
HAL Id: hal-00727039
https://hal.science/hal-00727039v3

Preprint submitted on 29 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear programming formulations for queueing control
problems with action decomposability
Ariel Waserhole, Jean-Philippe Gayon, Vincent Jost

To cite this version:
Ariel Waserhole, Jean-Philippe Gayon, Vincent Jost. Linear programming formulations for queueing
control problems with action decomposability. 2012. �hal-00727039v3�

https://hal.science/hal-00727039v3
https://hal.archives-ouvertes.fr


Linear programming formulations for queueing control

problems with action decomposability

Ariel Waserhole 1,2 Jean-Philippe Gayon1 Vincent Jost2

1 G-SCOP, Grenoble-INP 2 LIX CNRS, École Polytechnique Palaiseau
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Abstract

We consider a special class of continuous-time Markov decision processes (CTMDP) that are
action decomposable. An action-Decomposed CTMDP (D-CTMPD) typically models queueing
control problems with several types of events. A sub-action and cost is associated to each type
of event. The action space is then the Cartesian product of sub-action spaces. We first propose
a new and natural Quadratic Programming (QP) formulation for CTMDPs and relate it to more
classic Dynamic Programming (DP) and Linear Programming (LP) formulations. Then we focus
on D-CTMDPs and introduce the class of decomposed randomized policies that will be shown
to be dominant in the class of deterministic policies by a polyhedral argument. With this new
class of policies, we are able formulate decomposed QP and LP with a number of variables linear
in the number of types of events whereas in its classic version the number of variables grows
exponentially. We then show how the decomposed LP formulation can solve a wider class of
CTMDP that are quasi decomposable. Indeed it is possible to forbid any combination of sub-
actions by adding (possibly many) constraints in the decomposed LP. We prove that, given a set of
linear constraints added to the LP, determining whether there exists a deterministic policy solution
is NP-complete. We also exhibit simple constraints that allow to forbid some specific combinations
of sub-actions. Finally, a numerical study compares computation times of decomposed and non-
decomposed formulations for both LP and DP algorithms.

Keywords: Continuous-time Markov decision process; Queueing control; Event-based dynamic
programming; Linear programming.

1 Introduction

Different approaches exist to solve numerically a Continuous-Time Markov Decision Problem (CT-
MDP) that are based on optimality equations (or Bellman equations). The most popular method
is the value iteration algorithm which is essentially a backward Dynamic Programming (DP). An-
other well known approach is to model a CTMDP as a Linear Programming (LP). LP based algo-
rithms are slower than DP based algorithms. However, LP formulations offer the possibility to add
very easily linear constraints on steady state probabilities, which is not the case of DP formulations.
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Good introductions to CTMDPs can be found in the books of Puterman (1994), Bertsekas (2005) and
Guo and Hernández-Lerma (2009).

In this paper, we consider a special class of CTMDPs that we call action Decomposed CTMDPs
(D-CTMPDs). D-CTMDP typically model queueing control problems with several types of events
(demand arrival, service end, failure, etc) and where a sub-action (admission, routing, repairing, etc)
and also a cost is associated to each type of event. The class of D-CTMPD is related to the concept
of event-based DP, first introduced by Koole (1998). Event-based DP is a systematic approach for
deriving monotonicity results of optimal policies for various queueing and resource sharing models.
Citing Koole: “Event-based DP deals with event operators, which can be seen as building blocks of
the value function. Typically it associates an operator with each basic event in the system, such as
an arrival at a queue, a service completion, etc. Event-based DP focuses on the underlying properties
of the value and cost functions, and allows us to study many models at the same time.” The event-
based DP framework is strongly related to older works (see e.g. Lippman (1975); Weber and Stidham
(1987)).

Apart from the ability to prove structural properties of the optimal policy, the event-based DP
framework is also a very natural way to model many queueing control problems. In addition, it allows
to reduce drastically the number of actions to be evaluated in the value iteration algorithm. The
following example will be used throughout the paper to illustrate our approach and results and will be
referred to as the dynamic pricing problem.

Example – Dynamic pricing in a multi-class M/M/1 queue. Consider a single server with n
different classes of clients that are price sensitive (see Figure 1). There is a finite buffer of size C
for each client class. Clients of class i ∈ I = {1, . . . , n} arrive according to an independent Poisson

λ1(r1)

λn(rn)

µi

C

Figure 1: The multi-class M/M/1 queue with dynamic pricing.

process with rate λi(ri) where ri is a price dynamically chosen in a finite set P of k prices. For clients
of class i, the waiting cost per unit of time is bi and the processing time is exponentially distributed
with rate µi. At any time the decision maker has to set the entrance price for each class of clients
and to decide which class of clients to serve with the objective to maximize the average reward, in the
class of preemptive dynamic policies. This problem has been studied, among other works, by Maglaras
(2006), Çil et al. (2011), and Li and Neely (2012).

For this example, the state and action spaces have respectively a cardinality of Cn + 1 and nkn.
However, the action selection process in the value iteration algorithm does not require to evaluate
the nkn actions. It is sufficient to evaluate at each iteration only n(k + 1) actions (k possibilities for
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each class of customer and n possibilities for the class to be served). This property has been used
intensively in the literature since the seminal paper of Lippman (1975). In the classic LP formulation
of the dynamic pricing problem, that one can find in (Puterman, 1994) for instance, the number of
variables grows exponentially with the number of possible prices. In this paper, we will show that the
LP can be reformulated in a way such that the number of variables grows linearly with the number of
possible prices.

Our contributions can be summarized as follows. We first propose a new and natural Quadratic
Programming (QP) formulation for CTMDP and relate it to more classic Dynamic Programming
(DP) and Linear Programming (LP) formulations. Then, we introduce the class of D-CTMPDs which
is probably the largest class of CTMDPs for which the event-based DP approach can be used. We
also introduce the class of decomposed randomized policies that will be shown to be dominant among
randomized policies. With these new policies, we are able to reformulate the QP and the LP with a
number of variables growing linearly with the number of event types. With respect to the decomposed
DP, this LP formulation is really simple to write and does not need the uniformization process necessary
for the DP formulation which is sometimes source of errors and waste of time. Moreover, it allows to
use generic LP related techniques such that sensitivity analysis (Filippi, 2011) or approximate linear
programming (Dos Santos Eleutrio, 2009).

Another contribution of the paper is to show how to forbid some actions while preserving the
structure of the decomposed LP. If some actions (combinations of sub-actions) are forbidden, the DP
cannot be decomposed anymore. In the dynamic pricing example, imagine that we want a low price to
be selected for at least one class of customer. In the (non-decomposed) DP formulation, it is easy to
add this constraint by removing all actions that does not contain a low price. However, it is not possible
to decompose anymore the DP, in our opinion. In the decomposed LP formulation, we show how it is
possible to remove this action and other combinations of actions by adding simple linear constraints.
We also discuss the generic problem of reducing arbitrarily the action space by adding a set of linear
constraints in the decomposed LP. Not surprisingly, this problem is difficult and is not appropriate if
many actions are removed arbitrarily. When new constraints are added in the decomposed LP, it is also
not clear whether deterministic policies remain dominant or not. We even prove that, given a set of
linear constraints added to the LP, determining whether there exists a deterministic policy solution is
NP-complete. However, for some simple action reductions, we show that deterministic policies remain
dominant. We finally present numerical results comparing LP and DP formulations (decomposed or
not).

Before presenting the organization of the paper, we mention briefly some related literature address-
ing MDP with large state space (Bertsekas and Castañon, 1989; Tsitsiklis and Van Roy, 1996) which
tries to fight the curse of dimensionality, i.e. the exponential growth of the state space size with some
parameter of the problem. Another issue, less tackled, appears when the state space is relatively small
but the action space is very large. Hu et al. (2007) proposes a randomized search method for solving
infinite horizon discounted cost discrete-time MDP for uncountable action spaces.

