup and
delivery so as to minimize the number of users who cannot be served, i.e., the number of users
who try to take a bike from an empty station or to return it in a full station. In the literature
many papers deal already with this problem. A static version of the BSS balancing problem is
treated in Chemla et al. [7] and a dynamic one in Contardo et al. [§].

1.3 Our scope: Self Regulation Systems

A new type of VSS have appeared lately: one-way Car Sharing Systems (CSS) with Autolib’
in Paris [1] and Car2go [2] in more than 10 cities (Vancouver, San Diego, Lyon, Ulm...). With
cars, operational balancing optimization through relocation seems inappropriate due to their size.
This is the reason why we are looking here into a different operational management approach:
Self Regulating Systems through pricing. In this study, assuming that demand is elastic, we use
the prices to influence user choices and drive the system towards its most efficient dynamic.

2 Model: An intractable Markov Decision Process

2.1 Restriction to a simple protocol

In a real context, a user wants to use a vehicle to take a trip between an original (GPS) location
a, and a final one b, during a specified moment. On a station based VSS, he tries to find the
closest station to location a with a vehicle to take and the closest station to location b with a
parking spot to return it. All along this process users decisions rely on several correlated inputs
such as: trip total price, walking distance, public transportation competition, time frame...

A time elastic GPS to GPS demand forecast correlated to a user’s decision protocol ruling his
behaviour to take a trip between two specific stations at a specific time seems closer to reality
but introduces of course a big complexity (use of utility function for instance).

Therefore we are here going to consider a simple station to station demand forecast with only
real time reservation for a specified trip. It means that the user will engage himself to return
the vehicle at a specified station and time. Finally it amounts in considering a demand for the
following simplified protocol:

1. A user asks for a vehicle at station a (here and now), with destination b and rental duration
-1
/”La7b;

2. The system offers a price (or rejects the user = infinite price);



3. The user accepts the price, takes the vehicle and a parking spot is reserved (or leaves the
system).

2.2 A Vehicle Sharing System Stochastic Model

2.2.1 Markovian framework

We define in this section a framework to model a stochastic Vehicle Sharing Systems with the
protocol defined in the previous section.

Definition 1 (Vehicle Sharing Systems Markovian Model) In a city there is is a fleet of
N wehicles along a set M (|M|= M) of stations with capacity KC;; i € M. There is an elastic
demand between each station D = M x M. This demand is piecewise constant on time steps
T, it follows a Poisson distribution of parameter X, ,(pl,,) to go from station a € M to station
b€ M at the period t € T and is function of the proposed price pfl’b.

All durations follow an exponential distribution: The transportation time to go from station
a to station b at time step t has for mean 1/#2,5,;’ The time step duration t € T has for mean
1/7" and the total horizon length has for mean T =", .+ 1/7".

2.2.2 Closed queuing network model

For a given demand A} , for every trips (a,b) € D and every time steps t € T (i.e. for a given
price pz’b). We can model this stochastic Vehicle Sharing System by a Closed Queuing Network
with finite buffers and service time variation, see figure [Il

Each demand (a, b) € D is represented by a server (a —b) which has a time dependent service
rate equal to the average number of clients willing to take a trip from station a to station b: A, ;.
Demands with same station of origin a ((a,b) € D, Vb € M) are sharing the same finite buffer
of size K,: the capacity of station a. When a vehicle (a job) is picked up to take the trip (a,b)
(is processed by server (a, b)) before going to station (server) b it has to pass by a transportation
state (server) (a — b) with a service time proportional to the number of vehicles n,j in transit
(in the buffer): ng,p x pl,.

2.2.3 Continuous-Time Markov Chain (CT-MC) formulation

If a price pfbb is set for all trips (a,b) € D at all time steps ¢ € T, we can model the closed
queuing network by a Continuous Time-Markov Chain on a set of states S:

S:{(na: a€ M, ngy: (a,b) €D, tET)/ Z ni:N&na+an,a<lCa, Va € M, VtET}

1eEMUD beM
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Figure 1: A closed queuing network model with servers for demands and transportation times.

A state s = (ng: a € M, ngp: (a,b) € D, t € T) represents the repartition of the vehicles
in the city space (in station or in transit) at a given time. At time step ¢, n, is the number of
vehicles in station a € M, n,; the number of vehicles in transit between stations a and b serving
a trip demand (a,b) € D.

