
HAL Id: hal-00727040
https://hal.science/hal-00727040v4

Preprint submitted on 31 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vehicle Sharing System Optimization: Scenario-based
approach

Ariel Waserhole, Vincent Jost, Nadia Brauner

To cite this version:
Ariel Waserhole, Vincent Jost, Nadia Brauner. Vehicle Sharing System Optimization: Scenario-based
approach. 2012. �hal-00727040v4�

https://hal.science/hal-00727040v4
https://hal.archives-ouvertes.fr


Vehicle Sharing System Optimization:

Scenario-based approach

Ariel Waserhole 1,2 Vincent Jost2 Nadia Brauner1

1 G-SCOP, Grenoble University, France 2 LIX CNRS, École Polytechnique Palaiseau, France

May 30, 2013

Abstract

One-way Vehicle Sharing Systems (VSS), such as Vélib’ Paris, have a poor performance
without regulation. We want to improve the efficiency of VSS using design strategies or
pricing as incentive. Stochastic models are intractable for the size of systems we want to
tackle. We therefore discuss a scenario-based approach, i.e. off-line deterministic optimiza-
tion problems on a given stochastic realization (scenario). This deterministic model could
be used to provide heuristics and bound for on-line stochastic optimization. This approach
raises a new constraint the First Come First Served constrained flow (FCFS flow). We de-
rive three problems based on FCFS flows: a design problem, optimizing station capacities,
and two operational problems setting static prices. We show that they are all APX-Hard.
We study the upper bound given by the classical Max Flow problem and prove its poor
worst case ratio.

Keywords: Pricing; Vehicle Sharing Systems; Scenario-based approach; Queuing network;
Complexity & approximation; Revenue Management; Graph vertex pricing.

1 Introduction

1.1 Context

Shoup (2005) reports that, based on a sample of 22 US studies, car drivers looking for a parking
spot contribute to 30% of the city traffic. Moreover cars are used less than 2 hours per day on
average but still occupy a parking spot the rest of the time! Could we have less vehicles and
satisfy the same demand level?

Recently, the interest in Vehicle Sharing Systems (VSS) in cities has increased significantly.
Indeed, urban policies intend to discourage citizens to use their personal car downtown by re-
ducing the number of parking spots, street width, etc. VSS seem to be a promising solution to
reduce jointly traffic and parking congestion, noise, and air pollution (proposing bikes or electric
cars). They offer personal mobility allowing users to pay only for the usage (sharing the cost of
ownership).

1



We are interested in short-term one-way VSS where vehicles can be taken and returned at
different places (paying by the minute). Associated with classic public transportation systems,
short-term one-way VSS help to solve one of the most difficult public transit network design
problem: the last kilometer issue (DeMaio, 2009). Round-trip VSS, where vehicles have to be
returned at the station where they were taken, cannot address this important issue.

The first large-scale short-term one-way VSS was the Bicycle Sharing System (BSS) Vélib’.
It was implemented in Paris in 2007. Today, it has more than 1200 stations and 20 000 bikes
selling around 110 000 trips per day. It has inspired several other cities all around the world;
Now more than 300 cities have such a system, including Montréal, Bejing, Barcelona, Mexico
City, Tel Aviv (DeMaio, 2009).

1.2 One-way Vehicle Sharing Systems: a management issue

One way systems increase the user freedom at the expense of a higher management complexity. In
round trip rental systems, while managing the yield, the only stock that is relevant is the number
of available vehicles. In one-way systems, vehicles are not the only key resource anymore: parking
stations may have limited number of spots and the available parking spots become an important
control leverage.

Since first BSS, problems of bikes and parking spots availability have appeared recursively.
Côme (2012), among others, applies data mining to operational BSS data. He offers insights on
typical usage patterns to understand causes of imbalances in the distribution of bikes. Reasons
are various but we can highlight two important phenomenons: the gravitational effect which
indicates that a station is constantly empty or full (as Montmarte hill in Vélib’), and the tide
phenomenon representing the oscillation of demand intensity along the day (as morning and
evening flows between working and residential areas).

To improve the efficiency of the system, different perspectives are studied in the literature. At
a strategic level, some authors consider the optimal capacity and locations of stations. Shu et al.
(2010) propose a stochastic network flow model to support these decisions. Their model is
used to design a BSS in Singapore based on demand forecast derived from current usage of
the mass transit system. Lin and Yang (2011) consider a similar problem but formulate it as a
deterministic mathematical model.

At a tactical level, other authors investigate the optimal number of vehicles given a set of
stations. George and Xia (2011) study the fleet sizing problem with constant demand and no
parking capacity. Fricker and Gast (2012), Fricker et al. (2012) consider the optimal sizing of a
fleet in “toy” cities, where demand is constant over time and identical for every possible trip, and
all stations have the same capacity K. They show that even with an optimal fleet sizing in the
most “perfect” city, if there is no operational system management, there is at least a probability
of 2

K+1
that any given station is empty or full.

At an operational level, in order to be able to meet the demand with a reasonable standard
of quality, in most BSS, trucks are used to balance the bikes among the stations. The objective
is to minimize the number of users who cannot be served, counting those who try to take a
bike from an empty station or to return it to a full station. The balancing problem amounts to
scheduling truck routes to visit stations performing pickup and delivery. In the literature many
papers deal already with this problem. A static version of the BSS balancing problem is analyzed

2



in Chemla et al. (2012) and a dynamic one in Contardo et al. (2012).

1.3 Towards self regulated VSS

A new type of VSS has appeared lately: one-way car VSS with Autolib’ in Paris and Car2go in
more than 10 cities (Vancouver, San Diego, Lyon, Ulm. . . ). Due to the size of cars, operational
balancing optimization through relocation with trucks seems inappropriate. Another way for
optimizing the system has to be found.