The rest of the paper is organized as follows. We first address the average cost problem. Section 2
reminds the definition of a CTMDP and formulates it as a QP. We also link the QP formulation with
classic LP and DP formulations. In Section 3, we define properly D-CTMDP and show how the DP
and LP can be decomposed for this class of problems. Section 4 discusses the problem of reducing
the action space by adding valid constraints in the decomposed LP. Section 5 compares numerically
computation times of decomposed and non-decomposed formulations for both LP and DP algorithms,
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for the dynamic pricing problem. Finally, Section 6 explains how our results can be adapted to a
discounted cost criterion.

2 Continuous-Time Markov Decision Processes

In this section, we remind some classic results on CTMDPs that will be useful to present our contri-
butions.

2.1 Definition

We slightly adapt the definition of a CTMDP given by Guo and Hernández-Lerma (2009). A CTMDP
is a stochastic control problem defined by a 5-tuple

{
S, A, λs,t(a), hs(a), rs,t(a)

}

with the following components:

• S is a finite set of states;

• A is a finite set of actions, A(s) are the actions available from state s ∈ S;

• λs,t(a) is the transition rate to go from state s to state t with action a ∈ A(s);

• hs(a) is the reward rate while staying in state s with action a ∈ A(s);

• rs,t(a) is the instant reward to go from state s to state t with action a ∈ A(s).

Instant rewards rs,t(a) can be included in the reward rates hs(a) by an easy transformation and
reciprocally. Therefore for ease of presentation, we will use the aggregated reward rate h̃s(a) :=
hs(a) +

∑
t∈S λs,t(a)rs,t(a).

We first consider the objective of maximizing the average reward over an infinite horizon, the
discounted case will be discussed in the Section 6. We restrict our attention to stationary policies
which are dominant for this problem (Bertsekas, 2005) and define the following policy classes:

• A (randomized stationary) policy p sets for each state s ∈ S the probability ps(a) to select action
a ∈ A(s) with

∑
a∈A(s) ps(a) = 1.

• A deterministic policy p sets for each state s one action to select: ∀s ∈ S, ∃a ∈ A(s) such that
ps(a) = 1 and ∀b ∈ A(s) \ {a}, ps(b) = 0.

• A strictly randomized policy has at least one state where the action is chosen randomly: ∃s ∈ S,
∃a ∈ A(s) such that 0 < ps(a) < 1.

The best average reward policy p∗ with gain g∗ is solution of the following Quadratic Program (QP)
together with a vector ̟∗ (called “variant pi” or “pomega”). ̟s is to be interpreted as the stationary
distribution of state s ∈ S under policy p.
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QP (1)

g∗ = max
∑

s∈S

∑

a∈A(s)

h̃s(a)ps(a)̟s (1a)

s. t.
∑

a∈A(s)

∑

t∈S

λs,t(a)ps(a)̟s =
∑

t∈S

∑

a∈A(t)

λt,s(a)pt(a)̟t, ∀s ∈ S, (1b)

∑

s∈S

̟s = 1, (1c)

̟s ≥ 0, (1d)
∑

a∈A(s)

ps(a) = 1, ∀s ∈ S, (1e)

ps(a) ≥ 0. (1f)

QP (1) is a natural way to formulate a stationary MDP. It is easy to see that this formulation solves
the best average stationary reward policy. First Equations (1e) and (1f) define the space of admissible
stationnary randomized policies p. Secondly for a given policy p, Equations (1b)-(1d) compute the
stationary distribution ̟ of the induced Continuous-Time Markov Chain with gain expressed by
Equation (1a).

As we will show in the Section 2.3, the usual LP formulation (4) can be derived directly from
QP (1) by simple substitutions of variables. However, in the literature it is classically derived from the
linearization of dynamic programming optimality equations given in the following subsection.

2.2 Optimality equations

A CTMDP can be transformed into a discrete-time MDP through a uniformization process (Lippman,
1975). In state s, we uniformize the CTMDP with rate Λs :=

∑
t∈S Λs,t where Λs,t := maxa∈A(s) λs,t(a).

This uniformization rate simplifies greatly the optimality equations and linear programs.

In the rest of the paper, under relatively general conditions (typically for unichain models, see e.g.
Bertsekas (2005)) we assume that the optimal average reward g∗ is independent of the initial state
and is the unique solution together with an associated differential reward vector v∗ that satisfies the
Bellman’s optimality equations:

g

Λs
= T

(
v(s)

)
− v(s), ∀s ∈ S, (2)

with operator T defined as

T
(
v(s)

)
:= max

a∈A(s)

{
1

Λs

(
h̃s(a) +

∑

t∈S

[
λs,t(a)v(t) +

(
Λs,t − λs,t(a)

)
v(s)

])}
. (3)

These optimality equations can be used to compute the best MDP policy. For instance, the value
iteration algorithm roughly consists in defining a sequence of value function vn+1 = T (vn) that provides
a stationary ǫ-optimal deterministic policy in a number of iterations depending on the desired ǫ.
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2.3 Linear programming formulation

Since Manne (1960) we know that it is possible to compute the best average reward policy through a
LP formulation. From Equations (2) and (3), one can show that the optimal average reward g∗ is the
solution of the following program:

g∗ = min g

s. t.
g

Λs
≥ T

(
v(s)

)
− v(s), ∀s ∈ S,

v(s) ∈ R, g ∈ R.

Linearizing the max function in operator T leads to the following LP formulation and its dual coun-
terpart.

Primal LP

g∗ = min g

s. t. g ≥ h̃s(a) +
∑

t∈S

λs,t(a)
(
v(t)− v(s)

)
, ∀s ∈ S, ∀a ∈ A(s),

v(s) ∈ R, g ∈ R.

Dual LP (4)

g∗ = max
∑

s∈S

∑

a∈A

h̃s(a)πs(a) (4a)

s. t.
∑

a∈A(s)

∑

t∈S

λs,t(a)πs(a) =
∑

t∈S

∑

a∈A(t)

λt,s(a)πt(a), ∀s ∈ S, (4b)

∑

s∈S

∑

a∈A(s)

πs(a) = 1, (4c)

πs(a) ≥ 0. (4d)

The advantage of the dual formulation is to allow a simple interpretation: variable πs(a) is the
average proportion of time spent in state s choosing action a.

A simple way to show that the dual LP (4) solves the best average reward policy is to see that it
can be obtained from QP (1) by the following substitutions of variables:

πs(a) = ps(a)̟s, ∀s ∈ S, ∀a ∈ A(s).

Indeed, any solution (p,̟) of QP (1) can be mapped into a solution π of dual LP (4) with same
expected gain thanks to the following mapping:

(p,̟) 7→ π =

(
πs(a) = ps(a)̟s

)
.

6



For the opposite direction, there exists several “equivalent” mappings preserving the gain. Their
differences lie in the decisions taken in unreachable states (̟s = 0). We exhibit one:

π 7→ (p,̟) =


ps(a) =





πs(a)
̟s

, if ̟s 6= 0

1, if ̟s = 0 and a = a1

0, otherwise



 , ̟s =

∑

a∈A(s)

πs(a)


 .

Since any solution of QP (1) can be mapped to a solution of dual LP (4) and conversely, in the
sequel we overload the word policy as follows:

• We (abusively) call (randomized) policy a solution π of the dual LP (4).

• We say that π is a deterministic policy if it satisfies πs(a) ∈ {0, ̟s =
∑

a∈A(s) πs(a)}, ∀s ∈

S, ∀a ∈ A(s).