The transition rates between states are either:

e The taking of a vehicle at a station a to go to a station b which gives a transition rate
A p(Ph ) between states (..., Ng, ..., Ngp..., t) and states (..., ng—1,..., ngp+1,..., t)
with ng > 0 and ny + Y oo Nep < Ks;

e The arrival of a vehicle at a station b from a station a which gives a transition rate nqp x pi!,
between states (..., My, ..., Nap..., t) and states (..., ny+1,..., ngp —1,..., t) with
Na b 2 17

e The changing of piecewise constant demand time step which gives a transition rate 7
between states (..., t) and states (..., t+ 1 mod|T]).

We can note that there is an exponential number of states. Even with only one time-step,
without transportation time but with infinite station capacities there is (N +zj‘v/[ _1) states. For
instance for a small system with N = 150 vehicles and M = 50 stations it gives roughly 10%
states! This number grows linearly with the number of time steps and exponentially with the

number of different transportation times considered.



2.3 Model optimization
2.3.1 Vehicle Sharing System Pricing Problem

In the previous section we modelled the system by a closed queuing network with finite buffer
and service time variation that can be described explicitly through a Continuous-Time Markov
Chain. Through this model we want now to optimize the Vehicle Sharing System in order to
maximize the average revenue. To do so we have as leverage the possibility to change the price
to take a trip which will, assuming an elastic demand, influence the demand for such trip. We
call this problem the Stochastic Vehicle Sharing System Pricing Problem.

Definition 2 (VSS Pricing Problem) The Stochastic Vehicle Sharing System Pricing Prob-
lem amounts in setting price for every trip in order to maximize the gain of the Vehicle Sharing
System Markovian Model.

Prices can be Discrete, i.e. selected in a set of possibilities, or Continuous i.e. chosen in a
range. Pricing policies can be Dynamic, i.e. dependent on system’s state (vehicle repartition and
period of the day), or Static i.e. independent on system’s state, set in advance and function of
the trip and the time of the day.

2.3.2 An intractable Markov Decision Process (MDP) Resolution

We can solve this queuing network model through the well known Markov Decision Process
framework based on the Continuous-Time Markov Chain given in the previous section. To do
so define a set Q of possible discrete prices for each trip at each time step. A trip (a,b) € D at
time step ¢ € T at price pfl’%, q € Q have a demand (transition rate) )\Z,b(pi[,%) = )\Z’ff,.

Solving this MDP computes the best Dynamic System State Dependent Trip Discrete Pricing
policy, i.e. the price for a trip depends of the current state of the system (vehicle repartition).
MDP are known to be polynomially solvable on the number of states |S| and the number of actions
|A| available in each state. For example through Value Iteration, Policy Iteration algorithm or
Linear Programming techniques, c.f. book of Puterman [19].

In this particular case, we are dealing with a pricing problem and the action space A(s) in
each state s € S is the Cartesian product of the available prices for each trip i.e. A(s) = QM.
However to not suffer from this exponential explosion we can model this problem as a Action
Decomposable Markov Decision Process, c.f. Waserhole et al. [22]. It is a general method based
on the Event Based Dynamic Programming, c.f. Koole [14], to reduce the complexity of the
action space to A(s) = Q x M. It allows to use Value Iteration, Policy Iteration algorithm or
Linear Programming solution techniques.

Lemma 1 (Dynamic Pricing MDP) The previous MDP gives the best Dynamic System State
Dependent Discrete Pricing Policy for the stochastic VSS Pricing problem.



Anyway the state space is still exponential so it does not give a polynomial algorithm. We
have therefore to look into approximations or simplifications to tackle the problem.

2.3.3 State of the art on this model

In the literature simple forms of this closed queuing network model with the relationship to the
underlying CT-MC have already been studied for VSS. George and Xia [I3] have considered a
VSS with only one time step, one price and infinite station capacities. With these assumptions
they have been able to deduce a compact form to compute the system performance through the
help of the BCMP network theory [4]. In the end considering a cost to maintain a vehicle and a
gain to rent it, they have successfully deduced the optimal sizing of the fleet.

Fricker and Gast [10] have considered simple cities that they called homogeneous. They have
a unique fixed station capacity K, = K, a constant (one time step) arrival rate and uniform
routing matrix, A,, = 4, and a unique exponential travel time of mean ,ufl’b_l = p~'. Through
the use of a Mean Field Approximation, they have been able to give some asymptotic results
when the number of stations tends to infinity: M — oo. If there is no operational regulation

system the optimal sizing is to have % + % vehicles per station which correspond in filling half
of the station plus the average number of vehicles in transit (%) They show that even with an
optimal sizing there is a probability ICL—H to be empty or full for each station which is considered
pretty bad. In another paper Fricker et al. [I1] have extended some analytical results and just
verified experimentally some others on inhomogeneous cities modelled by clusters.