This study is part of a work investigating different optimization leverage for self regulation
in VSS. Using operations research we want to estimate the potential impact of:

� Optimizing the system design (station capacity, fleet size);

� Using pricing techniques to influence user choices in order to drive the system towards its
most efficient dynamic;

� Establishing new protocols, for instance with parking spot reservations and/or users spatial
and temporal flexibility.

Pricing policies can be dynamic, i.e. dependent on the system’s state (vehicles distribution)
or static, i.e. independent on the system’s state, set in advance and only function of the trip.
In this paper, we focus on station capacities and static pricing problems. Note that station
capacities can be seen as a dynamic pricing policy.

1.4 A scenario-based approach

In practice there is a lot of uncertainty in VSS dynamic. Dealing with human behav-
ior, variability of user arrivals and transportation times has an important influence. In this
context, stochastic optimization seems the most relevant approach to cope with randomness.
Waserhole and Jost (2012) propose a stochastic one-way VSS pricing model based on closed
queuing networks. For this model, a naive direct optimization with a Markov Decision Process
computing the best dynamic (state dependent) policy is intractable: it can’t even scale up for
systems in the order of 7 stations. This problem is known as the curse of dimensionality; the
number of states of the induced Markov chain is exponential and hence exact solution techniques
are not applicable. A fluid approximation that computes a static policy and an upper bound on
potential optimization is discussed.

In this paper, we study a scenario-based approach for the VSS Pricing problem based on
Waserhole and Jost (2012) closed queuing networks formulation.

When dealing with stochastic problems, it is classic and natural to consider deterministic
approximations. It amounts to optimizing a posteriori the system, considering that all trip
requests (a scenario) are available at the beginning of the time horizon. Morency et al. (2011)
show that, in Montreal’s BSS Bixi (2009), 68% of the trips were made by “members” and that
their frequencies of use are quite stable along the week. For this context, considering deterministic
requests might be a good approximation.

This approach offers two main advantages: On the one hand, the off-line deterministic opti-
mization solution gives a bound for on-line stochastic optimization on a given instance; On the

3



other hand, solving efficiently the deterministic problem on a scenario is the first step toward
robust optimization methods (Bertsimas et al., 2011a), at least for models describing uncertainty
by sets of scenarii.

Although this paper deals with VSS optimization, the theoretical problem addressed is the
optimal control of closed queuing networks with general service time and arrival rate distribu-
tions. Therefore, our results can be applied to a wider class of queuing network problems to
conduce performance analysis (Bertsimas et al., 2011b) or to estimate the relevancy of robust
optimization.

The remaining of the paper is structured as follows: In Section 2, we describe a new type of
constraint implied by the VSS scenario-based approach: the First Come First Served constrained
flow (FCFS flow). In Section 3, we define a station capacity problem based on the FCFS flow that
is shown APX-hard. In Section 4, we define two pricing problems based also on this constraint
that are both shown APX-hard: 1) The trip pricing problem that decides a price for taking each
trip and 2) The station pricing problem that decides for each station the price to take and return
a vehicle. Finally, in Section 5, we study a bound and an approximation algorithm for FCFS
flow pricing problems based on the Max Flow algorithm.

2 First Come First Served constrained flows

Vehicle moves can be modeled as a new type of constrained flow over a time and space network:
the First Come First Served constrained flow (FCFS flow). Even if not explicitly specified nor
named, this constraint is implicitly present in some continuous time models. For instance, it
arises naturally in many applications such as in the fluid approximation of a Markov Decision
Process (Maglaras, 2006; Waserhole and Jost, 2012). However, to the best of our knowledge, the
FCFS constrained flow is usually implicitly respected in continuous-time models and it has not
been studied nor mentioned yet in discrete-time problems.

In the sequels, in order to remain in the lexical field of VSS, we speak about a flow of vehicles
transiting among stations thanks to users. Nevertheless, in the more general context of queuing
networks, it can be seen as a flow of clients moving along servers.

2.1 FCFS flow in time and space network

We consider a system of N vehicles transiting among a set S of stations with infinite capacities.
The time horizon is H = [0, T ] and at time 0 the distribution of the vehicles among the stations
is known. A trip request r ∈ R asks for a vehicle from an origin station sro at time tro to a
destination station srd at time trd. The vehicles move like an automatic flow, i.e. no decision can
influence the moves. As time goes on, the vehicles transit between stations by accepting the first
spatio-temporal trip requests they meet, hence applying the FCFS rule.

We can build a time and space network to follow the evolution of the process. From the
beginning of the horizon, we increase the time until an event (trip request or vehicle arrival)
occurs. We assume that no two events occur exactly at the same instant. At time t, the trip
request r = (sro, t

r
o = t, srd, t

r
d) ∈ R is accepted if and only if there is a vehicle available at station

sro at this time. If trip request r is accepted, a vehicle is removed from station sro and it will be
available again at time trd at station srd. If the trip is rejected, nothing happens.

4



We call this process First Come First Served constrained flow (FCFS flow). Figure 1 schemes
an example of a FCFS flow with 3 stations, 12 requests and 2 vehicles, one available at station
a and the other one available at station b at the beginning of the horizon. In this scenario, with
2 vehicles, only 5 trip requests among 12 are served.

a+1

b

c

0

Served request

Unserved request
time

space

+1

Vehicles
distribution

Stations

Figure 1: An example of a FCFS flow with 2 vehicles and 5 trip requests served.