3 Action Decomposed Continuous-TimeMarkov Decision Pro-

cesses

3.1 Definition

An action Decomposed CTMDP (D-CTMDP) is a CTMDP such that:

• In each state s ∈ S, the action space can be written as the Cartesian product of ns ≥ 1 sub-
action sets: A(s) = A1(s)× . . .×Ans

(s). An action a ∈ A(s) is then composed by ns sub-actions
(a1, . . . , ans

) where ai ∈ Ai(s).

• Sub-action ai increases the transition rate from s to t by λi
s,t(ai), the reward rate by hi

s(ai) and
the instant reward rate by ris,t(ai).

– The resulting transition rate from s to t is then λs,t(a) =
∑ns

i=1 λ
i
s,t(ai).

– The resulting aggregated reward rate in state s when action a is taken is then h̃s(a) =∑ns

i=1 h̃
i
s(ai) with h̃i

s(ai) = hs(ai) +
∑

t∈S λ
i
s,t(ai)r

i
s,t(ai).

D-CTMDPs typically model queueing control problems with several types of events (demand ar-
rival, service end, failure, etc), an action associated to each type of event (admission control, routing,
repairing, etc) and also a cost associated to each type of event. Event-based DP, as defined by Koole
(1998), is included in the class of D-CTMDPs.

For ease of notation, we assume without loss of generality that each state s ∈ S has exactly ns = n
independent sub-action sets, with I = {1, · · · , n}, and that each sub-action set Ai(s) contains exactly
k sub-actions.

We introduce the concept of decomposed policy.

• A (randomized) decomposed policy is a vector p̊ = ((p̊1s, . . . , p̊
n
s ), s ∈ S) such that for each state s

there is a probability p̊is(ai) to select sub-action ai ∈ Ai(s) with
∑

ai∈Ai(s)
p̊is(ai) = 1, ∀s ∈ S, ∀i ∈

I. The probability to choose action a = (a1, · · · , an) in state s is then ps(a) =
∏

i∈I p̊
i
s(ai).
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• A decomposed policy p̊ is said deterministic if ∀s ∈ S, ∀i ∈ I, ∃ai ∈ Ai(s) such that p̊is(ai) = 1
and ∀bi ∈ Ai(s) \ {ai}, p̊is(bi) = 0. In other words, p̊ selects one sub-action for each state s and
each sub-action set Ai.

In the following we will see that decomposed policies are dominant for D-CTMDPs. It is interesting
since a decomposed policy p̊ is described in a much more compact way than a classic policy p.

Simply applying the definition, one can check that the best average reward decomposed policy p̊∗ is
solution of the following quadratic program where ˚̟s is to be interpreted as the stationary distribution
of state s ∈ S.

Decomposed QP (5)

g∗ = max
∑

s∈S

∑

i∈I

∑

ai∈Ai(s)

h̃i
s(ai)p̊

i
s(ai)˚̟s (5a)

s. t.
∑

i∈I

∑

ai∈Ai(s)

∑

t∈S

λi
s,t(ai)p̊

i
s(ai)˚̟s =

∑

t∈S

∑

i∈I

∑

ai∈Ai(t)

λi
t,s(ai)p̊

i
t(ai)˚̟t, ∀s ∈ S, (5b)

∑

s∈S

˚̟s = 1, (5c)

˚̟s ≥ 0, (5d)
∑

ai∈Ai(s)

p̊is(ai) = 1, ∀s ∈ S, ∀i ∈ I, (5e)

p̊is(ai) ≥ 0. (5f)

Example – Dynamic pricing in a multi-class M/M/1 queue (D-CTMDP formulation). We
continue the example started in the Section 1. This problem can be modeled as a D-CTMDP with state
space S = {(s1, . . . , sn) | si ≤ C, ∀i ∈ I}. In each state s ∈ S, there is ns = (n+1) sub-actions and an
action can be written as a = (r1, . . . , rn, d) with ri the price decided to be offered to client class i and d
the client class to process. The action space is then A = P n×D with D = {1, . . . , n}. The waiting cost
in state (s1, . . . , sn) is independent of the action selected and is worth

∑
i h

isi. The reward rate incurred
by sub-action ri is λi(ri)r

i. Let the function 1b equals 1 if boolean expression b is worth true and 0
otherwise. The resulting aggregated reward rate in state s = (s1, . . . , sn) when action a = (r1, . . . , rn, d)
is selected is then h̃s(a) =

∑n
i=1 h̃

i
s(ri) with h̃i

s(ri) = hisi + 1si<Cλi(ri)r
i.

For this example, the cardinality of the state space and the action space are respectively |S| = (C+1)n

and |A| = knn.

3.2 Optimality equations

Optimality equations for CTMDPs can be rewritten in the context of a D-CTMDPs to take advantage
of decomposition properties. Let Λi

s,t = maxai∈Ai(s) λ
i
s,t(ai). The uniformization rate is again Λs =∑

t∈S Λs,t where Λs,t, as defined previous section, can be rewritten as follows:

Λs,t = max
a∈A(s)

λs,t(a) = max
(a1, ..., an)

∈ A1(s)×...×An(s)

∑

i∈I

λi
s,t(ai) =

∑

i∈I

max
ai∈Ai(s)

λi
s,t(ai) =

∑

i∈I

Λi
s,t.
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Operator T as defined in Equation (3) can be rewritten as:

T
(
v(s)

)
= max

(a1, ..., an)
∈ A1(s)×...×An(s)

{
1

Λs

∑

i∈I

(
h̃i
s(ai) +

∑

t∈S

[
λi
s,t(ai)v(t) +

(
Λi

s,t − λi
s,t(ai)

)
v(s)

])}
. (6)

That we can decompose as:

T
(
v(s)

)
=

1

Λs

∑

i∈I

(
max

ai∈Ai(s)

{
h̃i
s(ai) +

∑

t∈S

[
λi
s,t(ai)v(t) +

(
Λi

s,t − λi
s,t(ai)

)
v(s)

]})
. (7)

The value iteration algorithm is much more efficient if T is expressed as in the latter equation.
Experimental results presented in Section 5 show it clearly. Indeed computing the maximum requires
nk evaluations in Equation (6) and nk in Equation (7). To the best of our knowledge, this decomposition
property of operator T is used in many queueing control problems (see Koole (1998) and related papers)
but has not been formalized as generally as in this paper.

Example – Dynamic pricing in a multi-class M/M/1 queue (DP approach). We can now
write down the optimality equations. We use the following uniformization: let Λ =

∑
i∈I Λ

i +∆ with
Λi = maxri∈P{λ

i(ri)} and ∆ = maxi∈I {µ
i}.

For a state s = (s1, . . . , sn) and with ei the unitvector of the ith coordinate, the operator T for
classic optimality equations can be defined as follows:

T

(
v(s)

)
= max

(r1,...,rn,d)∈A

{
∑

i∈I

[
h̃i(ri) + 1si<Cλ

i(ri)v(s+ ei)
]

+1sd>0µ
dv(s− ed) +

(
Λ−

∑

i∈I

1si<Cλ
i(ri) + ∆− 1sd>0µ

d

)
v(s)

}
.

Since we are dealing with a D-CTMDP, operator T can also be decomposed as:

T

(
v(s)

)
=

1

Λ



∑

i∈I


h̃i(ri) + max

ri∈P
si<C

{
λi(ri)v(s+ ei) +

(
Λi − λi(ri)

)
v(s)

}


+max
d∈D
sd>0

{
µdv(s− ed) + (∆− µd)v(s)

})
.

3.3 LP formulation

Let π̊i
s(ai) be interpreted as the average proportion of time spent in state s choosing action ai ∈ Ai(s)

among all sub-actions Ai(s). From decomposed QP (5) we can build the LP (8) formulation with
simple substitutions of variable:

π̊i
s(ai) = π̊i

s(ai)˚̟s, ∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s).

