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Abstract

This paper gives complexity results on the deterministic versions of the Vehicle Sharing
System Pricing problem. Solving these deterministic problems could give some Upper
Bound on the general problem or help designing robust optimization algorithm. However
we show that most of them are NP-hard.

1. We define the First Come First Serve (FCFS) flow, and the priced FCFS flow based
on a scenario approach.

2. We define two deterministic problems based on the priced FCFS flow: Max FCFS

Flow Trip Pricing and Max FCFS Flow Station Pricing. We show that

they are both NP-Hard.

3. We define the Max FCFS Flow Station Capacities problem based on the

FCFS flow and show its NP-hardness.

4. We talk about the Max Flow Upper Bound on FCFS flow problems.

1 Introduction

1.1 Context

Shoup (2005) reports that, based on a sample of 22 US studies, cars looking for a parking spot
contribute to 30% of the city traffic. Moreover cars are used less than 2 hours per day on average
but still occupy a parking spot the rest of the time! Could we have less vehicles and satisfy the
same demand level?

Recently, the interest in Vehicle Sharing Systems (VSS) in cities has increased significantly.
Indeed, urban policies intend to discourage citizens to use their personal car downtown by re-
ducing the number of parking spots, street width, etc. VSS seem to be a promising solution to
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reduce jointly traffic and parking congestion, noise, and air pollution (proposing bikes or electric
cars). They offer personal mobility allowing users to pay only for the usage.

We are interested in short-term one-way VSS where vehicles can be taken and returned at
different places (paying by the minute). Associated with classical public transportation systems,
short-term one-way VSS help to solve one of the most difficult public transportation problem:
the last kilometer issue (DeMaio, 2009). This is not the case for round-trip VSS where vehicles
have to be returned at the station where they were taken.

The first large-scale short-term one-way VSS was the bicycle VSS Vélib’. It was implemented
in Paris in 2007 and now has more than 1200 stations and 20 000 bikes selling around 110 000
trips per day. It has inspired several other cities all around the world; Now more than 300 cities
have such a system, including Montréal, Bejing, Barcelona, Mexico City, Tel Aviv (DeMaio,
2009).

1.2 One-way Vehicle Sharing Systems: a management issue

However if freedom increases for the user in the one way model, it implies a higher complexity
in its management. In round trip type rental systems, the only stock that is relevant when
managing yield and reservations is the number of available vehicles. In one-way systems, a new
problem occurs since vehicles aren’t the only key resource any more. In practice, parking stations
have a maximum number of spots, and when the total number of vehicle is comparable to the
total number of parking spots, available parking spots become a new key resource.

Since first bicycle VSS, problems of bikes and parking spots availability have appeared very
often. Reasons are various but we can highlight two important phenomenon: the gravitational
effect which indicates that a station is constantly unbalanced (as Montmarte hill in Vélib’), and
the tide phenomenon representing the oscillation of demand intensity along the day (as morning
and evening flows between working and residential areas).

To improve the efficiency of the system, in the literature, different perspectives are studied.
At a strategic level, some authors consider the optimal capacity and locations of bike rental
stations. Shu et al. (2010) propose a stochastic network flow model to support these decisions.
They use their model to design a bicycle VSS in Singapore based on demand forecast derived
from current usage of the mass transit system. Lin and Ta-Hui (2011) consider a similar problem
but formulate it as a deterministic mathematical model. Their model is aware of the bike path
network and mode sharing with other means of public transportation.

At a tactical level, other authors investigate the optimal number of vehicles given a set of
stations. George and Xia (2011) study the fleet sizing problem with constant demand and no
parking capacity. Fricker and Gast (2012); Fricker et al. (2012) look into the optimal sizing of a
fleet in“toy” cities, where demand is constant over time and identical for every possible trip, and
all stations have the same capacity K. They show that even with an optimal fleet sizing in the
most “perfect” city, if there is no operational system management, there is at least a probability
of 2

K+1
that any given station is empty or full.
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At an operational level, in order to be able to meet the demand with a reasonable standard
of quality, in most bicycle VSS trucks are used to balance the bikes among the stations. The
problem is to schedule vehicle routes to visit some of the stations to perform pickup and delivery
so as to minimize the number of users who cannot be served, i.e., the number of users who try to
take a bike from an empty station or to return it to a full station. In the literature many papers
deal already with this problem. A static version of the bicycle VSS balancing problem is treated
in Chemla et al. (2011) and a dynamic one in Contardo et al. (2012).