2.2 Station capacity

If we consider now that station s ∈ S has a capacity Ks, blocking effect issues arise when a
station is full. In theory, overbooking or client waiting time penalty might be interesting to
study. However in practice, in car VSS, users have the possibility to reserve a parking spot at
destination to be sure to be able to retrieve the vehicle. Therefore, in order to avoid blocking
effects, we assume that every trip is taken with a parking spot booked at destination. Formally,
with station capacities and parking spot reservation, a trip request r = (sro, t

r
o = t, srd, t

r
d) ∈ R

is accepted if and only if there is a vehicle available at station sro at time t and a parking spot
available at station srd also at time t.

2.3 Priced FCFS flows

We now enhance the system with prices. A price prmax is associated to request r ∈ R. This price
is the maximum amount the user is willing to pay for taking the trip. The system proposes a
fixed price pa,b for each trip (a, b) ∈ S2. The set of requests that can be served is now reduced
to Rp = {r ∈ R : prmax ≥ psro,srd}, namely the requests that can afford the price proposed by the
system. If request r is accepted, it generates then a gain psro,srd. We call this process priced FCFS
flow.

Figure 2 schemes an example of the run of such a process with 3 stations and 1 vehicle. The
graph on the left represents the space network that indicates the prices proposed by the system.

5



For this example, with 1 vehicle available at station a at the beginning of the horizon, 10 trip
requests among the 12 can afford the asked price and 6 requests are served for a gain of 49.

a+1

b

c

a

b

c

10(10)5 33 7(7)

22..22

107

86

15(10) 5 13

13(8)     Max price (Paid price)

10(8)8 6 9(6)

0

0

Charged prices

Served request

Request that can’t afford the price

Request that can afford the price but remains unserved

time

space

13(8)

Priced FCFS flow

Figure 2: Priced FCFS flow with one vehicle and gain 49.

Formally, with station capacities and parking spot reservation at destination, a trip request
r = (sro, t

r
o = t, srd, t

r
d, p

r
max) ∈ R is accepted if and only if there is a vehicle available at station sro

at time t, a parking spot available at station srd also at time t and the user is willing to pay the
proposed price, i.e. prmax ≥ psro,srd.

Remark 1. The gain generated by a FCFS flow can be evaluated in linear time. Hence the
decision versions of the optimization problems considered in the following are in NP .

3 Station capacity problem

In this section we study the complexity of a tactical problem: setting a capacity for each station
such that the number of trips sold in a FCFS flow for a set of trip requests is maximized.

Intuitively, without any additional constraints, one would like to set all station capacities to
the number of vehicles, i.e. ∀s ∈ S, Ks = N . However, it might be interesting to set smaller
values for K in order to control the location of vehicles in a system with tide phenomenons for
instance. Station capacities are then used as a balancing tool. Figure 3 schemes an example of
station capacity optimization. For this instance, the optimal capacity for station a is Ka = N/2
while station b and c have a capacity ≥ N . With this sizing, N/2 vehicles are taken by half of
the trip requests from station b to station a at price 1 until station a is full. Then the remaining
vehicles wait in station b before serving all trip requests going to station c at price 2. This policy
generates the optimal final profit of 3N/2 whereas setting all station capacities to N would lead
to a profit of N .

6



a

b

c

+N

0

0

N
2

N
pr = 1

pr = 2

Figure 3: Example where proper station capacities increase the number of trips sold. Here setting
Ka = N/2 and Kb = Kc ≥ N gives the optimal revenue of 3N/2.

We now formalize the problem and derive some complexity results.

Max FCFS Flow Station Capa
ities

� Instan
e: A set of stations S, a number N of vehicles with their distribution among the
stations at the beginning of the horizon, a set of trip requests r ∈ R to go from an original
station sro at time tro to a destination station srd at time trd for a price pr.

� Solution: A function K : S → N
+ defining the capacity of each station.

� Measure: The gain generated by the FCFS flow with station capacities K.

Theorem 1. Max FCFS Flow Station Capacities problem is NP-hard even with one
vehicle and unitary maximum prices.

Proof. We reduce any instance (with n variables and m clauses) of the NP-complete problem
3-SAT (Garey and Johnson, 1979) to an instance of Max FCFS Flow Station Pricing
with one vehicle. Figure 4 schemes an example of such a reduction with two clauses. To each
variable v̇, we associate 3 stations v̇, v and v̄ corresponding to the values unassigned, true and
false. We define also two special stations res and tmp. The unique vehicle is located at station
res at the beginning of the horizon.

All requests have unitary maximum prices and they are built as follows: Each of them clauses
is taken iteratively. The first clause, let’s say a ∨ b̄ ∨ c, contains variables ȧ, ḃ and ċ. At time 1,
there is a request from station res to the station representing the first variable ȧ. At time 2, the
assignment of variable ȧ is modeled with two requests: from stations ȧ to a and then from ȧ to
ā. At time 3, there is a request from the station representing the literal a contained in the clause
to station res. Then, there is another request from station ā, representing the complement of
the literal contained in the clause, to the station representing the next variable ḃ. At time 4,
there are two successive requests, from station res to tmp and then from station tmp to res. At

7



time 5, to treat the next variable ḃ, there is the same series of requests as in times 2, 3 and 4 but
adapted to the current variable ḃ. At time 6, for the last variable of the clause ċ, again, there is
the same series of requests as in times 2, 3 and 4 adapted to this variable. However, this time,
the last request returns to station res. This construction is then repeated for the next clauses.

