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Abstract

Markov decision processes (MDPs) provides general frameworks for many control, decision
making, and stochastic optimization problems. In this paper we are interested in a class of
queueing control that can be modeled with a Continuous-Time MDP but that have an exponential
actions state space with classic methods. The Event Based dynamic programming approach deals
with this problem and provides some algorithms (value iteration) to compute the best policy
efficiently. However there is no formal definition of the subclass of MDP models they can tackle.
The first contribution of this paper is to define this class, naming it ‘Action Decomposable MDP”
(D-CTMDP). The second contribution is to give a new MDP Linear Programming formulation for
D-CTMDP using action decomposability that contributes to extend MDPs solution techniques.
Finally we give some examples of application of this framework and give numeric experiments
showing the interest of using the action decomposition properties.

1 Introduction

1.1 Context

Markov decision processes (MDPs) provides general frameworks for many control, decision making, and
stochastic optimization problems. In this paper we characterize and give a Linear Programming (LP)
solution technique for a class of queuing control system that can be modelled with a Continuous-Time
MDP (CTMDP).

If the reader is not familiar with the notion of MDPs we refer him to the books of Puterman (1994)
or Bertsekas (2005a,b). For the special case of CTMDPs we refer to Guo and Hernández-Lerma (2009).

An example of problem we want to tackle is a system composed with a single server, single queue
and n classes of clients as scheme figure 1. The objective is to maximize the average gain by setting an
entrance price pi, thus the arrival rate λ(pi), for each customer i among k possibilities. We can model
this problem with a CTMDP however with the classic MDP framework it gives an exponential action
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space. Indeed in each state we have to set the price of each class of clients independently giving nk

possibilities. To stay polynomial in the number of client classes and be able to solve this problem, there
exists an approach called Event Based Dynamic Programming (DP). In the literature Event Based DP
provides a methodology to deal with these type of problems however there is no formal definition of
the subclass MDP models they can tackle. Defining properly this class is the first contribution of
this paper, we name it “Action Decomposable MDP” or simply “Decomposable MDP” (D-CTMDP).
The second contribution is to give a new MDP Linear Programming formulation for the D-CTMDP
using ‘Action Decomposability”. This mathematical formulation allows to consider new constraints
and contributes to extend MDPs solution techniques.

λ(p1)

λ(pn)

µ

Figure 1: An example of D-CTMDP with one queue one server and k prices.

1.2 Literature review

Bellman (1957) first introduces Dynamic Programming (DP) to solve MDPs. Howard (1960) combines
dynamic programming with Markov chain theory to develop MDPs. Howard contributes to the solution
of infinite horizon problems by developing the policy iteration method as an alternative to the backward
induction method of Bellman (1957), which is known as value iteration. The policy iteration algorithm
generates a sequence of stationary policies by evaluating and improving the policies until the optimal
policy is obtained. For a good overview of the different classic techniques to solve MDPs we refer again
to the books of Puterman (1994) or Bertsekas (2005a,b).

Continuous-Time MDPs are a subclass of classic MDPs or Discrete-Time MDP (DTMDP). From
Lippman (1975) we know that we can transform any CTMDP into a DTMDP by a technique called
uniformization. The book of Guo and Hernández-Lerma (2009) is specialized on the CTMDP and got
is particularly accurate for LP models.

The use of linear programming to solve dynamic programming formulations appears later in d’Epenoux
(1963) and Manne (1960). Manne studies an average reward Markov decision model with an infinite
planning horizon. d’Epenoux provides a LP for the discounted version of the problem in Manne by
linearizing the functional equations of the corresponding DP. For the close relationship between DP
and we refer to Büyüktahtakin (2011).

Event-based Dynamic Programming is first formulated in Koole (1998). Koole introduces event-
based DP as a systematic approach for deriving monotonicity results of optimal policies for various
queueing and resource sharing models. Citing himself: “ Event-based DP deals with event operators,
which can be seen as building blocks of the value function. Typically it associates an operator with
each basic event in the system, such as an arrival at a queue, a service completion, etc. Event-based
DP focuses on the underlying properties of the value and cost functions, and allows us to study many
models at the same time.” Later Koole (2000) extends his theory to all kinds of monotonicity results
applied to stochastic scheduling problems that he defined as: A system with multiple customers classes
having different service time distributions and needed to be assigned to one or more servers.
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1.3 A Linear Programming formulation for D-CTMDPs

In this paper we want to characterize formally the subclass of MDPs where the Event Based DP
approach can be applied. On this subclass called D-SCTMDPs, we give a new LP formulation in
addition to the known DP approach. We know that a LP formulation is slower to solve than a
DP one, Puterman (1994) mention it and we show it with numerical results in section 5. However
this mathematical programming approach offers some advantages: First LP formulations can help to
characterize the polyhedral structure of discrete optimization problems, see Büyüktahtakin (2011).
Secondly there is in the LP literature generic methods directly applicable such as sensitive analysis,
see Filippi (2011), or approximate linear programming techniques, see Dos Santos Eleutrio (2009).
Finally the dual LP formulation that we are giving is really simple to write and does not need the
uniformization necessary to the DP which is sometimes source of waste of time and errors. Moreover
we have the ability to add extra constraints in the LP which is impossible in the DP. Examples are
given in section 3.3.