A new type of VSS has appeared lately: one-way Car VSS with Autolib’ in Paris and Car2go
in more than 10 cities (Vancouver, San Diego, Lyon, Ulm...). With cars, operational balancing
optimization through relocation seems inappropriate due to their size. We have to find another
way to optimize the system.

1.3 Regulation through pricing

The origin of Revenue Management (RM) lies in airline industry. It started in the 1970s and
1980s with the deregulation of the market in the United States. In the early 1990s RM techniques
were then applied to improve the efficiency of round trip Vehicle Rental Systems (VRS), see
Carroll and Grimes (1995) and Geraghty and Johnson (1997). One way rental is now offered in
many VRS, however as one can see in practice for car VRS that it is always much more expensive
than round trip rental. We haven’t found in the literature authors tackling the one way VRS RM
problem. We can only cite Haensela et al. (2011) that model a network of only round trip car
VRS but with the possibility of transferring cars between rental sites for a fixed cost. For trucks
rental on the contrary, companies such as Rentn’Drop in France or Budget Truck Rental in the
United States are specialized in the one way rental offering dynamic pricing. This problem is
tackled by Guerriero et al. (2012) that consider the optimal managing of a fleet of trucks rented
by a logistic operator, to serve customers. The logistic operator has to decide whether to accept
or reject a booking request and which type of truck should be used to address it.

Anyway results for one way VRS are not directly applicable to VSS, because they differ on
several points: 1) Renting are by the day in VRS and by the minute in VSS with a possible
high intensity; 2) One way rental is the core in VSS, for instance only 5% of round trip rental in
Bixi (Morency et al., 2011), and it is classically the opposite in car VRS. 3) There is usually no
booking in advance in VSS, it is a first come first serve rule, whereas usually trips are planned
several days in advance in VRS.

In this paper we are looking at VSS and optimization through pricing. Assuming that demand
is elastic, we want to use prices to influence user choices in order to drive the system towards its
most efficient dynamic.

This work is part of a preliminary study using operation research to 1) Establish the inter-
est of VSS pricing regulation system 2) Give good and possibly simple pricing policies for the
operational management.

A model for the Stochastic Vehicle Sharing System Pricing problem based on Markov Decision
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Processes (MDP) is proposed in Waserhole et al. (2012). The number of states of this MDP
formulation is exponential and exact solution techniques are therefore not applicable. Hence
they give a fluid approximation to compute static policies.

1.4 Deterministic approach

In this paper we develop a deterministic model for the Vehicle Sharing System Pricing problem.
It is a classic and natural way to study deterministic version of stochastic problems. We consider
that all trip requests are available at the beginning of the time horizon. In practice it amounts
to optimize a posteriori the system, using exploitation data (scenario of the day).

On the one hand, such optimization gives a bound for an on-line stochastic optimization
problem on a given instance. On the other hand, solving efficiently the deterministic problem on
a scenario is the first step toward robust optimization methods, at least for the models describing
uncertainty by sets of scenarii. Moreover Morency et al. (2011) showed that in Montreal BSS
Bixi 68% of the trips were made by “members”, and that their frequencies of use are quite stable
along the week. We can hence consider that this demand is quasi deterministic and considering
deterministic requests might be a good approximation.

In the remaining of the paper we derive complexity results for the deterministic Vehicle
Sharing System Pricing problem. We show that the combinatorial problems involved are NP-
hard.

2 First Come First Serve constrained flows

We define a new type of constrained flow, the “First Come First Serve flow” (FCFS flow) over a
time and space network. Even if it is not explicitly specified nor named, this constraint is already
known in continuous time models. For instance it arises naturally in many applications such as
in the fluid approximation of a Markov Decision Process (Waserhole et al., 2012).However to the
best of our knowledge it is not studied, nor mentioned, in a discrete time model.

In order to remain in the lexical field of VSS we speak about a flow of vehicles transiting
(thanks to users) along stations. In a more general context it can be called a flow of resources
along locations.