For a given clause, in the time frame of its associated demands, the longest weighted path
has a length and a gain equal to 9. There are 3 different longest weighted paths but all of
them are starting and ending at station res. The maximum possible gain is then 9 and it is
reached if and only if the assignment of variables satisfies the current clause. A Max FCFS
Flow Station Capacities optimal solution for this instance can be transformed into a 3-SAT
optimal solution and inversely with the relation: station a is closed and station ā is opened if,
and only if, variable a is false. Finally 3-SAT has a solution if, and only if, the Max FCFS
Flow Station Capacities built instance has a solution with gain 9m. It proves that Max
FCFS Flow Station Capacities is NP-hard for one vehicle.

1 42 3 1’ ...5 6Times

Vehicles
distribution

+1

0
0
0

0
0
0

0
0
0

0

res

tmp

a

ā

ȧ

b

b̄

ḃ

c

c̄
ċ

Clause a ∨ b̄ ∨ c Clause c̄ ∨ . . .

Figure 4: Reduction of 3-SAT to FCFS Flow Station Capacities. Example with clauses
(a ∨ b̄ ∨ c) ∧ (c̄ ∨ . . .).

Corollary 1. Max FCFS Flow Station Capacities problem is APX-hard and not approx-
imable within 39/40 even with one vehicle.

Proof. MAX-3-SAT is the optimization problem associated to 3-SAT: given a 3-CNF formula,
find an assignment that satisfies the largest number of clauses. We use the same construction as
in the proof of Theorem 1 to reduce any MAX-3-SAT instance to a Max FCFS Flow Sta-
tion Capacities instance with one vehicle. In the Max FCFS Flow Station Capacities

8



instance, if a clause is not satisfied, the longest path is 7 and can always be obtained disregard-
ing the variable assignment. Therefore, MAX-3-SAT has a solution with k clauses satisfied
if and only if the Max FCFS Flow Station Capacities instance has a solution with gain
9k + 7(m− k) = 2k + 7m.

Suppose that there exists an algorithm A for the Max FCFS Flow Station Capacities
problem giving a solution of value FA with approximation ratio α ∈ [0, 1] from the optimal value

F ∗, i.e. FA

F ∗ ≤ α. For the instance built from MAX-3-SAT we have FA = 2kA + 7m and
F ∗ = 2k∗ + 7m. Then:

2kA + 7m

2k∗ + 7m
≥ α ⇔ 2kA ≥ 2αk∗ + 7m(α− 1). (1)

A 3-SAT instance always admits a variable assignment satisfying at least 7/8 of the clauses
(Karloff and Zwick, 1997), i.e. k∗ ≥ 7

8
m. Since 1 − α ≥ 0 we have m(α − 1) ≥ 8

7
k∗(α − 1).

Together with (1), it implies:
kA

k∗
≥ 5α− 4. (2)

MAX-3-SAT is not approximable within 7/8 unless P=NP (Karloff and Zwick, 1997), i.e. kA

k∗
≤

7
8
. Together with (2), we have:

5α− 4 ≤
7

8
⇔ α ≤

39

40
.

HenceMax FCFS Flow Station Capacities is not approximable within 39/40 unless P=NP.

4 Pricing problems

In Section 3 we discussed the complexity of a tactical problem, the station capacity design.
We now study the complexity of an operational problem: the system management optimization
through price leverage. We are searching for pricing policies maximizing the gain of the induced
priced FCFS flow.

This investigation leads to the definition of two optimization problems which are both shown
APX-Hard: the trip pricing problem which sets a price for each origin-destination pair indepen-
dently and the station pricing problem which sets, for each station, a price for taking and a price
for returning a vehicle. Note that the complexity results can be extended to time dependent
prices (as long as prices remain constant on some time intervals). Time dependent prices allow
to have different prices in the morning, middle of the day and evening in order to control the
tide phenomenon for instance.

4.1 FCFS Flow Trip Pricing problem

We define the Max FCFS Flow Trip Pricing Problem which consists in setting a price for
each trip in order to maximize the gain of the induced priced FCFS flow.

Max FCFS Flow Trip Pri
ing

9



� Instan
e: A set of stations S with capacities Ks for s ∈ S, a number N of vehicles
with their distribution among the stations at the beginning of the horizon, a set R =
{(sro, t

r
o, s

r
d, t

r
d, p

r
max), r ∈ R} of trip requests.

� Solution: The prices p : S2 → R to take a trip.

� Measure: The generated gain induced by the priced FCFS flow with prices p.

To study Max FCFS Flow Trip Pricing complexity, we extend the approach used for
Max FCFS Flow Station Capacities in the previous section.

Theorem 2. Max FCFS Flow Trip Pricing problem is APX-hard and not approximable
within 39/40, even with one vehicle and unitary maximum prices.

Proof. We reduce a MAX-3-SAT instance to a Max FCFS Flow Trip Pricing instance
with one vehicle with the same reduction as in the proof of Theorem 1. Moreover, we consider
that all requests have a unitary maximum price: i.e. prmax = 1, ∀r ∈ R. There is a bijection
between an optimal MAX-3-SAT solution and an optimal Max FCFS Flow Trip Pricing
solution for this instance with the following relation: trips to station a are closed, i.e. pȧ,a =∞,
and trips to station ā are open, i.e. pȧ,ā = 1, if and only if variable a is false. Finally, the
proof of Corollary 1 can be applied again to show that Max FCFS Flow Trip Pricing is
not approximable within 39/40 unless P=NP.

Remark 2. If a FCFS flow problem is hard even for one vehicle, then it is also hard if stations
have infinite capacities. Therefore Max FCFS Flow Trip Pricing is APX-hard even with
infinite capacities.