Fricker and Gast [10] have also studied in homogeneous cities a heuristic called “The power
of two choices” using incentives that can be seen as a Dynamic Station State Pricing. When
a user is showing at a station and takes a vehicle, he gives randomly two possible stations of
destination and the system is directing him to the least loaded one. They show that this policy
allows to drastically reduce the probability to be empty or full for each station to 275 .

Finally none of these models includes time dependent demands, pricing or full heterogeneity
which is the subject of this paper with the fluid approximation.

3 A fluid approximation

3.1 A plumbing problem

We use the term plumbing because we are considering continuous vehicles that can in fact be
seen as a flow passing through pipes. The stations are tanks with capacity the size of the station,
and the demands between stations are pipes with width the amount of these demands. Finally
the length of the pipes represents the duration of the trip reservation. Figure 2] gives an example
for two stations.

We are modelling a system which has no direct interaction with the user. The decisions are



static and have to be taken before, once for all. They amount in setting the width of a pipe by
changing the price to pass flow in it: the higher the price is, the smaller the pipe (demand) will
be.

However a free system does not mean that it is possible to do everything! Indeed first, if a
pipe (a demand) exists and there is some flow (vehicle) available in the tank (station), according
to gravity first come first serve law, the flow has to pass through the pipe until no flow is available.

Secondly if there is not enough flow to fulfil all pipes (demands), according to the same law
there should be some equity between them. Hence the proportion of filling up of all pipes should
be equal.

However there is some restrictions to this rule. If it the arrival tank of a pipe is full, it might
be impossible to fulfil this pipe. In this case another equity rule should be applied to all pipes
discharging into this tank.

In other words for each pipe, if its discharging tank is full it has the same proportion of filling
up as the other pipes discharging in this tank, otherwise it has the same proportion of filling up
as the other pipes coming from its source tank.

Figure 2: A Plumbing Problem.

3.2 More formally

The fluid model is constructed by replacing stochastic demands by a continuous flow with the
corresponding deterministic rate. It gives a deterministic and continuous dynamics and evolves
as a continuous process. Optimizing the fluid model to give heuristics on the stochastic one is a
well know technique derived as a limit under a strong-law-of-large numbers type of scaling as the
potential demand and the capacity grow proportionally large; see Gallego and van Ryzin [12].
Lots of application of this principle are available in the literature to deal with revenue manage-
ment problem, see [16] for instance. However to the best of our knowledge there is no direct
classic approach available for a general case including our application. Nevertheless there is some
work on theorizing the fluid approximation scheme: Meyn [18] described some approaches to the
synthesis of optimal policies for multiclass queueing network models based upon the close connec-



tion between stability of queueing networks and their associated fluid limit models; Béuerle [6]
generalized open multi class queueing networks and routeing problems.

What goes out of all studies is that the fluid model might not be easily constructed and
even if found, the convergence will not be trivial to prove. Sometime some little modification,
called tracking policy, have to be made on the solution to be asymptotic optimal, but in any
case the fluid approximation is known to give a good approximation and also an upper bound
on optimization, see Béuerle [5].

In the next section we propose a continuous prices (controls) fluid approximation giving a
static continuous prices policy directly usable in our Markovian Model. We conjecture that the
value of this flow approximation gives an upper bound on any type of policy (even dynamic
ones).

N.B. We propose a discrete control (prices) fluid formulation in appendix but this formulation
is rather complicated and does not straight forwardly lead to a polynomial optimization. Since
we have no reason to prefer continuous or discrete prices, we therefore focus on continuous ones.

3.3 SCLP model

In this section we are building a Mathematical Programming Model for the fluid approximation
of the Stochastic VSS Pricing Problem with continuous prices.

For each trip (a,b) € D, at each time step t € T, we assume the existence of a continuous
surjective function, strictly decreasing and covering all values in [0, A’ ], computing the demand
for a given price: demand(price). Where A}, is the maximum demand from station a at time ¢

to station b at time ¢ + ,u;ll)

3.3.1 A Continuous Convex Program

To build the flow model we define variables:
Yap(t) the flow leaving station a at time step ¢ to go to station b at time step ¢ + u;é

at price price(yqp(t));
sq(t)  the available stock at station a;
ro(t)  the number of parking spots reserved at station a.

We can now build a Continuous Convex Program (CCP) giving the best fluid policy with the
trick that we set the prices to have a demand exactly equal to the flow passing: y., = A, ;. This
avoid “arrival equity” issues, which occur for discrete prices.