We obtain that g∗ is the solution of the following LP formulation:
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Decomposed Dual LP (8)

g∗ = max
∑

s∈S

∑

i∈I

∑

ai∈Ai(s)

h̃i
s(ai)̊π

i
s(ai) (8a)

s. t.
∑

i∈I

∑

ai∈Ai(s)

∑

t∈S

λi
s,t(ai)̊π

i
s(ai) =

∑

t∈S

∑

i∈I

∑

ai∈Ai(t)

λi
t,s(ai)̊π

i
t(ai), ∀s ∈ S, (8b)

∑

ai∈Ai(s)

π̊i
s(ai) = ˚̟s, ∀s ∈ S, ∀i ∈ I, (8c)

∑

s∈S

˚̟s = 1, (8d)

π̊i
s(ai) ≥ 0, ˚̟s ≥ 0. (8e)

The decomposed dual LP formulation (8) has |S|(kn + 1) variables and |S|((k + 1)n + 2) + 1
constraints. It is much less than the classic dual LP formulation (4) that has |S|kn variables and
|S|(kn + 1) constraints.

Lemma 1. Any solution (p̊, ˚̟) of decomposed QP (1) can be mapped into a solution (̊π, ˚̟) of decom-
posed dual LP (4) with same expected gain thanks to the following mapping:

(p̊, ˚̟) → (̊π, ˚̟) =

(
π̊i
s(ai) = π̊i

s(ai)˚̟s, ˚̟

)
.

For the opposite direction, there exists several “equivalent” mappings preserving the gain. Their
differences lie in the decisions taken in unreachable states (̟s = 0). We exhibit one:

(̊π, ˚̟) 7→ (p̊, ˚̟) =



p̊is(ai) =





π̊i
s(ai)
˚̟s

, if ˚̟s 6= 0

1, if ˚̟s = 0 and ai = a1
0, otherwise



 , ˚̟



 .

�

Since any solution of the decomposed QP (5) can be matched to a solution of decomposed dual
LP (8) and conversely (Lemma 1), in the sequel we again overload the word policy as follows:

• We (abusively) call (randomized) decomposed policy a solution (˚̟, π̊) of the decomposed dual
LP (8).

• We say that (˚̟, π̊) is a deterministic policy if it satisfies π̊i
s(ai) ∈ {0, ˚̟s}, ∀s ∈ S, ∀i ∈ I, ∀ai ∈

Ai(s).

Dualizing the decomposed dual LP (8), we obtain the following primal version:
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Decomposed Primal LP (9)

g∗ = min g

s. t. m(s, i) ≥ h̃i
s(ai) +

∑

t∈S

λi
s,t(ai)

(
v(t)− v(s)

)
, ∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s),

g ≥
∑

i∈I

m(s, i), ∀s ∈ S,

m(s, i) ∈ R, v(s) ∈ R, g ∈ R.

Note that the decomposed primal LP (9) could have also been obtained using the optimality
equations (7). Indeed, under some general conditions (Bertsekas, 2005), the optimal average reward
g∗ is independent from the initial state and together with an associated differential cost vector v∗

it satisfies the optimality equations (7). The optimal average reward g∗ is hence the solution of the
following equations:

g∗ = min g

s. t.
g

Λs

≥ T
(
v(s)

)
− v(s), ∀s ∈ S.

That can be reformulated using decomposability to have:

g∗ = max
s∈S

{
Λs

(
T (v(s))− v(s)

)}

= max
s∈S

{
∑

i∈I

(
max

ai∈Ai(s)

{
h̃i
s(ai) +

∑

t∈S

[
λi
s,t(ai)v(t) +

(
Λi

s,t − λi
s,t(ai)

)
v(s)

]
− Λi

sv(s)

})}

= max
s∈S

{
∑

i∈I

(
max

ai∈Ai(s)

{
h̃i
s(ai) +

∑

t∈S

λi
s,t(ai)

(
v(t)− v(s)

)})}
. (10)

The LP (9) can be obtained from Equation (10) using Lemma 3 given in appendix.

Example – Dynamic pricing in a multi-class M/M/1 queue (LP approach). With a = (r1, . . . , rn, d) ∈
A, we can now formulate its classic dual LP formulation:

max
∑

s∈S

∑

a∈A

(
n∑

i=1

h̃i(ri)

)
πs(a)

s.t.
∑

a∈A

(
1sd>0µ

d +
n∑

i=1

1si<Cλ
i(ri)

)
πs(a)

=
∑

a∈A

(
n∑

i=1

1si>0λ
i(ri)πs−ei(a) + 1sd<Cµ

dπs+ed(a)

)
, ∀s ∈ S,

∑

s∈S

∑

a∈A

πs(a) = 1,

π̊s(a) ≥ 0.

11



And its decomposed Dual LP formulation:

max
∑

s∈S

n∑

i=1

h̃i(ri)̊π
i
s(ri)

s.t. =
∑

i∈I

∑

ri∈P

1si>0λ
i(ri)̊π

i
s−ei

(ri) +
∑

d∈D

1sd<Cµ
dπ̊s+ed(d), ∀s ∈ S,

∑

ri∈P

π̊i
s(ri) = ˚̟s, ∀s ∈ S, ∀i ∈ I,

∑

d∈D

π̊s(d) = ˚̟s, ∀s ∈ S,

∑

s∈S

˚̟s = 1,

π̊i
s(ri) ≥ 0, π̊s(d) ≥ 0, ˚̟s ≥ 0.

3.4 Polyhedral results

Seeing the decomposed dual LP (8) as a reformulation of the decomposed QP (5), see Lemma 1, it is
clear that it gives a policy maximizing the average reward. However, it doesn’t provide any structure
of optimal solutions. For this purpose, Lemma 2 gives two mappings linking classic and decomposed
policies that are used in Theorem 1 to prove polyhedral results showing the dominance of deterministic
policies. This means that the simplex algorithm on the decomposed dual LP (8) will return the best
average reward deterministic policy.

Lemma 2. Let a(i) be the ith coordinate of vector a. The following policy mappings preserve the
strictly randomized and deterministic properties:

D : p 7→ p̊ =



p̊is(ai) =
∑

a∈A(s)/a(i)=ai

ps(a)



 ; D−1 : p̊ 7→ p =

(
ps(a1, . . . , an) =

∏

i∈I

p̊is(ai)

)
.

Moreover:
(a) D is linear.
(b) The following policy transformations preserve moreover the excepted gain:

1. (p,̟) 7→ (p̊, ˚̟) = (D(p), ̟);

2. π 7→ (̊π, ˚̟) = (D(π), ˚̟s =
∑

a∈A(s) πs(a));

3. (p̊, ˚̟) 7→ (p,̟) = (D−1(p̊), ˚̟);

4. (̊π, ˚̟) 7→ (π,̟) = (D−1(̊π), ˚̟).

�

Theorem 1. The best decomposed CTMDP average reward policy is solution of the decomposed dual
LP (8). Equations (8b)-(8e) describe the convex hull of deterministic policies.
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Proof: We call P the polytope defined by constraints (8b)-(8e). From Lemma 1 we know that all
policies are in P . To prove that vertices of P are deterministic policies we use the characterization
that a vertex of a polytope is the unique optimal solution for some objective.