This paper will be articulated as follows: In section 2 we first define Decomposable CTMDPs.
In section 3 we give a LP formulation for the average reward criterion on D-CTMDPs with infinite
horizon. We formulate constraints that can be only be treated with the LP formulation and give an
application example. In section 4 we use the same approach to study the discounted reward criterion.
Finally in section 5 we show some experimental results comparing the LP and DP approach using or
not the action decomposability.

2 Decomposable Continuous-TimeMarkov Decision Processes

Let’s first recall the definition of the Continuous-Time MDPs, as inGuo and Hernández-Lerma (2009).
A CTMDP is a stochastic control problem defined by a 4-tuple

{S, (A(s) ⊆ A, s ∈ S), (λs,t(a)), (hs(a))}

with the following components:

• S is a finite set of states;

• A is a finite set of actions, A(s) are the actions available from state s ∈ S;

• λs,t(a) is the transition rate to go from state s to state t with action a ∈ A(s);

• hs(a) is the reward rate while staying in state s with action a ∈ A(s).

The core problem of CTMDPs is to find a policy for the decision maker: a function ϕ(s) that
specifies the action a ∈ A(s) that the decision maker will choose when in state s ∈ S. The application
of this policy can be modeled by a Continuous-Time Markov Chain {Xϕ(t)}. We are interested in two
objective functions, the discounted reward and the average reward criterion.

The expected discounted reward of a policy ϕ, with discount factor β ∈]0, 1[, when initial state is
s ∈ S, is defined as

vϕ(s) = E
ϕ

[∫ ∞

0

e−βthaϕ(t)(X
ϕ(t))dt|X(0) = s

]
.
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The optimal discounted reward policy is then

v∗(s) = max
ϕ

vϕ(s).

And the long run expected average reward also referred as average reward of a policy ϕ is given by

g∗ = max
ϕ

lim
T→∞

1

T
E
ϕ

[∫ T

0

haϕ(t)(X
ϕ(t))dt

]
.

Let now define more formally how the decision-maker chooses his actions. A policy is said stationary
policies when the action choice depends on the current state only. In the type of MDPs we are studying
it is well known that stationary policies are dominant. Therefore in this paper we assume that all
policies considered are stationary. A policy is said randomized if for each state s there is a “discrete”
probability P(a|s) to select action a ∈ A(s) with

∑
a∈A(s) P(a|s) = 1. A policy is said deterministic if

for each state s the same action is always selected i.e. ∃a ∈ A(s) such that P(a|s) = 1.

Definition 1 (Decomposable Continuous-Time Markov Decision Process , D-CTMDP) A D-

CTMDP is a special class of CTMDP where actions A(s) available from a state s ∈ S can be expressed

as a Cartesian product of ns independent sub-action sets: A(s) = A1(s) × . . . × Ans
(s). Sub-action

ai ∈ Ai(s) increases the transition rate to go from state s to state t by λs,t(ai) and the reward rate by

hs(ai). In other words in a state s ∈ S when action a = (a1, . . . , ans
) ∈ A(s) = A1(s)× . . .×Ans

(s) is
chosen, the system get a reward rate hs(a) =

∑
i∈Is

hs(ai) per unit of time until it evolves to a state t
after an exponentially distributed time with rate λs,t(a) =

∑ns

i=1 λs,t(ai).

We can define the two types of policy we are interested in while studying D-CTMDP.

Definition 2 (Decomposed randomized policies) A policy is said decomposed randomized if for

each state s we have a “discrete” probability Pi(ai|s) to select sub-action ai ∈ Ai(s) with
∑

ai∈Ai(s)
P
i(ai|s) =

1, , ∀i ∈ {1, . . . , ns}.

Definition 3 (Decomposed deterministic policies) A policy is said decomposed deterministic if

for each state s the same sub-actions are always selected ∀i = {1, . . . , ns}, ∃ai ∈ Ai(s) such that

P
i(ai|s) = 1.

Figure 2 gives a graphical representation of an example with independent subsets of action Ai(s).

s tu

λ1
s,u(a1)

λn
s,u(an)

λ1
s,t(a1)

λn
s,t(an)

Figure 2: Graphical representation of a Decomposable CTMDP.

In practice sometimes rewards are on the execution of an action, we say instant reward. These
rewards can be included in reward rates by an easy transformation (and reciprocally). However to
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be straightforwardly applicable in different contexts, in the following of this paper, we will explicitly
consider them. We define ris,t(ai) to be the instant reward to go from state s to state t with sub-action

ai ∈ Ai(s). The instant reward in the non decomposed model is then rs,t(a) =
∑ns

i=1

λi
s,t(ai)

λs,t(a)
ris,t(ai). This

formula might seems complicated but in fact one doesn’t need to use it because problems are usually
action decomposed in an intrinsic manner.

For notation simplification, in the following without loss of generality, we assume that each state
s ∈ S has ns = n independent sub-actions sets. We note them Ai with i ∈ I = {1, . . . , n}. For
counting purpose we assume also that each sub-actions set Ai(s), i ∈ I contains exactly k sub-actions,
i.e. |Ai(s)| = k, ∀s ∈ S, ∀i ∈ I.