Fluid CCP

T
max Z / Yap(t) X price(yap(t)) dt
(a,b)eD 0

(1a)

(Gain)

s.t. Z s.(0) = N (Flow initialization)
aeM
(1b)
54(0) = $a(T") + 14(T) Va € M (Flow stabilization)

(1c)

t
Sa(t) = s4(0) + / Z Yo.a(0 = tya) — Yap(0) df  Ya € M, ¥t €[0,T]  (Flow conservation)
0

(b,a)eD

(1d)

0 < yap(t) < A;b Va,b e M, Vt € [0,T] (Max demand)
(le)

i
ro(t) = Z / Ypa(t — 6) db Va € M, Vt € [0,7] (Reserved Park Spot)
bem 0

(1f)

Sq(t) +1ra(t) < Ky Va e M, Vt € [0,T] (Station capacity)
(1g)

Sq(t) >0 Va e M, Vt € [0,T] (1h)

Equations (ID) initialize the flow with the N vehicles available. Equations (Id) constrain
the solution to be stable, i.e. cyclic over the horizon. Equations (Id)) is continuous version
of the classic flow conservation. Equations (Ie]) constrain the flow on a demand edge not to
be greater than the maximum demand. Equations ([fl) set the reserved parking spot variable.
Equations constrain the maximum capacity on a station and the parking spot reservation:
For a station the number of reserved parking spots plus the number of vehicles already parked
should not exceed its capacity.

Note that this model assume that there is an “off period” between the cycling horizons where
all vehicles are parked at a station. However if it is not the case only some small changes have
to be made in flow equations.

3.3.2 A SCLP approximation
If we consider a concave gain, we can approximate the Continuous Convex Program by a Sep-

arated Continuous Linear Program (SCLP) polynomially solvable, see Weiss [23] who gives an
extension of the simplex to solve it.

10



We keep all constraints of the previous Continuous Convex Program since they are linear and
there is only few of them. We now simply make a linear approximation of the objective concave
function adding a series of linear constraints:

ai(a,b,t) X yap(t) + bi(a, b, t)
9aingy(t) < yup(t) X price(Aap(t)) o gaing(t) <
ar(a,b,t) X yap(t) + bi(a, b, t)

That gives us finally a SCLP program with the following objective:

T
max Z / gaing(t) dt.
0

(a,b)eD

3.4 Discussion

The main advantage of this model is that it considers time dependent demands and that hence
will give a macro management of the tide phenomenon. It gives static policies but nevertheless
it can also help designing Dynamic ones, see Maglaras and Meissner [17]. N.B. A simple way is
to make a multiple launch heuristic.

We assumed continuous surjective demand function and a concave gain. For instance price(\) =
A~ with « € [0,1]. Note that if we tolerate randomized pricing policy, our solution technique
still works for general demand functions.

In the end, a weakness of this approach is that we have no control on the static policy time
step. Indeed the optimal solution might lead to change the price every 5 minutes which is in
practice not suitable.

Moreover since it is a deterministic approximation, this model doesn’t take into account the
stochastic aspect of the demand. For stations with small capacities it can be a problem since
the variance of the demand could often lead to the problematic states: empty or full.

3.5 Questions & Conjectures

To the best of our understanding the Convex Continuous Program () is a fluid approximation
of the stochastic VSS problem. It is classic in the literature, as in Maglaras [16], to formally
prove it linking the fluid model to an asymptotic limit of a scaled problem.

Definition 3 (s-Scaled VSS Pricing) The s-Scaled VSS Pricing problem is the VSS Pricing
problem when demand rates, station capacities and number of vehicles are multiplied by a coeffi-
cient s while the gain to serve each trip and variance in transportation time are divided also by
S.

11



Remark 1 The reduction of the variance in the transportation time can be modelled by replacing
the trip length transition rate p by a succession of s trips with transition rates s X pu.

However in our case when s tends to infinity there still exists some degenerated instances
where the gap between the s-scaled problem and the fluid approximation cannot be reduce. For
instance for 2 vehicles and 2 stations of capacity 1, a s-scaled problem would never be able to
sell any trip contrary to the fluid model. For the instances dealt with this study, simulation
results indicate that the s-scaled problem converges not too far from the fluid model as s tends
to infinity.

One would expect that the uncertainty in sales in the stochastic problem results in lower
expected revenues. It was indeed shown in many applications, as in Gallego and van Ryzin [12].

Conjecture 1 (Fluid CCP UB) The Convex Continuous Program ({Il) optimal solution gives
an Upper Bound on the Dynamic VSS Pricing problem.