2.1 First Come First Serve flows in Time and Space Network

Consider a automatic flow, that is without decision variables, of N vehicles transiting among
a set S of stations S with capacities Ks, s ∈ S on a time horizon H = [0, T ]. At time 0 we
have an initial repartition of the vehicles among the stations. The vehicles then transit between
stations by accepting spatio-temporal user trip requests. The set of trip requests R is known at
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the beginning of the horizon. A trip request r ∈ R asks for a vehicle between an original station
sro at time tro and a destination station srd at time trd for a price pr.

Given such data we build a time and space network and follow the evolution of the process.
From the beginning of the horizon, we increase the time until an event (trip request or vehicle
arrival) occurs. At time t the trip request r = (sro, t

r
o = t, srd, t

r
d, p

r) ∈ R is accepted if and only if
there is a vehicle available at station sro at time t and a parking spot available at station srd also
at time t. If the trip request r is accepted: It generates a gain pr, removes a vehicle from station
sro and reserves a parking spot at station srd until time trd ≥ t; At time trd the vehicle is available
again at station srf . If the trip is rejected, nothing happens.

We call this deterministic process “First Come First Serve Flow”. The gain generated by this
process can be evaluated in linear time. Figure 1 gives an example of a First Come First Serve
flow with three stations, 12 requests and 1 vehicle available at station a at the beginning of the
horizon. In this “scenario”, only 3 trips among 12 are served giving a gain of 24.

Remark 1 FCFS flows can be evaluated in linear time. Hence the decision versions of the
optimization problems considered in this paper are in NP .

2.2 Priced First Come First Serve flows

Consider now that the system has established a fixed price pa,b for each trip (a, b) ∈ S2. The
price (denoted prmax) of each request r ∈ R is now to be interpreted as the maximum amount the
user is willing to pay for taking the trip. Let Rp be the requests which accept to pay the asked
prices: Rp = {r ∈ R : prmax ≥ psro,srd}. A request r ∈ R to take a trip from station sro to station
srd is accepted if and only if it can afford the asked price, i.e. prmax ≥ psro,srd and there is a vehicle
and a parking spot available at time tro. When request r is accepted, it generates a gain psro,srd
(not prmax).

We call this automatic process “Priced First Come First Serve Flow”. It amounts in evalu-
ating the gain generated by a First Come First serve flow with requests Rp induced by a set of
prices p : S2 → R and can also be evaluated in linear time.

Figure 2 gives an example of an evaluation of such a process with 3 stations and 1 vehicle.
Here, out of 12 requests, 10 can afford the asked price and finally 6 are served for a gain of 49.

3 Pricing problems

We now define optimization problems based on the priced First Come First flow. We want to
optimize the system through price leverage: We are looking for pricing policies that maximize
the gain of the induced priced FCFS flow.

We state the complexity of two optimization problems both shown NP-Hard: The FCFS flow
trip pricing problem which sets a price for every trips independently and the FCFS flow station
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pricing problem which sets, for each station, a price to take and a price to return a vehicle. Note
that the complexity results can directly be extended to ”time dependent prices”, for instance
prices that are allowed to be different in the morning, middle of day and evening (which might
help to control tide phenomenon).

3.1 FCFS Flow Trip Pricing problem

We now define the Max FCFS Flow Trip Pricing Problem which consists in setting a price
for each trip in order to maximize the gain of the induced priced FCFS Flow.

Problem 1 Max FCFS Flow Trip Pricing

• Instance: A set of stations S with capacities Ks for s ∈ S, a number N of vehicles,
the vehicles distribution among the stations at the beginning of the horizon, a set R =
{(sro, t

r
o, s

r
d, t

r
d, p

r
max), r ∈ R} of trip requests.

• Solution: The prices p : S2 → R to take a trip.

• Measure: The generated gain induced by the priced FCFS flow with prices p.

We have the following complexity results.

Theorem 1 Max FCFS Flow Trip Pricing problem is NP-hard, even with one vehicle,
infinite station capacities and a unique maximum price.

Proof: STILL DRAFT

We show that we can solve any instance (with n variables andm clauses) of the NP-hard problem
3-SAT (Garey and Johnson, 1979) with an instance of the Max FCFS Flow Trip Pricing

problem.

We build a system that has one vehicle, and stations of infinite capacities. Figure 3 schemes
an example of such reduction with two clauses. For each variable l, we define one station when it
is unassigned: l̇; and two when it is assigned: l and its complement l̄. We define also two special
stations res and tmp. There is only one vehicle in the system and it is located at station res at
the beginning of the horizon.