Assume that (̊π, ˚̟) is a strictly randomized decomposed policy, optimal solution with gain g̊ of
the decomposed dual LP (8) for some objective h̃o. From Lemma 2 we know that there exists a
strictly randomized non decomposed policy (π,̟) with same expected gain. Deterministic policies are
dominant in non decomposed models, therefore there exists a deterministic policy (π∗, ̟∗) with gain
g∗ ≥ g̊. From Lemma 2 we can convert (π∗, ̟∗) into a deterministic decomposed policy (̊π∗, ˚̟∗) with
same expected gain g̊∗ = g∗ ≥ g̊. Since (̊π, ˚̟) is optimal we have then g̊∗ = g∗ which means that (̊π, ˚̟)
is not the unique optimal solution for objective h̃o. Therefore a strictly decomposed randomized policy
can’t be a vertex of the decomposed LP (8) and P is the convex hull of deterministic policies. �

3.5 Benefits of decomposed LP

First, recall that with the use of action decomposability, decomposed LP (8) allows to have a complexity
polynomial in the number of independent sub-action sets: |S|(kn+ 1) variables and |S|((k + 1)n+ 2)
constraints for the dual whereas in the classic it grows exponentially: |S|kn variables and |S|(kn + 1)
constraints. In the Section 5 we will see that it has a substantial impact on the computation time.

Secondly, even if the LP (8) is slower to solve than DP (7), as shown experimentally in the Section 5,
this mathematical programming approach offers some advantages. First, LP formulations can help to
characterize the polyhedral structure of discrete optimization problems, see Büyüktahtakin (2011).
Secondly, there is in the LP literature generic methods directly applicable such as sensitive analysis,
see Filippi (2011), or approximate linear programming techniques, see Dos Santos Eleutrio (2009).
Another interesting advantage is that the dual LP (8) is really simple to write and does not need the
uniformization necessary to the DP (7) which is sometimes source of waste of time and errors.

Finally, a big benefit of the LP formulation is the ability to add extra constraints that are not
known possible to consider in the DP. A classic constraint that is known possible to add only in the
LP formulation is to restrain the stationary distribution on a subset T ⊂ S of states to be greater than
a parameter q, for instance to force a quality of service:

∑

s∈T

̟s ≥ q.

Nevertheless, we have to be aware that such constraint can enforce strictly randomized policies as opti-
mal solutions. In the next section we discuss constraints that preserve the dominance of deterministic
policies.

4 Using decomposed LP to tackle a wider class of large action

space MDP

4.1 Constraining action space, preserving decomposability

In decomposed models we can lose hand on certain action incompatibilities we had on classic ones:

13



Example – Dynamic pricing in a multi-class M/M/1 queue (Adding extra constraints). Let say
we have two prices high h and low l for the n classes of clients. In a state s we have then the following
set of actions: A(s) = P (s) × D(s) where P (s) =

∏n
i=1 Pi(s) and Pi(s) = {hi, li}. Assume that, for

some marketing reasons, there needs to be at least one low price selected. In the non decomposed model,
it is easily expressible by a new space of action P ′(s) = P (s)\{(h1, . . . , hn)} removing the action where
all high prices are selected. However, it is not possible to use decomposition anymore with this new
action space, even though there is still some structure in the problem.

When reducing the action space event-based DP techniques are inapplicable, but we can use some
polyhedral properties of the LP formulation to model this action space reduction. In Theorem 2, we will
show that it is possible to reduce the action space of any state s ∈ S to A′(s) ⊆ A(s) and to preserve
the action decomposability advantage by adding a set of constraints to the decomposed dual LP (8).
However, this theorem is not constructive and only proves the existence of such constraints. Moreover,
in general the number of constraints necessary to characterize the admissible decomposed policies
might be exponential and it would be finally less efficient than considering the non decomposed model
(Proposition 1). Nevertheless, in some particular cases, one might be able to intuitively formulate some
valid constraints that a decomposed policy should respect as in the following example.

Example – Dynamic pricing in a multi-class M/M/1 queue (Constraining in average). In
average we can forbid solutions with all high prices (sub-action hi) by selecting at most n − 1 high
prices (Equation (11a)), or at least one low price (sub-action li, Equation (11b)):

n∑

i=1

p̊is(hi) =

n∑

i=1

π̊i
s(hi)

˚̟s
≤ n− 1, (11a)

or
n∑

i=1

p̊is(li) =

n∑

i=1

π̊i
s(li)

˚̟s
≥ 1. (11b)

These equations constrain the average behaviour of the system. However, together with decomposed
dual LP (8) it is not obvious that they provide optimal deterministic policies in general. In Corollary 1,
we will provide a state-policy decomposition criteria to verify if a set of constraints correctly models
an action space reduction. However, to apply it in general as we will prove in Proposition 2, it involves
to solve a co-NP complete problem. Moreover, when trying to formulate valid constraints, we will
see in Proposition 3 that it is even NP-complete to check whether or not there exists one feasible
deterministic policy (not only the optimal).

These results hold in general, in practice Equations (11a) or (11b) correctly models the action
space reduction and can be generalized under the general action reduction constraint framework. In
Corollary 2 we will prove that we can use several action reduction constraints at the same time (under
some assumptions) and always obtain deterministic policies as optimum. In other words, adding such
constraints to the decomposed dual LP (8) and using the simplex algorithm to solve it will return
an optimal deterministic solution. Next example provides another application of action reduction
constraint framework.

Example – Dynamic pricing in a multi-class M/M/1 queue (Another extra constraints). We
want now to select exactly n/2 high prices, the number of actions to remove from the original action
space is exponential in n: A′(s) = {(a1, . . . , an) |

∑n
i=1 1ai=l = n/2} = A(s)\{(a1, . . . , an) |

∑n
i=1 1ai=l 6=

14



n/2}. Although, there is a simple way to model this constraint in average with the action reduction con-
straint framework ensuring the dominance of deterministic policies:

n∑

i=1

p̊is(hi) =
n∑

i=1

π̊i
s(hi)

˚̟s

=
n

2
. (12)

4.2 State policy decomposition criteria

In the following for each s ∈ S, π̊s (resp. p̊s) represents the matrix of variables π̊i
s(ai) (resp. p̊is(ai))

with i ∈ I and ai ∈ Ai(s). The next theorem states that there exists a set of constraints to add to
the decomposed dual LP (8) so that it correctly solves the policy within A′ maximizing the average
reward criterion and that the maximum is attained by a deterministic policy.

Theorem 2. For a decomposed CTMDP with a reduced action space A′(s) ⊆ A(s), ∀s ∈ S, there
exists a set of linear constraint {B̊sp̊s ≤ b̊s, ∀s ∈ S} that describes the convex hull of deterministic
decomposed policies p̊ in A′(s). Then {B̊sπ̊s ≤ b̊s˚̟s, ∀s ∈ S} together with equations (8b)-(8e) defines
the convex hull of decomposed deterministic policies (̊π, ˚̟) in A′.

Proof: Equations (1e) and (1f) of non decomposed QP (1) specify the space of feasible policies p
for a classic CTMDP. For each state s ∈ S we can reformulate this space by the convex hull of all
feasible deterministic policies: ps ∈ conv{ps | ∃a ∈ A′(s) s.t. ps(a) = 1}. We use the mappings D and
D−1 defined in Lemma 2. Note that for any linear mapping M and any finite set X , conv(M(X)) =
M(conv(X)). D is linear, therefore for each state s ∈ S the convex hull Hs of CTMDPs policy with
supports in A′(s) is mapped into the convex hull H̊s of decomposed CTMDPs state policy in A′(s):

D(Hs) = H̊s

⇔ D

(
conv

{
ps | ∃a ∈ A′(s) s.t. ps(a) = 1

})
= conv

{
D(ps) | ∃a ∈ A′(s) s.t. ps(a) = 1

}

= conv

{
p̊s | ∃(a1, . . . , an) ∈ A′(s) s.t. p̊is(ai) = 1

}
.