3 Average Reward criterion

3.1 Classic CTMDP

3.1.1 Equations of optimality – DP

To compute the optimal policy of a CTMDP the classic method is to pass by Bellman’s equa-
tions of optimality, see Puterman (1994). The equations of optimality are defined for Discrete-
Time MDP (DTMDP). Therefore we need to transform the CTMDP into a DTMDP. This process
is called “uniformization”, see Lippman (1975). In the following, in order to have a compact for-
mulation for the decomposed model, we use a specific uniformization by state with the notations:
Λs,t :=

∑
i∈I maxai∈Ai(s) λ

i
s,t(ai), ∀s, t ∈ S and Λs :=

∑
t∈S Λs,t, ∀s ∈ S.

We have that the optimal average reward g∗ satisfies with some vector v the Bellman’s equations
of optimality:

∀s ∈ S,
g

Λs

+ v(s) = T (v(s)). (1)

With the operator T defined as follows:

∀s ∈ S, T (v(s)) = max
a∈A(s)

{
1

Λs

(
hs(a) +

∑

t∈S

[
λs,t(a)×

(
v(t) + rs,t(a)

)
+
(
Λs,t − λs,t(a)

)
× v(s)

])}
.

(2)

To compute the best MDP policy we can now use a DP method, the value iteration algorithm
with equations (1) and (2). Value iteration is an iterative procedure that calculates at step n + 1 the
expected utility of each state using the utilities of the neighboring states at step n. It stops when the
utilities calculated on two successive steps are close enough, less than ǫ, i.e. Compute:

vn+1(s) = T (vn(s))−
gn
Λs

, ∀s ∈ S,

until
|vn+1(s)− vn(s)| ≤ ǫ, ∀s ∈ S.

There exists another method to compute the best MDP policy that is to use a LP formulation given
next section.
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3.1.2 LP formulation

From Manne (1960) we know that it is possible to compute the best MDP average reward policy
through a LP. Indeed as it explained again in detail in Puterman (1994), chapter 8.8, page 391, we can
construct a LP from equations (1) and (2).

If the weak accessibility condition holds (see Bertsekas (2005b), Chapter 4.2, page 198), which is
the case of an ergodic chain, then the Bellman’s equations of optimality (1) have a solution and the
optimal average reward g∗ is independent from the initial state. Moreover the optimal average reward
g∗ is the solution of the following equations:

g∗ = min g such that
g

Λs

+ v(s) ≥ T (v(s)), ∀s ∈ S.

Developing the operator T we can linearize the max function (classic LP technique) and obtain the
following LP which has g∗ for optimal solution:

Primal LP

min g

s.t. g ≥
∑

t∈S

[
λs,t(a)×

(
v(t) + rs,t(a)

)
+ hs(a) +

(
Λs,t − λs,t(a)

)
× v(s)

]
− Λs × v(s)

∀s ∈ S, ∀a ∈ A(s) = A1(s)× . . .×An(s)

v(s) ∈ R ∀s ∈ S

g ∈ R

We can now construct the dual version of this LP that is more convenient.

Dual LP

max
∑

s∈S

∑

a∈A

πs(a)×

(
hs(a) +

∑

t∈S

λs,t(a)× rs,t(a)

)
(3a)

s.t.
∑

a∈A(s)

∑

t∈S

πs(a)× λs,t(a) =
∑

t∈S

∑

a∈A(t)

πt(a)× λt,s(a) ∀s ∈ S (3b)

∑

s∈S

∑

a∈A(s)

πs(a) = 1 (3c)

πs(a) ≥ 0 ∀s ∈ S, ∀a ∈ A(s) = A1(s)× . . .× An(s) (3d)

The dual formulation has for big advantage to allow a direct interpretation. Variable πs(a) is the
average amount of time spent in state s choosing action a. Equation (3c) states that there is a time 1
to share between all states, it means that we are looking at stationary distribution. Equations (3b) are
flow conservation constraints linking variables π. Finally equation (3a) is the objective. It maximizes
the instant rewards r as the average weighted flow between every states s and t with decision a:
πs(a) × λs,t(a) × rs,t(a), and the reward rates h as the average time spent in state s with decision a:
πs(a)× hs(a).
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3.2 Decomposable CTMDP

3.2.1 Equations of optimality – DP

To use the action decomposability we have to rewrite Bellman’s equations of optimality defined equa-
tions (2) with the explicit decomposition. We still use a uniformization by state with the following
notations, let Λi

s,t := maxai∈Ai(s) λ
i
s,t(ai), Λs,t :=

∑
i∈I Λ

i
s,t, Λi

s :=
∑

t∈S Λ
i
s,t and Λs :=

∑
t∈S Λs,t,

∀s, t ∈ S, ∀i ∈ I. With some simplification we obtain the operator: ∀s ∈ S,

T (v(s)) = max
(a1, ..., an)

∈ A1(s)×...×An(s)

{
1

Λs

∑

i∈I

(
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)×

(
v(t) + ris,t(ai)

)
+
(
Λi

s,t − λi
s,t(ai)

)
× v(s)

])}
.