We create the time and space demands with unique maximum price 1 as follows: We take
iteratively each clause a∨ b∨ c containing variables ȧ, ḃ and ċ. At time 1 there is a demand from
station res to the station representing the first variable: ȧ. At time 2 we model the assignment
of variable ȧ with two demands: from stations ȧ to a and then from ȧ to ā. At time 3 we add a
demand from the station representing the literal contained in the clause, a, to station res. Then
we add another demand from station ā representing the complement of literal contained in the
clause to the station representing the next variable ḃ. At time 4 we have two successive demands,
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from stations res to tmp and then from station tmp to res. At time 5 we construct the same
series of demand as in times 2,3 and 4 but with the next variable ḃ. At time 6 we finally treat
the last variable, ċ by assigning it to a literal in the same way as in time 2 and then by adding a
demand from the station representing the literal c contained in the clause, to station res. This
construction is then repeated for the next clause.

For a given clause, in the associated demands the longest weighted path has a length 7 and
gain 7. There is 3 different longest weighted path but all are starting and ending at station
res. For a given clause the maximum possible gain is then 7 and it is reached if and only if the
assignment of variables satisfy the current clause.

Finally 3-SAT has a solution if and only if the instance of Max FCFS Flow Trip Pricing

has a solution with gain 7m which proves that Max FCFS Flow Trip Pricing is NP-hard.
�

Vehicles

distribution

Times 1 42 3 1’ ...5 6

+1

0
0
0

0
0
0

0
0
0

0

res

tmp

a

ā
ȧ

b

b̄
ḃ

c

c̄
ċ

Clause a ∨ b̄ ∨ c Clause c̄ ∨ . . .

Figure 3: Reduction of 3-SAT to FCFS Flow Trip Pricing. Example with clauses (a ∨ b̄ ∨
c) ∧ (c̄ ∨ . . .).

3.2 FCFS Flow Station Pricing problem

We are now considering another way to set the prices p(a, b) to take a trip (a, b) ∈ S2. It is
an aggregation (addition) of a price pt(a) to take a vehicle in station a and pr(b) to return it
in station b: p(a, b) = pt(a) + pr(b). We name it the Max FCFS Flow Station Pricing

Problem.

This type of pricing has an interest in a context where users have several possibilities for
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origin/destination stations. It can help them to figure out quickly the different options they
have to take a trip. For example with the use of price heated maps as in Papanikolaou (2011):
Stations are coloured depending on their prices, for instance from yellow for cheap to red for
expensive.

In this paper we are interested in studying the complexity of Max FCFS Flow Station

Pricing. We show that this problem is already NP-hard in the single choice context, that is
only users have one possibility for origin/destination.

A REPHRASER: Moreover without loss of generality we consider that prices are independent
from the distance/time the vehicle is used.

Problem 2 Max FCFS Flow Station Pricing

• Instance: A set of stations S with capacities Ks for s ∈ S, a number N of vehicles,
the vehicles distribution among the stations at the beginning of the horizon, a set R =
{(sro, t

r
o, s

r
d, t

r
d, p

r
max), r ∈ R} of trip requests.

• Solution: Prices to take and return a vehicle at a station, pt and pr: S → R.

• Measure: The generated gain induced by the priced FCFS flow with prices p(a, b) =
pt(a) + pr(b).

Theorem 2 Max FCFS Flow Station Pricing is NP-hard even with one vehicle and infi-
nite station capacities.

Proof: We can solve a Max FCFS Flow Trip Pricing instance with a Max FCFS

Flow Station Pricing instance with the following construction: We use the same set of
stations plus for each possible trip (a, b) we create two new stations, ab1 and ab2. Then for each
trip request r = (sro = a, tro, s

r
d = b, trd, p

r
max) we create three trip requests: (a, tro, ab1, t

r
o + ǫ, 0),

(ab1, tro+2ǫ, ab2, tro+3ǫ, prmax) and (ab2, tro+4ǫ, b, trd, 0), with ǫ such that 4ǫ < trd−tro. Finally Max

FCFS Flow Trip Pricing has a solution of gain at least g if and only if the built instance of
Max FCFS Flow Station Pricing has a solution of gain at least g.