Recall (a particular case of) Minkowski-Weyl’s theorem: for any finite set of vectors A′ ⊆ R
n there

exists a finite set of linear constraints {Bv ≤ b} that describes the convex hull of vectors v in A′. H̊s

is convex hence from Minkowski-Weyl’s theorem there exists a matrix B̊s and a vector b̊s such that
vectors p̊s in H̊s can be described by the constraints B̊sp̊s ≤ b̊s. In the decomposed dual QP (5) we can
then replace Equations (5e) and (5f) that specify the set of feasible D-CTMDP policies by constraints
{B̊sp̊s ≤ b̊s, ∀s ∈ S}. With substitutions of variable, constraints C := {B̊sπ̊s ≤ b̊s˚̟s, ∀s ∈ S} are
linear in (̊πs, ˚̟s) and can hence be added to the decomposed dual LP (8).

As in Theorem 1, with the characterization that a vertex of a polytope is the unique solution for
some objective, we prove now that the vertices of the polytope defined by Equations (8b)-(8e) together
with constraints C are deterministic policies. Assume (̊π, ˚̟) is a strictly randomized decomposed
policy of gain g̊, optimal solution of the decomposed dual LP (8) for some objective h̃0 together with
constraints C. (̊π, ˚̟) can be mapped into a strictly randomized non decomposed policy (π,̟), still
respecting C, with same expected gain that is dominated by a deterministic policy (π∗, ̟∗) respecting
also C with gain g∗ ≥ g̊. (π∗, ̟∗) can be again mapped into a deterministic decomposed policy
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(̊π∗, ˚̟∗) respecting C with same expected gain g̊∗ = g∗ ≥ g̊. But since (̊π, ˚̟) is optimal we have then
g̊∗ = g∗ which means that (̊π, ˚̟) is not the unique optimal solution for objective h̃0. Therefore, a
strictly decomposed randomized policy can’t be a vertex of the decomposed dual LP (8) together with
constraints C. �

Corollary 1 (State policy decomposition criteria). If the vertices of the polytope {B̊sp̊s ≤ b̊s} are {0, 1}-
vectors for each state s ∈ S, decomposed dual LP (8) together with constraints {B̊sπ̊s ≤ b̊s˚̟s, ∀s ∈ S}
has a deterministic decomposed policies as optimum solution.

In other words, if in any states s ∈ S, one finds a set of constraints {B̊sp̊s ≤ b̊s} defining a {0, 1}-
polytope constraining in average the feasible policies p to be in the reduced action space A′(s), then,
the state policy decomposition criteria of Corollary 1 says that solving the decomposed dual LP (8)
together with constraints {B̊sπ̊s ≤ b̊s˚̟s, ∀s ∈ S} will provide an optimal deterministic policy in A′.

4.3 Complexity and efficiency of action space reduction

We return to our example in the Section 4.1, where we want to use action decomposability on a reduced
action space A′(s) = D(s) ×

∏n
i=1 Pi(s) \ {(h1, . . . , hn)}. Theorem 2 states that there exists a set of

constraints to add in the decomposed dual LP (8) such that it will return the best policies within A′

and that this policy will be deterministic. However, as we show in the next proposition, in general the
polyhedral description of a subset of decomposed policies can be less efficient than the non-decomposed
ones.

Proposition 1. The number of constraints necessary to describe a subset of decomposed policies can
be higher than the number of corresponding non-decomposed policies itself.

Proof: There is a positive constant c such that there exist {0, 1}-polytopes in dimension n with
( cn
logn

)
n
4 facets (Bárány and Pór, 2001), while the number of vertices is less than 2n. �

In practice, we saw in our dynamic pricing example that one can formulate valid inequalities. We
can apply Corollary 1 to check if the decomposed dual LP (8) together with equations (11b) correctly
models the action space reduction. However, to use Corollary 1 we would need to be able to check
if these constraints define a polytope with {0, 1}-vector vertices. In general, to determine whether a
polyhedron {x ∈ R

n : Ax ≤ b} is integral is co-NP-complete (Papadimitriou and Yannakakis, 1990).
In the next proposition we show that it is also co-NP-complete for {0 − 1}-polytopes as a direct
consequence of Ding et al. (2008).

Proposition 2. Determining whether a polyhedron {x ∈ [0, 1]n : Ax ≤ b} is integral is co-NP-
complete.

Proof: Let A′ be a {0 − 1}-matrix with precisely two ones in each column. From Ding et al.
(2008) we know that the problem of deciding whether the polyedron P defined by the linear system
{A′x ≥ 1, x ≥ 0} is integral is co-NP-complete. Note that all vertices v of P respect 0 ≤ v ≤ 1.
Therefore, {A′x ≥ 1, x ≥ 0} is integral if and only if {A′x ≥ 1, 0 ≤ x ≤ 1} is integral. It means that
determining whether the polyedron P defined by the linear system {A′x ≥ 1, 0 ≤ x ≤ 1} is integral is
co-NP-complete. This is a particular case of determining whether for a general matrix A a polyhedron
{x ∈ [0, 1]n : Ax ≤ b} is integral. �
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As a consequence of Proposition 2, deciding if {Bsp̊s ≤ bs, ∀s ∈ S} defines the convex hull of
deterministic policies it contains is co-NP-complete. In fact, it is even NP-complete to determine if it
contains a deterministic policy solution at all:

Proposition 3. Consider a decomposed CTMDP with extra constraints of the form {Bsp̊s ≤ bs, ∀s ∈
S}. Determining if there exists a feasible deterministic policy solution of this decomposed CTMDP is
NP-complete even if |S| = 1.

Proof: We show a reduction to the well known NP-complete problem 3-SAT. We reduce a 3-SAT
instance with a set V of n variables and m clauses to a D-CTMDP instance. The system is composed
with only one state s, so ̟s = 1. Each variable v creates an independent sub-action set Av containing
two sub-actions representing the two possible states (literal l) of the variable: v and v̄. We have then
A =

∏
v∈V Av =

∏
v∈V {v, v̄} . Each clause C generates a constraint:

∑
l∈C l ≥ 1. Finally, there exists a

deterministic feasible policy for the D-CTMDP instance if and only if the 3-SAT instance is satisfiable.
�

4.4 An interesting generic constraint

Definition 1 (Action reduction constraint). An action reduction constraint (s, R,m,M) constrain in
a state s ∈ S to select in average at least m and at most M sub-actions ai out of a set R belonging to
different sub-action sets Ai(s). Its feasible policies space is defined by the following equation:

m ≤
∑

ai∈R

p̊is(ai) =
∑

ai∈R

π̊i
s(ai)

˚̟s
≤ M. (13)

Although it is hard in general to find and to prove that a given set of linear equations models
correctly a reduced action space, we show in the following corollary, consequence of Corollary 1, that
it is nevertheless possible to exhibit some valid constraints.

Corollary 2. Combination of action reduction constraints] For a set of action reduction constraints
{(sj , Rj, mj ,Mj) | j ∈ J}, if no sub-action ai is present in more than one action reduction constraint
Rj, then the decomposed dual LP (8), together with Equations {(13) | j ∈ J}, preserves the dominance
of optimal policies. Moreover, the solution space of this LP is the convex hull of deterministic policies
respecting the action reduction constraints. More formally, this sufficient condition can be reformulated
as: ∀s ∈ S,

⋃
j∈J Rj is a sub-partition of

⋃
i∈I Ai(s).

Proof: We know that p̊is(ai) =
π̊i
s(ai)
˚̟s

is the discrete probability to take action ai out of all actions
Ai(s) in state s. Therefore, in state s, for an action reduction constraint (s, R,m,M), Equation (13)
reduces the solution space to the decomposed randomized policies that select in average at least m and
at most M actions out of the set R: m ≤

∑
ai∈R

p̊is(ai) ≤ M .