4.2 FCFS Flow Station Pricing problem

We now consider another way to set the prices p(a, b) to take a trip (a, b) ∈ S2. It is an
aggregation (addition) of a price pt(a) to take a vehicle in station a and pr(b) to return it in
station b: p(a, b) = pt(a) + pr(b). We name it the Max FCFS Flow Station Pricing
Problem.

This type of pricing has an interest in a context where users have several possibilities for
origin/destination stations. It can help them to figure out quickly the different options they have
to take a trip, using for example a price heated maps as in Papanikolaou (2011): stations are
colored depending on their prices, for instance from yellow for cheap to red for expensive.

We study the complexity of Max FCFS Flow Station Pricing. Without loss of general-
ity, we consider that prices are independent from the distance/time the vehicle is used. We show
that this problem is already hard in the single choice context, i.e. users only have one possibility
for the origin/destination pair.

Max FCFS Flow Station Pri
ing

� Instan
e: A set of stations S with capacities Ks for s ∈ S, a number N of vehicles
with their distribution among the stations at the beginning of the horizon, a set R =
{(sro, t

r
o, s

r
d, t

r
d, p

r
max), r ∈ R} of trip requests.

10



� Solution: Prices to take and return a vehicle at a station, pt and pr: S → R.

� Measure: The generated gain induced by the priced FCFS flow with prices pa,b = pt(a)+
pr(b).

Theorem 3. Max FCFS Flow Station Pricing is APX-HARD and not approximable within
39/40 even with one vehicle or infinite station capacities.

Proof. We reduce a Max FCFS Flow Trip Pricing instance (Trip-Inst) to a Max FCFS
Flow Station Pricing instance (Station-Inst).

Station-Inst is composed with the same set of stations as Trip-Inst plus 2 new stations,
ab1 and ab2, for each possible trip (a, b). For each trip request r = (sro = a, tro, s

r
d = b, trd, p

r
max) of

Trip-Inst , Station-Inst has 3 trip requests: (a, tro, ab
1, tro+ǫ, 0), (ab1, tro+2ǫ, ab2, tro+3ǫ, prmax)

and (ab2, tro + 4ǫ, b, trd, 0), with ǫ such that 0 < 4ǫ < trd − tro.
Note that Station-Inst solutions with pt(a) = pr(ab

1) = pt(ab
2) = pr(b) = 0, ∀a, b ∈ S

are dominant. Moreover, there is a transformation respecting the objective value between an
optimal Trip-Inst and an optimal Station-Inst with the relation pa,b = pt(ab

1) + pr(ab
2) for

each possible trip (a, b). Trip-Inst has a solution of gain at least g if and only if Station-Inst
has a solution of gain at least g. Theorem 2 proves that Max FCFS Flow Trip Pricing
is APX-hard and not approximable within 39/40 even with one vehicle, therefore Max FCFS
Flow Station Pricing is also APX-hard with the same ratio. As in Remark 2, it is also
APX-hard for infinite station capacities.

4.3 FCFS flow relaxation: Graph Vertex Pri
ing

In Theorem 3 we showed that Max FCFS Flow Trip Pricing can be reduced to Max
FCFS Flow Station Pricing. The opposite reduction doesn’t seem trivial. In fact, there is
another difficulty inMax FCFS Flow Station Pricing not related to the flow constraint: the
quadratic price assignment. We therefore consider subproblems of Max FCFS Flow Station
Pricing where we relax the flow constraint: the Max Oriented Graph Vertex Pricing
(O-GVP) problem and its unoriented version Max Graph Vertex Pricing (GVP). We
prove that they are already both APX-hard.

Let G(V,A, c) be a weighted directed multi-graph. Vertices V represent the stations and arcs
e ∈ A the trip requests with a weight ce for the maximum affordable prices. The problem is to
set two prices to take and return a vehicle, pt(a) and pr(a), for each vertex/station a ∈ V in
order to maximize the total gain on the arcs. A gain of pt(a) + pr(b) is generated for each arc
(a, b) ∈ A if and only if pt(a) + pr(b) ≤ ca,b. More formally:

Max Oriented Graph Vertex Pri
ing (O-GVP)

� Instan
e: A weighted directed multi-graph G(V,A, c) with c : A→ R.

� Solution: Prices pt and pr: V → R.

� Measure: The generated gain:
∑

(a,b)∈A /
pt(a)+pr(b)≤ca,b

pt(a) + pr(b).

11



We extend the previous definition to weighted undirected multi-graph G(V,E, c). We have
to set only one price p(a) for each vertex a ∈ V in order to maximize the total gain on the edges.
A gain of p(a) + p(b) is generated for each edge (a, b) ∈ E if and only if p(a) + p(b) ≤ ca,b. More
formally:

Max Graph Vertex Pri
ing (GVP)

� Instan
e: A weighted undirected multi-graph G(V,E, c) with c : E → R.

� Solution: Prices p: V → R.

� Measure: The generated gain:

∑

(a,b)∈E /
p(a)+p(b)≤ca,b

p(a) + p(b).

Problem GVP has already been studied in the literature. It is one of the fundamen-
tal special cases of the Single-Minded item Pricing (SMP) problem (Guruswami et al., 2005).
Khandekar et al. (2009) prove that GVP is APX-hard on bipartite graphs. The best known ap-
proximation algorithm, by Balcan and Blum (2006), gives a 4-approximation. We now present
a polynomial reduction from GVP to O-GVP to show that the latter is also APX-hard.

Theorem 4. Max Oriented Graph Vertex Pricing is APX-hard even on bipartite graphs.

Proof. We reduce a GVP instance to a O-GVP instance. GVP is APX-hard even on bipartite
graphs (Khandekar et al., 2009). A bipartite graph G(V1, V2, E) can be oriented such that all
vertices of V1 are sources and all vertices of V2 are sinks. On this oriented graph, O-GVP solves
GVP. Hence, O-GVP is APX-hard even on bipartite graph.