We know from the previous section that Max FCFS Flow Trip Pricing is NP-hard even
with one vehicle, therefore Max FCFS Flow Station Pricing is also NP-hard even with one
vehicle and infinite station capacities. �

The opposite reduction is not trivial. In fact there is another difficulty in the Max FCFS

Flow Station Pricing not linked with the flow constraint: the quadratic prices assignment.

To prove that Max FCFS Flow Station Pricing is NP-hard even without the flow
constraint we define two new NP-hard graph optimization problems: Max Oriented Vertex

Pricing and its unoriented version Max Vertex Pricing. They are both simplifications of
Max FCFS Flow Station Pricing.

9



Let G(V,A, c) be a weighted directed multi-graph. Vertices V represent the stations and arcs
a ∈ A the trip requests with a weight ca for its maximum price. The problem is to set two prices
to take and return a vehicle, pt(i) and pr(i), for each vertex i ∈ V in order to maximize the
total gain on the arcs. A gain of pt(i) + pr(j) is generated for each arc (i, j) ∈ A if and only if
pt(i) + pr(j) ≤ ci,j . More formally:

Problem 3 Max Oriented Vertex Pricing

• Instance: A weighted directed multi-graph G(V,A, c) with c : A → R.

• Solution: Prices pt and pr: V → R.

• Measure: The generated gain:

∑

(i,j)∈A
/ pt(i)+pr(j)≤ci,j

pt(i) + pr(j).

We extend the previous definition to weighted undirected multi-graph G(V,E, c). We have
now to set only one price p(i) for each vertex i ∈ V in order to maximize the total gain on the
edges. A gain of p(i) + p(j) is generated for each edge (i, j) ∈ E if and only if p(i) + p(j) ≤ ci,j.
More formally:

Problem 4 Max Vertex Pricing

• Instance: A weighted undirected multi-graph G(V,E, c) with c : E → R.

• Solution: Prices p: V → R.

• Measure: The generated gain:

∑

(i,j)∈E
/ p(i)+p(j)≤ci,j

p(i) + p(j).

To study the complexity of the last two problems, first recall theMaximum Not-All-Equal

3-Satisfiability problem (NAE-3-SAT) which is known to be NP-hard, see Garey and Johnson
(1979):

Problem 5 Maximum Not-All-Equal 3-Satisfiability

• Instance: A set U of n variables and a collection C of m disjunctive clauses of 3 literals,
where a literal is a variable or a negated variable in U .
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• Solution: A truth assignment for U and a subset C ′ ⊆ C of the clauses such that each
clause in C ′ has at least one true literal and at least one false literal.

• Measure: |C ′|.

We now present a polynomial reduction from NAE-3-SAT to Max Vertex Pricing to
show that the latter is NP-hard.

Theorem 3 Max Vertex Pricing is NP-hard even on bipartite graphs.

Proof: We show a polynomial transformation from any NAE-3-SAT instances to a Max

Vertex Pricing instance defining a bipartite graph. Figure 4 schemes it on an example.

Consider a general NAE-3-SAT instance with n variables and m clauses. Each variable l
generates a q multi-edges C4 with vertices {l, l′, l̄, l̄′}. q will be defined later on. The q edges
between (l, l′) and (l̄, l̄′) have weight 1, the q edges between (l, l̄′) and (l′, l̄) have weight A (with
A any constant ≥ 4). Each clause (a ∨ b ∨ c) generates three edges of weight A+ 1 between the
vertices representing its literals: (a, b′), (b, c′) and (c, a′). Note that this construction forms a
bipartite graph since there are only edges between “normal” vertices and “prime” vertices.

The optimal solution for a multi-edged C4 representing variable l is worth q × (2A+ 1). As
scheme Figure 5, it is pl = A− ǫ, pl′ = A− 1 + ǫ, pl̄ = 1− ǫ and pl̄′ = ǫ with ǫ ∈ [0, 1] up to an
exchange of l ↔ l̄ and l′ ↔ l̄′. Note that all other pricing would at least make a loss of q. We
say that a variable l is true (t) when pl ≥ 3, pl′ ≥ 3 and when pl̄ ≤ 1, pl̄′ ≤ 1. We say that it is
false (f) when pl ≤ 1 and pl′ ≤ 1 and when pl̄ ≥ 3 and pl̄′ ≥ 3.