(4)

If now we use that sub-action sets Ai are independent, we can reduce the complexity of the operator
T to enjoy the decomposition by rewriting the equations (4) as follows: ∀s ∈ S,

T (v(s)) =
1

Λs

∑

i∈I

(
max

ai∈Ai(s)

{
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)×

(
v(t) + ris,t(ai)

)
+
(
Λi

s,t − λi
s,t(ai)

)
× v(s)

]})
.

(5)

To compute the best D-CTMDP policy we can use the simplified decomposed operator T for the
value iteration algorithm. It is exactly the same algorithm as defined section 3.1.1, however is much
more efficient to compute with the decomposed operator as we’ll see experimentally in the section 5.

To compute the best policy we can also use the decomposed operator T to obtain a LP formulation.
This is what we show next section.

3.2.2 LP formulation

Again if the weak accessibility condition holds then the Bellman’s equations (1) have a solution and
the optimal average reward g∗ is the solution of the following equations:

g∗ = min g such that
g

Λs

+ v(s) ≥ T (v(s)), ∀s ∈ S.

We can reformulate the problem to have:

g∗ = max
s∈S

{Λs × (T (v(s))− v(s))}

= max
s∈S

{
∑

i∈I

(
max

ai∈Ai(s)

{
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)×

(
v(t) + ris,t(ai)

)
+
(
Λi

s,t − λi
s,t(ai)

)
× v(s)

]
− Λi

s × v(s)

})}

= max
s∈S

{
∑

i∈I

(
max

ai∈Ai(s)

{
hi
s(ai) +

∑

t∈S

λi
s,t(ai)×

(
v(t)− v(s) + ris,t(ai)

)})}
. (6)

We can’t straightforwardly formulate a LP model with these equations. For the classic CTMDP
it was a “max{max{. . .}} function” that is easy to linearize. Here we have a “max{

∑
max{. . .}}

function” that is not trivial to linearize. To be able to build a LP formulation we then use the next
lemma.
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Lemma 1 For any finite sets S, I, A and any data coefficients γs,i,a ∈ R : s ∈ S, i ∈ I, a ∈ A, the
value

g∗ = max
s∈S

{
∑

i∈I

max
a∈A

{
γs,i,a

}}

is the solution of the following LP:

minimize g

subject to m(s, i) ≥ γs,i,a ∀s ∈ S, ∀i ∈ I, ∀a ∈ A

g ≥
∑

i∈I

m(s, i) ∀s ∈ S

m(s, i) ∈ R ∀s ∈ S, ∀i ∈ I

g ∈ R

Proof: Let g∗ be an optimal solution of this LP. It is trivial that g∗ ≥ maxs∈S
{∑

i∈I m(s, i)
}
. And

since we are minimizing g without any other constraints on it, we have therefore g∗ = maxs∈S
{∑

i∈I m(s, i)
}
.

Now for any optimal solution g∗, there exists s′ ∈ S such that
∑

i∈I m(s′, i) = maxs∈S
{∑

i∈I m(s, i)
}
=

g∗ and ∀i ∈ I, m(s′, i) = maxa∈A {γs′,i,a}. Indeed otherwise it would mean that for all s′ ∈ S such that∑
i∈I m(s′, i) = maxs∈S

{∑
i∈I m(s, i)

}
= g∗ there exists i′ ∈ I such that m(s′, i′) > maxa∈A {γs′,i′,a}

and we would have a strictly better solution with m(s′, i′) = maxa∈A {γs′,i′,a}.

Finally it gives us that g∗ = maxs∈S
{∑

i∈I maxa∈A {γs,i,a}
}
. �

We can now apply lemma 1 to equation (6) to obtain that g∗ is the solution of the following LP.

Primal LP

min g (7a)

s.t. m(s, i) ≥ hi
s(ai) +

∑

t∈S

λi
s,t(ai)×

(
v(t)− v(s) + ris,t(ai)

)
∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s) (7b)

g ≥
∑

i∈I

m(s, i) ∀s ∈ S (7c)

m(s, i) ∈ R ∀s ∈ S, ∀i ∈ I (7d)

v(s) ∈ R ∀s ∈ S (7e)

g ∈ R (7f)

To construct the dual more easily we rewrite equations (7b) as follows:

∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s),

m(s, i) +
∑

t∈S

λi
s,t(ai)× v(s)−

∑

t∈S

λi
s,t(ai)× v(t) ≥ hi

s(ai) +
∑

t∈S

λi
s,t(ai)× ris,t(ai).
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Dual LP

max
∑

s∈S

∑

i∈I

∑

ai∈Ai

πi
s(ai)×

(
hi
s(ai) +

∑

t∈S

λi
s,t(ai)× ris,t(ai)

)
(8a)

s.t.
∑

i∈I

∑

ai∈Ai(s)

πi
s(ai)×

∑

t∈S

λi
s,t(ai) =

∑

t∈S

∑

i∈I

∑

ai∈Ai(t)

πi
t(ai)× λi

t,s(ai) ∀s ∈ S (8b)

∑

ai∈Ai(s)

πi
s(ai) = πs ∀s ∈ S, ∀i ∈ I (8c)

∑

s∈S

πs = 1 (8d)

πi
s(ai) ≥ 0 ∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s) (8e)

πs ≥ 0 ∀s ∈ S (8f)

As in the classic LP, an advantage of the dual formulation is that we can interpret easily the
variables. πs is the average amount of time spent in state s. πi

s(ai) is the average amount of time
spent in state s choosing action ai ∈ Ai(s) among all sub-actions Ai(s). Equations (8b) is the flow
conservation constraints Equations (8c)-(8d) are the Markov chain stationary distribution constraints.
Finally equation (8a) is the objective maximizing the instant rewards and reward rates induced by the
average flow.