We think that one could prove the convergence of dynamic s-scaled problem toward the fluid
model in some subclass of instances, such as system with infinite station capacity. Indeed in
general we conjecture that as s grows, the variance of the demand diminishes, and hence the
optimal value of the dynamic s-scaled problem increases. When s tends to infinity the optimal
solution tends to be static and could be the solution of the fluid CCP formulation in some
sub-classes of instances. The fluid CCP formulation would hence gives an Upper Bound on the
s-scaled problem and notably the 1-scaled problem.

Conjecture 2 (s-scaled increasing) The value of the solution of the dynamic s-scaled problem
1s increasing with s.

4 Simulation

To be able to consider real data we would need to see exactly what was the original demand and
not only which trips were finally served as is available in some exploitation data. Currently we
do not dispose of any data and generating them with time dependent elastic demand, structured
tides, etc. is a complex task. To have a clear experimental protocol we therefore restrain to an
analysis of toy cities.

4.1 Experimental protocol
A city formed with stations on a grid We consider a Vehicle Sharing System implemented

in a city where stations are positioned on a grid of width w and length [ and travel time unity
tmin = 15 (closest distance between two points of the grid). A number M = [ X w of stations are

12



positioned at regular interval on this grid and the distance to go from one to another is computed
thanks to the Manhattan distance in time.

There is either a unique station capacity X = 10 with a number of N = 60% x M x K of
vehicles, or infinite station capacities but with the same number of vehicles as in the system with
station capacity.

Demand pattern A day lasts 12 hours (say from 6h00 to 18h00). At the end of each day, all
vehicles must return to a station. We take as a base case a fully homogeneous city, i.e. demands
for any trip have the same probability to happen: )\Z’b =\, Y(a,b) € D,¥t € T. We then
introduce tide and gravitational phenomenon to look at their influence.

Instances We work on homogeneous cities, it means cities where all trip requests have the
same probability to happen, i.e. X;,b =\, V(a,b) € D, ¥Vt € T. We only consider one way trips:
Mo =0, Yae M, Vt € T. Instance “M w x [ I\, [GT] [TO]” have to be read as follow: It is an
homogeneous city with M stations spread on a grid of size w times [ with a demand intensity A
per minute per station (As = (M — 1) x A\) and with possibly a gravitational effect of intensity
I' or a tide effect of intensity ©.

Optimizing the Number of trip sold In this study, to avoid to consider a complex demand
elasticity function we only optimize the number of trips sold by the system. Therefore we only
have to consider that there exists a continuous surjective demand function, with a maximum

possible demand A, i.e. there exists a price to obtain any demands between 0 and the maximum
demand .

We are investigating if it possible to improve a classic VSS (typical BSS) with a fixed price
set as the lowest possible (CLASSIC), with the fluid heuristic (FLUID) . Note that in our model
the maximum demand for a trip corresponds to this lowest price even if we think that in reality,
with pricing strategy, it would be interesting to reduce this price (even maybe paying users) to
attract more users on certain trips.

Simulation We test the fluid approximation heuristic through a simulation on 250 days with
similar demand patterns (using a 10 days warm up). We use a reservation protocol, i.e. users
have to book a parking spot at destination in order to take a vehicle, and compare FLUID and
CLASSIC pricing policy on the same scenario (same realization of demands),

Regarding the number of trips sold we look at: The average number of trip requests (Nb
trips); The average number of trips sold by CLASSIC policy; The average number of trips sold
by FLUID policy and its relative gain: (FLUID-CLASSIC)/CLASSIC; And the optimization
efficiency with the upper bound (UB) given by the value of the fluid model, its number of trips
sold and relative gain (UB-CLASSIC)/CLASSIC.

Regarding the vehicle utilization, we look at the proportion of time a vehicle is in use

13



for CLASSIC, FLUID policy (or expected for UB): Time (Sold or Expected)/(N x (12h +
MaX (q,b)eD ,u;ll,), and the relative gain of FLUID and UB: (FLUID or UB-CLASSIC)/CLASSIC.

Algorithm implementation To compute easily the SCLP program, we use a discrete time
approximation (with 5 minutes time step) that gives us a Linear Program solvable by a classic
solver. It is a classic way to approximate Continuous Time Linear Program to discretize time
into fixed length time step. It is obviously not optimal, however since in our case we are looking
at a general behaviour having an error of 1% doesn’t really matter, and as we see table [Tl taking
5 minutes time seems to ensure us to have reasonable results.

Note that there is monotonic increases in the FLUID and UB Gap when looking at time step
divisors. However even if the general tendency is in the increase there are examples of smaller
time step being less efficient than a bigger one (for instance 2 and 5 minutes time step in table ).