We set q such that optimizing our system iteratively starting by the multi-edged C4 (assigning
the variables) and then dealing with the clauses is optimal. It ensures that each literal is either
true (t) or false (f). There are only 4 possible types of clause generating different gains: (f ∨
f ∨ f) = 3, (f ∨ f ∨ t) = 2A + 1, (f ∨ t ∨ t) ∈ [2A − 1..2A + 1] and (t ∨ t ∨ t) = 0. We deduce
that m clauses generates at most a gain of m × (2A + 1) and to have an ordered optimization
optimal we only need to set q > m× (2A+ 1).

In the end there exists a satisfiable assignment to NAE-3SAT if and only if there exists
a solution for the corresponding instance of Max Vertex Pricing that is worth at least
q × n× (2A+ 1) +m× (2A− 1). It proves that Max Vertex Pricing is NP-hard. �

We now present a polynomial reduction from Max Vertex Pricing to Max Oriented

Vertex Pricing to show the latter is NP-hard.

Theorem 4 Max Oriented Vertex Pricing is NP-hard even on bipartite graphs.

Proof: From theorem 3 we know that Max Vertex Pricing is NP-hard even on bipartite
graphs. Moreover a bipartite graph G(V1, V2, E) can be oriented such that all vertices of V1 are
sources and all vertices of V2 are sinks. With such construction we can solve Max Vertex
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Pricing on a bipartite graph with an instance of Max Oriented Vertex Pricing. Hence
Max Oriented Vertex Pricing is NP-hard even on bipartite graph. �

We use now the fact that Max Oriented Vertex Pricing is NP-hard to return to our
original problem, Max FCFS Flow Station Pricing and to show its complexity.

Theorem 5 Max FCFS Flow Station Pricing is NP-hard, even with an unlimited number
of vehicles, infinite station capacities and requests defining a bipartite graph.

Proof: Solving an instance of Max FCFS Flow Station Pricing with an unlimited number
of vehicles and infinite station capacities is equivalent to solve an instance of Max Oriented

Vertex Pricing taking each request as an arc. Max Oriented Vertex Pricing is shown
NP-hard on bipartite graphs, therefore Max FCFS Flow Station Pricing is NP-hard even
with requests defining a bipartite graph. �

4 Station capacity problem

In the previous section we discussed the complexity of an operational problem (using pricing as
leverage), which is based on the priced FCFS flow. In this section we study the complexity of
a tactical problem: Setting the optimal capacity for each station given a set of requests and a
system evolution following a FCFS flow.

Intuitively, without any additional constraints, one would like to set the station capacities K
equal to the number of vehicles, i.e. ∀s ∈ S, Ks = N . However it might be interesting to set
smaller values for K in order to control the location of vehicles in the system (subject to tides
phenomenon for instance). Station capacities are then used as a balancing tool. Figure 6 gives
an example of station capacity optimization. For this instance the optimal capacity for station b
is Kb = N/2 while station a and c have a capacity ≥ N . It will allow N/2 vehicles to take half of
the trips from station a to station b at price 1 until station b is full. Then the remaining vehicles
will have to wait in station b the requests going to station c at price 2. This policy generates the
optimal a final profit of 3N/2.

Problem 6 Max FCFS Flow Station Capacities

• Instance: A set of stations S, a number N of vehicles with their repartition among the
stations at the beginning of the horizon, a set of trip requests r ∈ R to go from an origin
station sro at time tro to a destination station srd at time trd for a price pr.

• Solution: A function K : S → N
+ defining the capacity of each station.

• Measure: The gain generated by the FCFS flow with station capacities K.

Once again this problem involving a FCFS flow is NP-hard.
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Figure 6: Example where proper station capacities increase the number of trips sold. Here
Ka = N/2 and Kb, Kc ≥ N with a optimal profit of 3N/2.

Theorem 6 Max FCFS Flow Station Capacities is NP-hard.

Proof: Let’s show a reduction of the classical NP-hard problem 3-SAT (Garey and Johnson,
1979) to our capacity problem. Figure 7 schemes such reduction.

Let’s consider m clauses and n variables. We have 2n+m+2 stations: two for each variable
(for a true assignment of the variable l and its complement l̄), one for each clause, one for the
source s and one for the result res.