We use the fact that Max Oriented Graph Vertex Pricing is APX-hard to return to
our original problem, Max FCFS Flow Station Pricing and to refine its complexity.

Corollary 2. Max FCFS Flow Station Pricing is APX-hard even with an unlimited num-
ber of vehicles, infinite station capacities or requests defining a bipartite graph.

Proof. Solving an instance of Max FCFS Flow Station Pricing with an unlimited number
of vehicles and infinite station capacities is equivalent to solve an instance of O-GVP in which
each request is an arc with weight its maximum price. Max Oriented Vertex Pricing is
shown NP-hard on bipartite graphs, therefore Max FCFS Flow Station Pricing is APX-
hard even with requests defining a bipartite graph.

5 Connections to the Max Flow problem

Given that FCFS flow problems presented in the previous sections are APX-hard, bounds or
approximation algorithms might be of interest. A “classic” flow is a relaxation of the first come
first served flow evaluation. One of the most famous optimization problem on classic flows is

12



Max Flow which is polynomially solvable. Max Flow gives an Upper Bound (UB) on many
FCFS optimization problems such as Max FCFS Flow Station Capacities or Max FCFS
Flow Trip/Station Pricing.

In practice, Waserhole and Jost (2012) observe that the ratio between the Max Flow and
FCFS flow problems is roughly within a factor 2. In Section 5.1, we show that the theoretical
guaranty (worst case) of this UB is extremely poor. In Section 5.2, we refine on the Max Flow
UB through an approximation algorithm for the FCFS Flow 0/1 Trip Pricing, i.e. the
FCFS Flow Trip Pricing with unitary maximum prices.

5.1 Max Flow upper bounds for FCFS flow problems

Max Flow Classic flows don’t take into account reservation of parking spots at the destination
station. Therefore Max Flow gives an UB that can be arbitrarily far from any FCFS flow.
Figure 5 schemes an example with 2 stations of unitary capacity and 2 vehicles with q crossed
demands. In this example, Max Flow is able to serve all q requests while any FCFS flow with
reservation can’t serve any.

q

+1

+1

Figure 5: Max Flow UB can be arbitrarily far from any FCFS flow since it doesn’t consider
parking spot reservation.

Max Flow With Reservation Assuming that no two requests arrive at the same time,
we can add constraints to the Max Flow classic linear program to respect parking spot reser-
vations. As schemed in Figure 6, it amounts to considering requests with null transportation
time, respecting station capacities, and then a time where the vehicle is unavailable at the sta-
tion. The case represented Figure 5 is then avoided. We call this problem Max Flow With
Reservation (Max Flow WR). Max Flow WR remains polynomial. However, solving it
with a classic linear programming solver is much slower than Max Flow because classic flow
algorithms do not apply anymore (Waserhole and Jost, 2012).

Max Flow WR can again be arbitrarily far from any FCFS flow. Figure 7 schemes it on
an example with 2 stations, Lower (L) and Upper (U), 1 vehicle available at L at the beginning
of the horizon and trip requests with unitary maximum prices. The first request goes from L to
U and takes the entire horizon to reach the station U. Then there are q successive trip requests
from L to U and from U to L. In this instance, Max Flow WR is able to serve q requests,
rejecting only the first long one, while any FCFS flow can’t serve more than one request, the
first one.

13



K

K

Figure 6: A Max Flow With Reservation, 2 stations of capacity K.

0

q

+1

U

L

Figure 7: Max Flow With Reservation UB gap is unbounded.

14



Max Flow WR for non-crossing requests The previous example used crossing requests
for the same trip: i.e. one request asks for a trip within the transportation time-frame of another
one for the same trip. For instance, unitary transportation times imply non-crossing requests.
With non-crossing requests, Max Flow WR can still be 2M −M − 1 times better than any
feasible FCFS flow, where M is the number of stations.

For one vehicle and a given number of stations M , an instance reaching the 2M−M−1 bound
can be constructed as follows: The instance is based on a succession of repeated cyclic requests.
A cyclic request is an ordered series of trip requests evolving along a cycle in the physical graph
of stations. There are 2M −M − 1 cycles with different set of stations and hence 2M −M − 1
different cyclic requests (we do not take the empty cycle nor cycles with only one station). Each
cyclic request is repeated to have a total of q trip requests. The stations present in a cyclic
request are called the support. Before each repetition of the same cyclic request, the entrance is
forced into one specific station of the support, say s1, thanks to a gadget that creates a request
from every station to s1. Then starts the first cyclic request that is special. It begins with s1 and
before each trip request of the cyclic request, there are a series of requests from its current origin
station going out to every station not present in the support. The cyclic request is then repeated
in order to contain in the end q trip requests. With one vehicle, on this instance, Max Flow
can serve (2M −M − 1)q demands while any FCFS flow policy can serve at most q + O(2M).
Asymptotically, when q tends to infinity, the gap between Max Flow WR and any FCFS flow
tends to 2M −M − 1. For M = 5 stations, Figure 8 schemes how to create the requests for one
repeated cyclic request which support is the set of 3 stations a, b and c.

Forcing entrance to c First cyclic request Last q-3 requests Next cycle

Cycle (a-b-c)

a

b

c

d

e

q
3
− 1

Figure 8: For non-crossing requests, the gap between Max Flow With Reservation and any
FCFS flow is greater than 2M −M − 1.