If no sub-action is present in more than one action reduction constraint, then the matrix {
∑

ai∈Rj
p̊is(ai), j ∈

J} is totally unimodular and defines therefore a polytope with {0, 1}-vector vertices. Using Corollary 1
we know then that deterministic policies are dominant. �

Returning to our dynamic pricing example where we want to have at least one low price selected.
From Corollary 2, we know now that adding Equations (11a) or (11b) to LP (8) will return optimal
deterministic policies with a simplex solution technique. It is also the case when imposing to have
exactly half of the high prices selected with Equations (12).
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5 Numerical experiments

In this section we compare the efficiency of the LP formulation and the dynamic formulation with both
the classic and decomposed formulation for the multi-class M/M/1 queue dynamic pricing example
detailed in the previous sections. We create instances with n classes of clients and with the set of
k prices P = {2i, i ∈ {0, . . . , k − 1}}. Clients of class i with price ri ∈ P arrive according to an
independent Poisson process with rate λi(ri) = (4 − i)(10 − ri), except for the price 0 which means
that we are refusing a client: i.e. λi(0) = 0. For a client of class i the waiting cost per unit of time is
hi = 24−i and his processing time is exponentially distributed with rate µi = 20− 4i.

Algorithms are tested on an Intel core 2 duo 2.4 Ghz processor with 2 GB of RAM. Heuristics are
written in JAVA and the LP is solved with Gurobi 4.6. Legend (F-M) has to be read as follows: F∈{C,
D} stands for Formulation, C for Classic or D for Decomposed; M∈{VI-ǫ, LP} stands for Method, VI-ǫ
for Value Iteration at precision ǫ and LP for Linear Programming.

We compare the computation time of the different algorithms on the same instances. We confront
6 solution methods: the classic and decomposed value iteration algorithms for two values of ǫ: 10−2

and 10−5, and the classic and decomposed dual LP formulation.

First, for both the classic and the decomposed formulation, the value iteration computation time
depends on the precision asked: dividing ǫ per 1000 increases roughly the computation time by a
factor 2. We also clearly see that the value iteration algorithm is much quicker to solve than the LP
formulation.

Secondly benefits of the decomposition appear obvious. When the number of states grows, variations
on the queue capacity C (Table 1) or the number of classes n (Table 2) influence less the decomposed
formulation. It is even clearer when we increase the number of proposed prices k, indeed as shown
in Table 3, the difference of computation time between the classic and the decomposed formulations
increases exponentially with k.

Finally, in Table 4 we study a D-CTMDPs with reduced action space. We take decomposable
instance with (C=5, n=4, k=4) and study two action space reductions: the case where we forbid to
have all high prices selected in a same state (|P ′| = |P| − 1) and the case where we want to select
exactly n/2 high prices ((|P ′| ≈ |P|/2)). Decomposed DP formulation are in this case Non Applicable
(NA). Table 4 reports the important benefit in term of computation time of using the decomposed LP
formulation.

(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(5,3,4) 0.79 0.09 2.16 0.71 4.94 0.27
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(15,3,4) 82.71 4.24 143.2 7.22 4244 290

Table 1: Influence of the queue capacity C on the algorithms computation time (in s.).
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(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(10,1,4) 0 0 0 0 0.03 0.03
(10,2,4) 0.07 0.01 0.08 0.02 0.36 0.13
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(5,4,4) 87.9 0.89 383 3.56 541.7 3.72

Table 2: Influence of the number of classes n on the algorithms computation time (in s.).

(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(10,3,2) 2.51 0.45 2.67 0.54 7.1 1.1
(10,3,3) 6.12 0.55 10.60 0.81 20.4 2.6
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(10,3,5) 37.56 1.2 80.23 2.03 331 9.7

Table 3: Influence of the number of prices k on the algorithms computation time (in s.).

|P ′| C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

|P| − 1 81.2 NA 357.6 NA 503.1 3.15
|P|/2 45.3 NA 165.5 NA 279.8 3.7

Table 4: Computation time (in s.) to solve a CTMDP (C=5, n=4, k=4) with a reduced action space
P ′.

6 Discounted reward criterion

We extends our results now to the discounted reward criterion, i.e. when future rewards are discounted
by factor β ∈]0, 1[. In this section we use a positive scalar αs, s ∈ S which satisfies

∑
s∈S αs = 1, any

other positive constant would work but when the sum equals to 1 it allows an interpretation as an
initial state probability distribution over S.

6.1 Classic CTMDP

6.1.1 Optimality equations

To write down the optimality equations, in state s we use an unifomization with rate Λs :=
∑

t∈S Λs,t

with:
Λs,t := max

a∈A(s)
λs,t(a) = max

(a1, ..., an)
∈ A1(s)×...×An(s)

∑

i∈I

λi
s,t(ai) =

∑

i∈I

max
ai∈Ai(s)

λi
s,t(ai).

We have then that the optimal expected discounted reward per state v∗ satisfies the optimality equa-
tions:

∀s ∈ S, v(s) = T
(
v(s)

)
, (14)

with the operator T defined ∀s ∈ S as follows:

T
(
v(s)

)
= max

a∈A(s)

{
1

β + Λs

(
h̃s(a) +

∑

t∈S

[
λs,t(a)v(t) +

(
Λs,t − λs,t(a)

)
v(s)

])}
.
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To compute the best MDP policy we can use the value iteration algorithm on optimality equations (14).
It is the same scheme as defined for the average reward criterion in the Section 2.2.

6.1.2 LP formulation

Under some general conditions, the optimality equations (14) have a solution and the optimal expected
reward per state v∗ is the vector v with the smallest value

∑
s∈S αsv(s) which satisfies:

v(s) ≥ T
(
v(s)

)
, ∀s ∈ S. (15)

We can linearize the max function of operator T in equations (15) to formulate the following LP which
has for optimal solution v∗:

Primal LP

min
∑

s∈S

αsv(s)

s.t.

(
β +

∑

t∈S

λs,t(a)

)
v(s)−

∑

t∈S

λs,t(a)v(t) ≥ h̃s(a), ∀s ∈ S, ∀a ∈ A(s),

v(s) ∈ R.

Dual LP

max
∑

s∈S

∑

a∈A(s)

h̃s(a)π̃s(a)

s.t.
∑

a∈A(s)

(
β +

∑

t∈S

λs,t(a)

)
π̃s(a)−

∑

t∈S

∑

a∈A(t)

λt,s(a)π̃t(a) = αs, ∀s ∈ S,

π̃s(a) ≥ 0.

We can interpret the dual variables π̃s(a) as the total discounted joint probability under initial state
distributions αs that the system occupies state s ∈ S and chooses action a ∈ A(s). Some other
interpretations can be retrieved in Puterman (1994).

We could have also constructed the previous dual LP with variable substitutions from the following
QP:
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QP

max
∑

s∈S

∑

a∈A(s)

h̃s(a) ˜̟ sps(a)

s.t.
∑

a∈A(s)

(
β +

∑

t∈S

λs,t(a)

)
˜̟ sps(a)−

∑

t∈S

∑

a∈A(t)

λt,s(a) ˜̟ tpt(a) = αs, ∀s ∈ S,

∑

s∈S

∑

a∈A(s)

ps(a) = 1,

˜̟ s ≥ 0, ps(a) ≥ 0.