At the beginning of the horizon we have 3m vehicles available at station s, and none elsewhere.
For each clause c = l1∨ l2∨ l3 composed with variables v1, v2 and v3, we have a series of instants:
At time 1, there are 3 requests of price 1 from the station source s to stations v1, v2 and v3. At
time 2, there are 3 requests of price 1 from the station v1, v2 and v3 to respectively station v̄1,
v̄2 and v̄3. At time 3, there are 3 requests of price 1 from the stations l1, l2 and l3 to station c.
At time 4, we empty each station with 6 requests of price 1 from stations v1, v2, v3, v̄1, v̄2 and
v̄3 to station res. At time 5, there is one request of price 9m from the station c to station res.
We repeat the same construction for the next clauses after time 5.

Optimal solutions have the following structure: For each variable l, station l has a capacity
≥ 1. If variable l is assigned to true, station l̄ has a capacity equals to 0. Otherwise if it assigned
to false station l̄ has a capacity ≥ 1. Stations representing clauses have a capacity equal to 1.
Station s and res have a capacity ≥ 3m.

Finally 3-SAT is satisfiable if and only if this instance has a solution of gain at least m ×
(9m+ 6), which shows that Max FCFS Flow Station Capacities is NP-hard. �
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Figure 7: Reduction of 3-SAT to FCFS Flow Station Capacities with clauses: (a ∨ b ∨
c̄) ∧ (ā ∨ b ∨ c̄).

5 Max Flow Upper Bound

Given that the previous FCFS flow problems are NP-hard, bounds or approximation algorithms
might be of interest. A “classic” flow is a relaxation of the First Come First Serve flow evaluation.
One of the most famous optimization problem on classic flows is the Max Flow problem which
is polynomially solvable. Max Flow gives trivially an Upper Bound (UB) on many FCFS
optimization problems (Max FCFS Flow Trip Pricing. . . ). However, as we are going to
show in this section, in a general context there is no guaranty of quality for this bound and just
at most a poor one for a subclass of problem.

Indeed, because Max Flow doesn’t take into account reservations of parking spot at the
destination station it can give an UB arbitrarily far from the optimal value. Figure 8 gives an
example with 2 stations of capacity 1 and 2 vehicles with q crossed demands. In this instance
Max Flow is able to serve all q requests while any FCFS flow can’t serve any.

Now even if we consider unlimited station capacities, which means that we don’t have the
problem of parking spot reservation anymore, Max Flow UB can again be arbitrarily far from
the optimal value. Figure 9 schemes an example, with 2 stations Lower (L) and Upper (U) with
1 vehicle available at L at the beginning of the horizon and requests of maximum price 1. The
first request goes from L to U and takes the entire horizon to reach the station U. Then there
is q successive trip requests from L to U and from U to L. In this instance Max Flow is able
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Figure 8: Max Flow UB doesn’t consider parking spot reservation.

to serve q requests rejecting only the first long one while any FCFS flow policy can’t serve more
than one, the first one.

1

0

q

Figure 9: Max Flow is an unbounded UB even with infinite station capacities.

The previous example used different transportation times for the same trip. Nevertheless,
with unitary transportation times and still infinite station capacity Max Flow UB can still
be M×(M−1)

2
times better than any feasible FCFS solution (where M is the number of stations).

Figure 10 schemes how to create the family of instance reaching this bound on an example having
3 stations Lower (L), Center (C) and Upper (U) with 1 vehicle available at C and requests of
maximum price 1. At time 0 we have a firs trip request from C to L followed by q successive
trip requests from C to U and from U to C. At time 1 we have q successive trip requests from
U to L and from L to U. At time 2 we have finally q successive trip requests from L to C and
from C to L. In this instance Max Flow can serve 3 × q − 2 requests rejecting only the first
trip request from C to L and the last request from U to C and from L to U, while any FCFS
flow policy can serve at most q + 1 requests choosing to serve the q requests from C to L, from
C to L or from L to U. This example can be extended to M stations to obtain when q tends to

infinity the
(

M×(M−1)
2

)

upper bound.

We observe in practice that Max Flow UB is much closer to the optimal FCFS solution

than the poor bound
(

M×(M−1)
2

)

factor so it still could be useful.

One could think to use Max Flow solution to build an approximation algorithm. For
instance for each trip, set the minimum price of the served requests, or close it, if there is none.
However, with the same arguments used for the Max Flow UB, this heuristic would give only

at least
(

M×(M−1)
2

)

- approximation.
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Figure 10: Max Flow UB can be M×(M−1)
2

times better than any FCFS solution even with
infinite station capacity and unitary transportation times.
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