Note that the decomposed dual LP formulation has |S| × (k× n+1) variables and |S| × ((k+1)×
n+ 2)+ 1 constraints. It is much less than the classic dual LP formulation that has |S| × kn variables
and |S| × kn + |S|+ 1 constraints.

Lemma 2 Solutions of the decomposed LP (8) are decomposed randomized policies.

Proof: In state s , the “discrete” probability P
i(ai|s) to choose action ai out of all actions Ai(s) is

equal to P
i(ai|s) =

πi
s(ai)
πs

, and we have moreover
∑

ai∈Ai(s)
P
i(ai|s) = 1. �

Corollary 1 Decomposed randomized policies are dominant among randomized policies for Decom-

posed CTMDPs.

Proof: Decomposed randomized policies are the solutions of the decomposed dual for the average
reward criterion which provides the optimal policy. They are therefore dominant over the other policies.
�

Remark 1 We can create a randomized policy from a decomposed randomized policy: The discrete

probability P(a|s) to choose action a = (a1, . . . , an) in state s that is equal to P(a|s) =
∏

i∈I P
i(ai|s) =∏

i∈I
πi
s(ai)
πs

. The classic dual variable are then πs(a) = πs ×
∏

i∈I
πi
s(ai)
πs

.

Theorem 1 The decomposed LP (8) solves the best Decomposable CTMDP average reward policy.

Deterministic policies are optimal solutions. They are the vertices of the polytope defined by equa-

tions (8b)-(8f).
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Proof: To prove this theorem we are going to study the dual version of the decomposed LP which is
more intuitive. We are going to show that equations (8b)-(8f) define a polytope and that its vertices are
solutions representing deterministic policies: i.e. ∀s ∈ S, ∀i ∈ I there exists only one action selected
aj such that πi

s(aj) 6= 0 and ∀ai ∈ Ai(s) \ {aj}, πi
s(ai) = 0.

First, all variables of the problem are bounded: ∀s ∈ S, 0 ≤ πs ≤ 1 and ∀s ∈ S, ∀i ∈ I, ∀ai ∈
Ai(s), 0 ≤ πi

s(ai) ≤ 1, therefore the space of feasible solutions is a bounded polyhedron, that is a
polytope.

Secondly, we have |S| × n× k+ |S| variables, hence a vertex of the feasible polytope should satisfy
at least |S| × n× k + |S| constraints with equality (we say tight). Since we can remove one of the |S|
flow constraints of equations (8b) without changing the solution, we already have |S|+ |S|×n equality
constraints in our LP. Therefore only |S| × n× (k − 1) constraints still remain to be tight.

Assume now that ∀s ∈ S, πs 6= 0, otherwise if ∃s ∈ S with πs = 0 we can reduce our problem
by removing state s without changing the optimal solution. Since ∀s ∈ S, πs 6= 0 it means that
we have at least one variable πi

s(ai) is not equal to 0 in each of the |S| × n constraints (8c). Hence
∀s ∈ S, ∀i ∈ I, ∃aj ∈ Ai(s) such that πi

s(aj) 6= 0.

In the end we have to tight |S| × n × (k − 1) constraints (8e) out of |S| × n × k with |S| × n
different not tight. Therefore there exists only one action selected aj such that πi

s(aj) 6= 0 and ∀ai ∈
Ai(s) \ {aj}, πi

s(ai) = 0 and a vertex of the solution polygon defines a deterministic policy.

�

3.3 Decomposed LP advantages for D-CTMDPs

First we recall that with the use of action decomposability, our LP for Decomposable CTMDPs allows
to have a complexity polynomial in the number of independent subsets of actions: |S| × (k × n + 1)
variables and |S| × ((k + 1) × n + 2) constraints; Whereas the classic LP size grows exponentially:
|S| × kn variables and |S| × (kn + 1) constraints. As we’ll see section 5 this has a huge impact on the
computation time.

Secondly even if the LP formulation is slower to solve than a DP one, Puterman (1994) mentions it
and we show it with numerical results in section 5, this mathematical programming approach offers some
advantages: First the dual LP formulation is really simple to write and does not need the uniformization
necessary to the DP which can be sometimes source of waste of time and errors. Secondly we have the
ability to add extra constraints in the LP which is impossible in the DP. Examples are given in this
section.

3.3.1 Stationary distribution constraints

It is a classic advantage of MDP LP formulations to be able to constrain the stationary distribution
to force a quality of service q on a subset T ⊂ S of states:

∑

s∈T

πs ≥ q.

10



Nevertheless we have to be aware that such constraint can have for optimal solutions strictly randomized
policies.