6.2 Action Decomposed CTMDP

6.2.1 Optimality equations

To use the action decomposability we rewrite optimality equations (14) with an explicit decomposition.
Using the same uniformization as in the classic case we obtain a decomposed operator T : ∀s ∈ S,

T
(
v(s)

)
= max

(a1, ..., an)
∈ A1(s)×...×An(s)

{
n∑

i=1

[
1

β + Λs

(
h̃i
s(ai) +

∑

t∈S

[
λi
s,t(ai)v(t) +

(
Λi

s,t − λi
s,t(ai)

)
v(s)

])]}

=
∑

i=∈I

[
max

ai∈Ai(s)

{
1

β + Λs

(
h̃i
s(ai) +

∑

t∈S

[
λi
s,t(ai)v(t) +

(
Λi

s,t − λi
s,t(ai)

)
v(s)

])}]
.

To compute the best MDP policy we can now use again the value iteration algorithm but with the
decomposed operator that is much more efficient. The optimality equations with the decomposed
operator also lead to a LP formulation that we formulate in the next section.

6.2.2 LP formulation

Under some general conditions, optimality equations (14) with decomposed operator T have a solution
and the optimal expected reward per state v∗ is the vector v with the smallest value

∑
s∈S αsv(s) which

satisfies:

αv∗ = min
∑

s∈S

αsv(s)

s. t. v(s) ≥ T
(
v(s)

)
, ∀s ∈ S.
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That we can reformulate:

min
∑

s∈S

αsv(s)

s. t. 0 ≥ max
s∈S

{
T
(
v(s)

)
− v(s)

}

≥ max
s∈S

{
(β + Λs)(T

(
v(s)

)
− v(s))

}

≥ max
s∈S

{
n∑

i=1

[
max

ai∈Ai(s)

{
h̃i
s(ai) +

∑

t∈S

λi
s,t(ai)

(
v(t)− v(s)

)}]
− βv(s)

}
.

With Lemma 4 (given in appendix) we obtain that v∗ is the solution of the following LP.

Decomposed Primal LP

min
∑

s∈S

αsv(s)

s.t. m(s, i) ≥ h̃i
s(ai) +

∑

t∈S

λi
s,t(ai)

(
v(t)− v(s)

)
, ∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s),

βv(s)−
∑

i∈I

m(s, i) ≥ 0, ∀s ∈ S ≤ 0,

m(s, i) ∈ R, v(s) ∈ R.

Decomposed Dual LP

max
∑

s∈S

∑

i∈I

∑

ai∈Ai(s)

˚̃π
i

s(ai)h̃
i
s(ai)

s.t.
∑

ai∈Ai(s)

˚̃π
i

s(ai) =
˚̟̃

s, ∀s ∈ S, ∀i ∈ I,

β ˚̟̃s +
∑

i∈I

∑

ai∈Ai(s)

∑

t∈S

λi
s,t(ai)̊π̃

i

s(ai)−
∑

t∈S

∑

i∈I

∑

ai∈Ai(t)

λi
t,s(ai)̊π̃

i

t(ai) = αs, ∀s ∈ S,

˚̃π
i

s(ai) ≥ 0, ˚̟̃
s ≥ 0.

Under initial state distributions α, we can interpret ˚̟̃
s as the total discounted joint probability that

the system occupies state s ∈ S under initial state distributions αs, and ˚̃π
i

s(ai) as the total discounted
joint probability that the system occupies state s ∈ S and chooses action ai ∈ Ai(s). The decomposed
dual LP has |S|(kn + 1) variables and |S|((k + 1)n + 2) constraints. It is much less than the classic
dual LP that has |S|kn variables and |S|(kn + 1) constraints.

We could have also constructed the previous dual decomposed LP with variable substitutions from
the following QP:
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Decomposed QP

max
∑

s∈S

∑

i∈I

∑

ai∈Ai(s)

h̃i
s(ai)p̊

i
s(ai)

˚̟̃
s

s.t. β ˚̟̃s +
∑

i∈I

∑

ai∈Ai(s)

∑

t∈S

λi
s,t(ai)p̊

i
s(ai)

˚̟̃
s −

∑

t∈S

∑

i∈I

∑

ai∈Ai(t)

λi
t,s(ai)p̊

i
t(ai)

˚̟̃
t = αs, ∀s ∈ S,

∑

ai∈Ai(s)

p̊is(ai) = 1, ∀s ∈ S, ∀i ∈ I,

p̊is(ai) ≥ 0, ˚̟̃
s ≥ 0.

Remark 1. Theorems 1, 2, Propositions 1, 2, 3, Corollary 1 and 2 are also applicable when considering
the discounted reward criterion with the substitution (π̃, ˜̟ ) → (π,̟), (̊π̃, ˚̟̃) → (̊π, ˚̟) and hence

p̊s(a) =
˚̃πs(a)
˚̟̃

s
and p̊is(ai) =

˚̃π
i

s(ai)
˚̟̃

s
.

A From decomposed DP to decomposed LP

The following lemmata help to pass from decomposed optimality DP equations to decomposed LP
formulations. For the average reward criterion, using Lemma 3 can build decomposed primal LP (9)
from optimality Equations (10). Lemma 3 do the same transformation for the discounted reward
criterion.

Lemma 3. For any finite sets S, I, A and any data coefficients γs,i,a ∈ R with s ∈ S, i ∈ I and
a ∈ A, the value

g∗ = max
s∈S

{
∑

i∈I

max
a∈A

{
γs,i,a

}}

is the solution of the following LP:

g∗ = min g

s. t. m(s, i) ≥ γs,i,a, ∀s ∈ S, ∀i ∈ I, ∀a ∈ A,

g ≥
∑

i∈I

m(s, i), ∀s ∈ S,

m(s, i) ∈ R, ∀s ∈ S, ∀i ∈ I,

g ∈ R.

Proof: Let g∗ be an optimal solution of this LP. First it is trivial that g∗ ≥ maxs∈S
{∑

i∈I m(s, i)
}
and

that Moreover we are minimizing g without any other constraints, hence g∗ = maxs∈S
{∑

i∈I m(s, i)
}
.

Secondly for any optimal solution g∗, there exists s′ ∈ S such that
∑

i∈I m(s′, i) = g∗ and ∀i ∈
I, m(s′, i) = maxa∈A {γs′,i,a}, otherwise there would exist a strictly better solution. Therefore finally
g∗ = maxs∈S

{∑
i∈I maxa∈A {γs,i,a}

}
. �

Lemma 4. For any finite sets S, I, A, any data coefficients αs, γs,t,i,a, δs,i,a, ζs ∈ R, s, t ∈ S, i ∈ I
and a ∈ A, the vector v ∈ R

|S| with the smallest value
∑

s∈S αsv(s) satisfying

0 ≥ max
s∈S

{
∑

i∈I

max
a∈A

{
∑

t∈S

γs,t,i,av(s) + δs,i,a

}
+ ζsv(s)

}
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is the solution of the following LP:

min
∑

s∈S

αsv(s)

s. t. m(s, i) ≥
∑

t∈S

γs,t,i,av(s) + δs,i,a, ∀s ∈ S, ∀i ∈ I, ∀a ∈ A,

0 ≥
∑

i∈I

m(s, i) + ζsv(s), ∀s ∈ S,

m(s, i) ∈ R, v(s) ∈ R.

Proof: It is clear that we are minimizing
∑

s∈S αsv(s). Now for any vector v we can see that ∀s ∈
S, ∀i ∈ I, m(s, i) ≥ maxa∈A

{∑
t∈S γs,t,i,av(s) + δs,i,a

}
, and we have ∀s ∈ S,

∑
i∈I m(s, i) + ζsv(s) ≤ 0.

Therefore any vector v solution must satisfy ∀s ∈ S 0 ≥
∑

i∈I maxa∈A
{∑

t∈S γs,t,i,av(s) + δs,i,a
}
+ζsv(s)

and finally 0 ≥ maxs∈S
{∑

i∈I maxa∈A
{∑

t∈S γs,t,i,av(s) + δs,i,a
}
+ ζsv(s)

}
. �
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