In our instances, transportation times are multiple of 15 minutes (Manhattan distances). It
as to be scale to fit the demand and the station capacities.

Another point is that time step of discretization rules fluid time step policy, yet we have
piecewise constant demand therefore to be the most accurate we should have time step of dis-
cretization divisor of it.

N.B. When a demand is changing within a time step, a constant constant demand equals to
the average demand is taken.

Time step 180 90 60 45 30 20 15 12
FLUID Rel. Gain. | -82.8% | -55.6 % | -33.9% | -10.3% | -1.8% | -2.2% | 6.4% | 2.5%
UB Rel. Gain. -70.5 % | -38.4% | -6.2% | 23.4 % | 38.6% | 36.1% | 57.3% | 45.3%

Time step 10 8 6 ) 4 3 2
FLUID Rel. Gain. 5.4% 5.9% 6.2% ™% 6.1% | 7.3% | 6.8%
UB Rel. Gain. 52.3% | 52.9% | 54.5% | 58.4% | 54.4% | 58.6% | 57.2%

Table 1: Time discretization (in min.) convergence for instance “024 4x6 I3 T3” with station
capacity 10.

4.2 Influence of the demand intensity

We first look at the influence of the demand intensity in an homogeneous city. In table Pl and
Bl we study the behaviour of the Fluid Approximation heuristic (optimizing the number of trips
sold) in an homogeneous city with 24 stations where the demand intensity ranges from 0.1 to 0.9
demands per station per minute.

In table 2] we see that the performance of the optimization is strongly related to demand
intensity: The higher the demand intensity is, the higher the improvement of the fluid heuristic
will be on the FREE system. However as can be seen in table 3] that looks at the average vehicle
proportion at use, if the Fluid Heuristic increases the number of trips sold it also decreases the

14



use of the vehicles. It can be explained since in order to optimize the number of trips sold in a
homogeneous city, the system favours short distance trips, especially if demand is intense.

K =10
Instance | Nb trips | CLASSIC FLUID UB
024 4x6 11 1656 1215 1215.1 (0.0%) | 1655.9 (36.2%)
024 4x6 13 | 4968 2000 2047.1 (2.3%) | 3042.0 (52.0%)
024 4x6 16 | 9932 2169 2622.2 (20.8%) | 3912.0 (80.2%)
024 4x6 19 | 14906 92214 | 2984.3 (34.7%) | 4482.0 (102.3%)

Table 2: Influence of the demand intensity in homogeneous cities. Legend A(R): A = Absolute
number of trips sold; R = Relative gain compared to the CLASSIC policy.

K =10

Instance | CLASSIC FLUID UB
024 4x6 11 45.4% 45.4% (0.0%) | 68.4% (50.5%)
024 4x6 13 74.4% 54.5% (-26.7%) | 88.7% (19.1%)
024 4x6 16 80.8% 54.6% (-32.3%) | 88.7% (9.7%)
024 4x6 19 | 82.6% | 54.4% (-34.0%) | 88.7% (7.3%)

Table 3: Influence of the demand intensity in homogeneous cities: Legend A(R): A= Average
absolute proportion of vehicles in use; R: Relative gain compared to the CLASSIC policy.

So how to choose the correct demand intensity? In Vélib’ Paris [3] there is approximately 150
000 trips sold per day for about 1400 stations. If we now consider that the majority of the trips
are made during 18 hours of the day it gives approximately an arrival intensity of 0.1 client per
station per minute (= 1750 trips sold per day for 24 stations). In Vélib’ this represents the final
satisfied demand, that means in our simulation what was sold by the CLASSIC policy (regardless
of the relocation process), hence from simulation table 2] we can consider in the following of this
study that an intensity of 0.3 clients per station per minute (& 2000 trips sold per day) is in the
good order of magnitude.

4.3 Influence of gravitation

We study the influence of the introduction of gravitation in an homogeneous city with demand
intensity A\. We split the city into two equal subgrids: £ (left) and R (right) and increase by a
factor I' the demands for trips going from a station [ € £ to a station r € R while we decrease
the opposite demand by the same factor I', i.e. A\gp ='x X and Ny, = I~ x\for (a,b) € LXR
and A, = A otherwise.