3.3.2 Sub-actions combination constraints

In the decomposed model we can loose hand on some action incompatibilities we have on the classic
model. For instance, if in a state s we have the following set of actions A(s) = {a1b1, a1b2, a2b1 a2bb},
that can be decomposed into sub-actions such that A(s) = A1(s) × A2(s) where A1(s) = {a1, a2}
and A2(s) = {b1, b2}. When we want to forbid action a2b2, it is easy in the classic model where
it is just expressed as a new set of actions A′(s) = {a1b1, a1b2, a2b1} but it is not possible to use
decomposition anymore. However, there is still some structure relative to the decomposition indeed
A′(s) = A1(s)× A2(s) \ {a2b2}.

To model this “linking” constraint we have no leverage in the decomposed DP formulation, whereas
in the LP formulation we can add new constraints to influence the final composition of an action. What
we want in fact is to have a constraint linking sub-actions from different independent subsets. In a
general way we want to force to have at least m and at most M sub-actions ai selected out of a set K.
In our toy example selecting at most 1 sub action between a2 and b2. Unfortunately as lemma 3 shows
it, this problem is NP-hard for deterministic policies. However it is possible to work on randomized
policies that will constrain in average the selection of action. Lemma 4 shows the equations that need to
be added to the LP model. Finally if we want to obtain only deterministic policies, as lemma 5 proves
it, considering only ‘disjoint” action combination constraints keep deterministic policies dominant and
the LP formulation will return the best of them.

Lemma 3 Finding a deterministic policies selecting at least m and at most M actions ai in a set K
belonging to different subsets of independent actions Ai is NP-hard.

Proof: We can reduce the well known NP-hard problem 3-SAT. Let’s build a D-CTMDP instance
from 3-SAT instance with n variables and m clauses. The system is composed with only one state
s, so πs = 1. Each variable v creates an independent action subset Av containing two sub actions
representing the two possible states (literal) of the variable v and v̄. We have then A =

∏
v Av. Each

clause C generates a “at least 1” constraint:
∑

l∈C l ≥ 1. Finally this D-CTMDP has an deterministic
admissible policies if and only if the 3-SAT instance is satisfiable.

A similar proof be made for the “at most 1” constraint with the NP-hard problem 1-in-3-SAT.
To do so for each literal we put an instant reward to associated action that is worth the number of
clauses the literal is present into. We add for each clause C the constraint

∑
l∈C l ≤ 1. Finally this

D-CTMDP has a deterministic admissible policies of average gain m if and only if the 1-in-3-SAT

instance is satisfiable. �

Lemma 4 The following equation constrains for a state s ∈ S to select in average at least m and at

most M actions ai out of a set K and belonging to different subsets of independent actions Ai.

m ≤
∑

ai∈K

πi
s(ai)

πs
≤ M. (9)
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Proof: We know that Pi(ai|s) =
πi
s(ai)
πs

is the discrete probability to take in state s action ai out of all
actions Ai(s) (see proof of lemma 2). Therefore in state s equation (9) reduces the solution space to
the decomposed randomized policies that select in state s in average at least m and at most M actions
out of set K: m ≤ P

i(ai|s) ≤ M . �

To return to our toy example, where A′(s) = A1(s)×A2(s) \ {a2b2}, we can set that in average we
want to have no more that one sub action a2 or b2 with the equation:

πi
s(a2)

πs
+

πi
s(b2)

πs
≤ 1. (10)

But in fact adding this constraint to the LP totally removes the action a2b2 and the LP still returns
deterministic policies. We are in a special case action combination constraint are “disjoint” as theorize
next lemma.

Lemma 5 If action combination constraints are disjoint, i.e. if each independent sub-action set is

involved in at most one action combination constraint, deterministic policies are dominant and the LP

return the best of them.

3.3.3 Example

A finite number n of the same resource need to be shared into different class of clients. Let say it is
a bumper car rental (or short term bicycle rental) and we have 3 client classes: the children c, the
student s and the adult a arriving at rate λc(p

k
c ) resp. λs(p

k
s) and λa(p

k
a), with pki , k = 1 . . . 3 the 3

discrete ordered increasing prices to rent a resource at class i. All rentals are for the same amount of
time following an exponential distribution of mean µ−1. The states S of the system are the number of
vehicles rented. For each state we want to define the price to rent one vehicle for each class of client.
We want to maximize the average revenue.

we consider now additional constraints. The manager can’t rent a vehicle to a student at a price
higher that an adult, otherwise the student will pay the adult price! Let say the price p1a is lower than
price p2s and p3s. We can consider this constraint in the LP by adding for each state t ∈ S an action
combination constraint that allow to select at most one price between p1a, p

2
s and p3s, i.e.

∀t ∈ S,
πt(p

2
s)

πt
+

πt(p
3
s)

πt
+

πt(p
1
a)

πt
≤ 1.

From lemma 5 we know that even with this constraint, deterministic policies are still optimal and are
the solution of the LP.

Now To attract clients the manager want to have enough vehicles rented on the playground so
people can have fun. To model that we constraint the system to be two third of the time with more
than half of the vehicles rented. We can express this constraint in the LP adding the following equation:

n∑

s=n/2

πs ≥
2

3
.

We advise that manager that adding such constraint might lead to return randomized policies as unique
optimum of the LP.
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4 Discounted Reward criterion

We study now the discounted reward criterion, i.e. when future rewards are discounted by factor
β ∈]0, 1[.