5.2 An approximation algorithm for FCFS Flow 0/1 Trip Pri
ing

Previous sections schemed that Max Flow can be arbitrary far from a FCFS flow. We show
here that with non crossing requests, and unitary maximum prices, the gap for pricing problems
can be bounded. We present an approximation algorithm for FCFS Flow 0/1 Trip Pricing

15



(FCFS Flow Trip Pricing with unitary maximum prices) for non crossing requests. To do
so, first we give an approximation algorithm for FCFS Path 0/1 Trip Pricing which is the
FCFS Flow 0/1 Trip Pricing problem with one vehicle. This approximation algorithm is
based on the Max Flow optimal solution. It returns a cyclic policy, i.e. a policy that can serve
only trip requests belonging to one oriented cycle in the spatial network.

Algorithm 1 FCFS Path 0/1 Trip Pricing Gready Approximation Algorithm

1: F ∗ ← Max Flow solution for 1 vehicle in the time & space network;
2: for all Station s in path F ∗ do ⊲ Iterate on path F ∗

3: if s is marked then ⊲ A cycle c (starting and ending at s) is detected
4: n(c) ← n(c) + 1;
5: Unmark all stations;
6: end if

7: Mark station s;
8: end for

9: return the cyclic policy defined by the cycle c with maximum value n(c)|c|.

Theorem 5. Algorithm 1 provides an (M + 2)! approximation algorithm for the FCFS Path
0/1 Trip Pricing problem with non-crossing requests.

Proof. Algorithm 1 gives, for each detected cycle c, its occurrence n(c) and its length |c| in the
Max Flow optimum solution F ∗ for one vehicle. Figure 9 schemes an example of execution
with 2 detected cycles each one appearing once. Each cycle has a length greater or equal to 2 and
between two consecutive cycles we can iterate through at most M − 2 stations (lost requests).
It means that every M stations we detect at least a cycle of size 2. Hence, keeping only the
detected cycles might lose a factor at most 2/M :

∑

c

n(c)|c| ≥
2

M
|F ∗|.

There are less than M ×M ! different cycles. Therefore the cycle c′ with the maximum n(c)|c|
verifies:

n(c′)|c′| ≥
2

M ×M ×M !
|F ∗| ≥

1

(M + 2)!
|F ∗|.

Cycle c′ defines a cyclic policy C ′ that provides at least the same gain (C ′ ≥ n(c′)|c′|) with a
FCFS flow dynamic and all requests (assumed non-crossing). Finally, Algorithm 1 is polynomial,
for non-crossing requests we have hence a (M + 2)! approximation on the optimal FCFS path
0/1 trip pricing policy S∗:

(M + 2)!C ′ ≥ |F ∗| ≥ S∗.

We now extend the preceding FCFS path results to the FCFS flow problem.

Corollary 3. For non-crossing requests we have the following results:

16



Cycle (b-d-e-c) Cycle (c-a-d)"Lost" requests

Request served by Max Flow Detected cyclic request

Request unserved by Max Flow

a

b

c

d

e

Figure 9: Example of execution of Greedy Algorithm 1 where two cycles are detected with
occurrence 1.

� Algorithm 1 provides an N(M + 2)! approximation algorithm for the FCFS Flow 0/1
Trip Pricing problem.

� The approximability ratio of the FCFS Flow 0/1 Trip Pricing is within [39/40, N(M+
2)!].

� The theoretical gap (worst case) between Max Flow WR and any FCFS flow is within
[2M −M − 1, N(M + 2)!].

Proof. We assume non-crossing requests. Theorem 2 states that FCFS Flow Trip Pricing
is not approximable within 39/40 even with unitary maximum prices, that is FCFS Flow 0/1
Trip Pricing.

Theorem 5 can be extended to any number of vehicles. Let |F ∗
1 | be the Max Flow value

for 1 vehicle and |F ∗
N | for N vehicles. Let S∗ be the value of the optimal FCFS path 0/1

trip pricing policy. We have N |F ∗
1 | ≥ |F

∗
N | ≥ S∗ and hence N(M + 2)!C ′ ≥ S∗. Therefore,

Algorithm 1 provides an N(M + 2)! approximation algorithm for the FCFS Flow 0/1 Trip
Pricing problem and, unless P equals NP, FCFS Flow 0/1 Trip Pricing approximability
ratio is within [39/40, N(M + 2)!].

Let |FR∗
N | be the value of Max Flow WR for N vehicles. In the proof of Theorem 5, we saw

that C ′ ≥ 1
(M+2)!

|F ∗
1 |. Since S∗ ≥ C ′ and N |F ∗

1 | ≥ |F
∗
N | ≥ |F

R∗
N | we have: N(M + 2)!S∗ ≥ |F ∗

N |.

Moreover, we have seen in the previous section that there exists instances such that |FR∗
1 | ≥

(2M −M −1)S∗. Therefore, the theoretical gap between a Max Flow WR and any FCFS flow
is within [2M −M − 1, N(M + 2)!].

17



6 Conclusion

In this paper, we investigate a scenario-based approach for a stochastic VSS model. Its principle
is to work a posteriori on a realization of the stochastic process: a scenario. Optimizing on
a scenario provides heuristics and bounds for the stochastic problem. In this context, such
approximation raises deterministic problems with a new constraint: the First Come First Served
constrained flow (FCFS flow). We present three such problems: 1) a system design problem,
optimizing station capacity (FCFS Flow Station Capacities) and two operational problems
setting static prices, 2) on the trips (FCFS Flow Trip Pricing), or 3) on the stations (FCFS
Flow Station Pricing).