This process makes stations £ lacking of vehicles and R exceeding. Yet another consequence
is that the overall number of trip requests increases. This is why to decorrelate this phenomenon,
that we show previous section was in itself a source of optimization gap, we normalize the overall
demand in order to keep in average the same number of requests as in the full homogeneous city.
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Table [l gives some results of simulation with different gravitation factors on a city with 24
stations of capacity 10 and demand intensity per station A; = 0.3. Although FLUID is not
improving a full homogeneous city, as soon as some gravitation appears the gain of using this
heuristic increases significantly, it even sells more than twice the number of trips than CLASSIC
for a gravitation factor of parameter I' = 6.

K =10
Instance Nb trips | CLASSIC FLUID UB
024 4x6 13 4968 2000 2047.1 (2.3%) | 3042.0 (52.0%)
024 4x6 13 G3 | 4963 1256 1649.3 (31.3%) | 2403.8 (91.3%)
024 4x6 13 G6 | 4970 466 1047.3 (124.3%) | 1345.4 (188.1%)
024 4x6 13 G9 | 4968 317 747.5 (135.5%) | 933.0 (194.0%)

Table 4: Influence of gravitations in homogeneous cities.

4.4 Tides in homogeneous cities

We study the influence of tides in an homogeneous city with demand intensity A. We divide the
day into three periods, morning from 6h to 9h middle of the day from 9h to 15h and evening
from 15h to 18h. The city is split into two equals sub grid: £ and R. We have two tides of
equal intensity ©: First in the morning there is © times more demands for trips going from a
station [ € L to a station r € R and © less in the opposite direction, i.e. )\Eijg] =0 x \and

)\El’g} = O x \; Secondly in the evening there is an opposed tide from » € R to | € L, i.e.
AT — 9 %\ and )\E}f”lg] = O~ x A, Otherwise \L; = X. Once again to decorrelate the tide

r,l
phenomenon from the simple increase of demands, we normalize the overall demand in order to

keep in average the same number of demands as in the full homogeneous city.

Tables Bl and [6] give simulation results for different tide factors on a city with 24 stations and
demand intensity per station Ay = 0.3. In cities with a uniform station capacity (table [5), the
optimization has more impact than cities with infinite station capacity (table [6]). It might be
explained by the fact that the system with infinite station capacity can absorb the tides. This
shows the interest of a good station capacity sizing.

K =10
Instance Nb trips | CLASSIC FLUID UB
024 4x6 13 4968 2000 2047.1 (2.3%) | 3042.0 (52.0%)
024 4x6 13 T3 4970 1742 1873.2 (7.4%) | 2780.9 (59.5%)
024 4x6 13 T6 4972 1347 1543.6 (14.5%) | 2278.0 (69.0%)
024 4x6 13 T9 4970 1156 1332.7 (15.2%) | 1951.2 (68.7%)

Table 5: Influence of tide in homogeneous cities with uniform station capacities.
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K =o00
Instance Nb trips | CLASSIC FLUID UB
024 4x6 13 4967 1998 2074.3 (3.7%) | 3042.0 (52.1%)
024 4x6 13 T3 | 4975 1809 1893.6 (4.6%) | 2780.9 (53.7%)
024 4x6 13 T6 | 4968 1524 1577.7 (3.4%) | 2278.0 (49.3%)
024 4x6 13 T9 | 4968 1323 1356.9 (2.4%) | 1951.2 (47.3%)

Table 6: Influence of tide in homogeneous cities with infinite station capacities.

K =10
Scale | Nb trips. | CLASSIC | FLUID UB Rel Diff. FLUID/UB
1 864 448 477 (6.3%) | 632(41.1%) 24.6%
2 867 488 533 (9.2%) | 632(29.6%) 15.7%
5 861 517 | 572 (10.5%) | 632(22.2%) 0.6%
10 864 533 | 594 (11.4%) | 632(18.7%) 6.1%
20 863 541 | 605 (11.8%) | 632(16.8%) 4.2%
50 863 549 | 616 (12.2%) | 632(15.1%) 2.5%
100 863 552 | 620 (12.3%) | 632(14.5%) 1.9%
200 863 554 | 622 (12.2%) | 632(14.0%) 1.5%
500 864 561 | 625 (11.2%) | 632(12.7%) 12%
1000 | 864 568 | 625 (10.0%) | 632(11.4%) 11%

Table 7: Asymptotic convergence of fluid approximation heuristic and s-scaled problem for
instance “004 2x2 13 T3”

4.5 Fluid approximation asymptotic convergence

We study the convergence of the s-scaled problem toward the fluid approximation. We scale
the problem by multiplying the demand rates, station capacities and number of vehicles by a
coefficient s while the gain to serve each trip and average transportation time variance are, in
the mean time, divided by s.