In this section in order to have a better interpretation of the formulation we use a positive scalar
αs, s ∈ S which satisfies

∑
s∈S αs = 1. Any other positive constant can work but when the sum is

equals to 1 it allows an interpretation as a initial state probability distribution over S.

4.1 Classic CTMDP

4.1.1 Equations of optimality – DP

Again to use Bellman’s equation of optimality that are defined on Discrete-Time MDP, we use an
uniformization by state to transform our CTMDP into a DTMDP. To do so we use the following
notations, let Λs,t :=

∑n
i=1maxai∈Ai(s) λ

i
s,t(ai), ∀s, t ∈ S and Λs :=

∑
t∈S Λs,t, ∀s ∈ S.

We have then that the optimal expected discounted reward per state v∗ satisfies the Bellman’s
equations of optimality:

∀s ∈ S, v(s) = T (v(s)). (11)

With

∀s ∈ S, T (v(s)) = max
a∈A(s)

{
1

β + Λs

(
hs(a) +

∑

t∈S

[
λs,t(a)×

(
v(t) + rs,t(a)

)
+
(
Λs,t − λs,t(a)

)
× v(s)

])}

(12)

Now to compute the best MDP policy we can use the value iteration algorithm on Bellman’s
equations of optimality (11) and operator defined equations (??). The iterative procedure is the same
as it is defined for the average reward criterion on except for the computation of the state utility which
is:

vn+1(s) = T (vn(s)), ∀s ∈ S.

We can also find the best MDP policy with a LP formulation given next section.

4.1.2 LP formulation

From d’Epenoux (1963) we know that it is possible to to compute the best MDP discounted reward
policy with a LP. Indeed, as it is well explained in Puterman (1994) (chapter 6.9 page 223) we can
construct a LP formulation from equations (??).

If the weak accessibility condition holds, then the Bellman’s equations (11) have a solution and
the optimal expected reward per state v∗ is the vector v with the smallest value

∑
s∈S αs × v(s) which

satisfies:
v(s) ≥ T (v(s)), ∀s ∈ S. (13)

We can linearize the max function of operator T in equations (13) to formulate the following LP
which has for optimal solution v∗:

13



Primal LP

min
∑

s∈S

αs × v(s)

s.t.

(
β +

∑

t∈S

λs,t(a)

)
× v(s)−

∑

t∈S

λs,t(a)× v(t) ≥ hs(a) +
∑

t∈S

λs,t(a)× rs,t(a) ∀s ∈ S, ∀a ∈ A(s)

v(s) ∈ R ∀s ∈ S

Dual LP

max
∑

s∈S

∑

a∈A(s)

π̃s(a)×

(
hs(a) +

∑

t∈S

λs,t(a)× rs,t(a)

)

s.t.
∑

a∈A(s)

(
β +

∑

t∈S

λs,t(a)

)
× π̃s(a)−

∑

t∈S

∑

a∈A(t)

λt,s(a)× π̃t(a) = αs ∀s ∈ S

π̃s(a) ≥ 0 ∀s ∈ S, ∀a ∈ A(s) = A1(s)× . . .× An(s)

We can interpret the dual variables π̃s(a) as the total discounted joint probability under initial
state distributions αs that the system occupies state s ∈ S and chooses action a ∈ A(s). Some other
interpretations can be retrieved in Puterman (1994) p.226.

4.2 Decomposable CTMDP

4.2.1 Equations of optimality – DP

To use the action decomposability we have to rewrite Bellman’s equations of optimality defined equa-
tions (??) with the explicit decomposition. We still use a uniformization by state with the following
notations, let Λi

s,t := maxai∈Ai(s) λ
i
s,t(ai), Λs,t :=

∑n
i=1 Λ

i
s,t, Λi

s :=
∑

t∈S Λ
i
s,t and Λs :=

∑
t∈S Λs,t,

∀s ∈ S, ∀i ∈ [1..n]. We also define βi = β
n
, ∀i ∈ [1..n]

We obtain finally the decomposed operator: ∀s ∈ S,

T (v(s)) = max
(a1, ..., an)

∈ A1(s)×...×An(s)

{
n∑

i=1

[
1

β + Λs

(
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)×

(
v(t) + ris,t(ai)

)
+
(
Λi

s,t − λi
s,t(ai)

)
× v(s)

])]

(14)

And using that sub-action sets Ai are independent, we can reduce the complexity by rewriting the
equations (14) as follows ∀s ∈ S:

T (v(s)) =
n∑

i=1

[
max

ai∈Ai(s)

{
1

β + Λs

(
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)× (v(t) + ris,t(ai)) + (Λi

s,t − λi
s,t(ai))× v(s)

]
)}]

.

(15)
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Finally to compute the best MDP policy we can now use the value iteration algorithm on with the
decomposed operator defined equations (15). It is much more efficient than taking the classic equation
of optimality (15).

To compute the best policy we can also use the decomposed operator T to obtain a LP formulation.
This is what we show next section.