We show that all three problems are APX-hard, i.e. inapproximable in polynomial time within
a constant ratio. Therefore, we investigate a bound and an approximation algorithm using the
Max Flow algorithm (hence relaxing the FCFS flow constraint). The theoretical guaranty
(worst case) for the bound provided by the Max Flow algorithm on a scenario is exponential
in the number of station. Nevertheless, it seams competitive in practice (Waserhole and Jost,
2012), and it can be used to build an N(M + 2)! approximation algorithm for the FCFS Flow
Trip Pricing problem with unitary prices; with N the number of vehicles and M the number
of stations.

We conjecture that the inapproximability ratios of FCFS Flow Trip/Station Pricing
and FCFS Flow Station Capacities are greater than a factor linked to the number of
stations. One can hence be satisfied to have an approximation algorithm that does not depend
on the number of trip requests |R|. However, in current VSS, the number of trips sold in one
day is in the order of M (or N). Therefore, an approximation algorithm in |R| might be more
useful.

Finally, giving good and usable heuristic solutions using scenario-based optimization, studying
metaheuristic approaches might be interesting. However, it is not sure that they can explore a
large space and provide good solutions within a reasonable time. Indeed, the evaluation cost of
a movement on a static policy seems important, at first sight basically in the order of computing
again the whole FCFS flow.

References

Autolib’. http://www.autolib-paris.fr, Paris, France, 2011.

M-F. Balcan and A. Blum. Approximation algorithms and online mechanisms for item pricing.
In Proceedings of the 7th ACM Conference on Electronic Commerce, pages 29–35. ACM, 2006.

D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimization.
SIAM Rev., 53(3):464–501, August 2011a.

D. Bertsimas, D. Gamarnik, and A. A. Rikun. Performance analysis of queueing networks via
robust optimization. Operations Research, 59(2):455–466, 2011b.

Bixi. http://montreal.bixi.com, Montréal, Canada, 2009.

18



Car2go. http://www.car2go.com, Ulm, Germnay – Vancouver, Canada – San Diego, USA – ...,
2008.

D. Chemla, F. Meunier, and R. Wolfler Calvo. Bike sharing systems: Solving the static rebal-
ancing problem. Discrete Optimization, 2012.

E. Côme. Model-based clustering for BSS usage mining: a case study with the vélib’ system of
paris. In International workshop on spatio-temporal data mining for a better understanding of
people mobility: The Bicycle Sharing System (BSS) case study. Dec 2012, 2012.

C. Contardo, C. Morency, and L-M. Rousseau. Balancing a dynamic public bike-sharing system.
Technical Report 09, CIRRELT, 2012.

P. DeMaio. Bike-sharing: History, impacts, models of provision, and future. Journal of Public
Transportation, 12(4):41–56, 2009.

C. Fricker and N. Gast. Incentives and regulations in bike-sharing systems with stations of finite
capacity. arXiv :1201.1178v1, January 2012.

C. Fricker, N. Gast, and H. Mohamed. Mean field analysis for inhomogeneous bike sharing
systems. In 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods
for the Analysis of Algorithms (AofA’12), 2012.

M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-
completeness. A Series of books in the mathematical sciences. W. H. Freeman, San Francisco,
1979.

D. K. George and C. H. Xia. Fleet-sizing and service availability for a vehicle rental system via
closed queueing networks. European Journal of Operational Research, 211(1):198 – 207, 2011.

V. Guruswami, J.D. Hartline, A.R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On profit-
maximizing envy-free pricing. In Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 1164–1173. Society for Industrial and Applied Mathematics,
2005.

H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? In Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, pages 406 –415, oct
1997.

R. Khandekar, T. Kimbrel, K. Makarychev, and M. Sviridenko. On hardness of pricing items
for single-minded bidders. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 202–216, 2009.

J.-R. Lin and T.-H. Yang. Strategic design of public bicycle sharing systems with service level
constraints. Transportation research part E: logistics and transportation review, 47(2):284–294,
2011.

19



C. Maglaras. Revenue management for a multiclass single-server queue via a fluid model analysis.
Operations Research, 2006.

C. Morency, M. Trépanier, and F. Godefroy. Insight into the Montreal bikesharing system. In
TRB-Transportation Research Board Annual Meeting,Washington, USA, Paper #11-1238, 17
pages, January 2011.

D. Papanikolaou. The market economy of trips. Master’s thesis, Massachusetts Institute of
Technology, 2011.

D.C. Shoup. The High Cost of Free-Parking. Planners Press, Chicago, 2005.

J. Shu, M. Chou, O. Liu, C.P Teo, and I-L Wang. Bicycle-sharing system: Deploy-
ment, utilization and the value of re-distribution. unpublished paper. 2010. URL
http://bschool.nus.edu/Staff/bizteocp/BS2010.pdf.

Vélib’. http://www.velib.paris.fr, Paris, France, 2007.

A. Waserhole and V. Jost. Vehicle sharing system pricing regulation: A fluid approximation.
2012. URL http://hal.archives-ouvertes.fr/hal-00727041.

20

http://bschool.nus.edu/Staff/bizteocp/BS2010.pdf
http://hal.archives-ouvertes.fr/hal-00727041

	Introduction
	Context
	One-way Vehicle Sharing Systems: a management issue
	Towards self regulated VSS 
	A scenario-based approach

	First Come First Served constrained flows
	FCFS flow in time and space network
	Station capacity
	Priced FCFS flows

	Station capacity problem
	Pricing problems
	FCFS Flow Trip Pricing problem
	FCFS Flow Station Pricing problem
	FCFS flow relaxation: Graph Vertex Pricing

	Connections to the Max Flow problem
	Max Flow upper bounds for FCFS flow problems
	An approximation algorithm for FCFS Flow 0/1 Trip Pricing

	Conclusion