Table [ shows the convergence of the optimization gap and the upper bound for the instance
“004 2x2 13 T3” with station capacities, (this phenomenon can be observed on any instances with
or without capacities). We can see that the less variance the system has (as the scale increases),
the more demands the system is receiving as average, the more each policy sells trips and the
more the Fluid Model was accurate in its expectation. Note that the absolute number of trips
sold by the Upper Bound is constant, since the fluid optimization doesn’t take into account the
variance of the demands anyway.

N.B. for a reason of implementation simplicity, in this simulation we have taken a version of
s-scaled problem with deterministic transportation times.
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4.6 Simulation conclusion

To sum up simulation observations we can say that: There is a strong link between demand
intensity and optimization efficiency in homogeneous cities. When optimizing the number of
trips sold, this relation is in fact natural since there is no need to select which trips to serve
when there is few demands compared to the size of the fleet. We show also that optimizing the
number of trips sold could have for collateral damage to reduce vehicle time usage advantaging
short trips.

When we add tides and gravitations in homogeneous cities, the Fluid Approximation Heuristic
is shown efficient. In all simulations the Upper Bound given by the fluid approximation is rather
far from the final optimization gain given by the corresponding policy. It is probably due to
the high variance of the demands. Indeed when the system is scaled to reduce the variance the
gap between the real and the expected optimization also reduces. In the end we conjecture that
the fluid approximation would be efficient in systems with high traffic and appropriate sizing.
However for relatively low traffic systems, the fluid approximation policy seams worse than the
classic policy.

This is raising a question regarding optimization gap in VSS. Since the Upper Bound given
is conjectured for any policies, static or dynamic, is it possible to find better static policies or
optimizing low traffic VSS should make use of dynamic policies?

Maybe however, the gap comes from the non-tightness of the fluid Upper Bound itself, in
which case sharper (but still tractable) approximations models would be useful.
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A Mathematical formulation of the fluid model for dis-
crete prices

Data:

M the set of stations

Ka capacity of station a

D the set of possible trips (= M x M)

top(t)  the transportation time between station a and b = ,u;llj

Aap(t) the transition rate of demands from station a at time ¢ to station b
at time t + ¢, at price p(Agp(t))

N the number of cars available

Variables:

pt(t)  the proportion of requests accepted among those willing to leave station a at ¢

p, (t)  the proportion of requests accepted among those willing to have departure at time ¢,
with a as destination and that have not been refused a departure at their departure station.

Yap(t)  the flow leaving station a at time step ¢ (and arriving at station b at time step t + t,;)

yffif’ (t) the flow accepted by station a (but not yet accepted by station b)

ygebf(t) the flow refused by station b returning to station a (one has yjfbp(t) = yz;ebf(t) + Yap(t))

Sa(t)
74 (%)

the available stock at station a
the number of parking spots reserved at station a (flow in transit toward a)

Figures [3 and (] gives an instance with its corresponding variables.
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Sa /(5 —(5+
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o2 — 6, (1) - 67 (1)

1
+p) _
Py (t) - 3 9, (¢
{ mln{l, ZMi,z(t)}

1
P, (1) = .
0 {5

yaD(t) = pE(t) X Aap(t)
Yau(t) = py () x yoL (1)

_zb:/O Yp.a(t —0) dO

5q(t) +ra(t) < Ka
Aa(t) = A(price(a, b, t))

de

if sq(t) > 0,
otherwise.
if s4(t) + ra(t) < Ka,

otherwise.

Ya € M,

Ya € M,

Y(a,b) € D,

Ya € M,

Ya € M,

Ya € M,

Ya € M,
V(a,b) € D,
Y(a,b) € D,

Ya € M,

Ya € M,
Ya € M,

Ya € M
vt € [0,T)

vt € [0,T)
vt € [0,T)
Vi € 10,7
Vit € 10,7

vt € [0,T)

Vit € 10,7
vt € [0,T)
Vit € 10,7
Vit € 10,7

vt € [0,T)
Vit € 10,7

(Gain)

(Flow initialization)

(Flow stabilization)

(Output Flow)
(Input Flow)

(Flow conservation)

(Flow conservation)
(Flow conservation V)

(Departure equity)

(Arrival equity)

(Pushing flow with equity )
(Reserved Park Spot)

(Station Capacity)
(Demand elasticity)

Remark 2 Without the flow stabilization constraint, it would be easy to compute the value of
a solution with one price. A simple iterative algorithm on the horizon would work. With flow
stabilization constraint it is not clear that cycling on that iterative algorithm would lead to a

stationary solution.
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Figure 3: Variables for 2 stations.

Figure 4: An equity issue.
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