4.2.2 LP formulation

Again if the weak accessibility condition holds then Bellman’s equations (11) have a solution and the
optimal expected reward per state v∗ is the solution of the following equations:

min
∑

s∈S

αs × v(s)

Such that:
v(s) ≥ T (v(s)), ∀s ∈ S

⇔

0 ≥ max
s∈S

{T (v(s))− v(s)}

≥ max
s∈S

{(β + Λs)× (T (v(s))− v(s))}

≥ max
s∈S

{
n∑

i=1

[
max

ai∈Ai(s)

{
hi
s(ai)

+
∑

t∈S

[
λi
s,t(ai)×

(
v(t) + ris,t(ai)

)
+
(
Λi

s,t − λi
s,t(ai)

)
× v(s)

]
− (Λi

s + βi)× v(s)

}]}

≥ max
s∈S

{
n∑

i=1

[
max

ai∈Ai(s)

{
hi
s(ai) +

∑

t∈S

λi
s,t(ai)×

(
v(t)− v(s) + ris,t(ai)

)
− βi × v(s)

}]}
.

Using action decomposability we can construct a new LP. To do so we first state the next lemma.

Lemma 6 For any finite sets S, I, A, any data coefficients αs, γs,t,i,a, δs,i,a ∈ R : s, t ∈ S, i ∈
I, a ∈ A, the vector v ∈ R

|S| with the smallest value
∑

s∈S αs × v(s) satisfying

0 ≥ max
s∈S

{
∑

i∈I

max
a∈A

{
∑

t∈S

γs,t,i,a × v(s) + δs,i,a

}}
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is the solution of the following LP:

minimize
∑

s∈S

αs × v(s)

subject to m(s, i) ≥
∑

t∈S

γs,t,i,a × v(s) + δs,i,a ∀s ∈ S, ∀i ∈ I, ∀a ∈ A

0 ≥
∑

i∈I

m(s, i) ∀s ∈ S

m(s, i) ∈ R ∀s ∈ S, ∀i ∈ I

v(s) ∈ R ∀s ∈ S

Proof: It is clear that we are minimizing
∑

s∈S αs × v(s). Now for any vector v we can see that
∀s ∈ S, ∀i ∈ I m(s, i) ≥ maxa∈A

{∑
t∈S γs,t,i,a × v(s) + δs,i,a

}
, and we have ∀s ∈ S

∑
i∈I m(s, i) ≤ 0.

Therefore any vector v solution must satisfy 0 ≥
∑

i∈I maxa∈A
{∑

t∈S γs,t,i,a × v(s) + δs,i,a
}
, ∀s ∈ S

and finally 0 ≥ maxs∈S
{∑

i∈I maxa∈A
{∑

t∈S γs,t,i,a × v(s) + δs,i,a
}}

. �

Thus from lemma 6, v∗ is the solution of the following LP.

Primal LP

min
∑

s∈S

αs × v(s) (16a)

s.t. m(s, i) ≥ hi
s(ai) +

∑

t∈S

λi
s,t(ai)×

(
v(t)− v(s) + ris,t(ai)

)
− βi × v(s) (16b)

∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s) (16c)
∑

i∈I

m(s, i) ≤ 0 ∀s ∈ S ≤ 0 (16d)

m(s, i) ∈ R ∀s ∈ S, ∀i ∈ I (16e)

v(s) ∈ R ∀s ∈ S (16f)

To construct easily the dual equations (16c) can be rewritten:

∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s),

m(s, i) +

(
βi +

∑

t∈S

λi
s,t(ai)

)
× v(s)−

∑

t∈S

λi
s,t(ai)× v(t) ≥ hi

s(ai) +
∑

t∈S

λi
s,t(ai)× ris,t(ai).
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Dual LP

max
∑

s∈S

n∑

i=1

∑

ai∈Ai(s)

π̃i
s(ai)×

(
hi
s(ai) +

∑

t∈S

λi
s,t(ai)× ris,t(ai)

)
(17a)

s.t.
∑

ai∈Ai(s)

π̃i
s(ai) = π̃s ∀s ∈ S, ∀i ∈ I

(17b)

∑

i∈I

∑

ai∈Ai(s)

(
βi +

∑

t∈S

λi
s,t(ai)

)
× π̃i

s(ai)−
∑

t∈S

n∑

i=1

∑

ai∈Ai(t)

λi
t,s(ai)× π̃i

t(ai) = αs ∀s ∈ S

(17c)

π̃i
s(ai) ≥ 0 ∀s ∈ S, ∀i ∈ I, ∀ai ∈ Ai(s) (17d)

π̃s ≥ 0 ∀s ∈ S (17e)

We can interpret π̃s as the total discounted joint probability that the system occupies state s ∈ S
under initial state distributions αs. While π̃i

s(ai) represents the total discounted joint probability that
the system occupies state s ∈ S and choose action ai ∈ Ai(s) under initial state distributions αs.

Note that the decomposable dual LP has |S| × (k × n + 1) variables and |S| × ((k + 1) × n + 2)
constraints. It is much less than the classic dual LP that has |S| × kn variables and |S| × (kn + 1)
constraints.

Lemma 7 Solutions of the decomposed LP (17) are decomposed randomized policies.

Proof: In state s , the “discrete” probability pi(ai|s) to choose sub-action ai out of all sub-action

Ai(s) is equal to pi(ai|s) =
π̃i
s(ai)
π̃s

, and we have moreover
∑

ai∈Ai(s)
pi(ai|s) = 1. �

Corollary 2 Decomposed randomized policies are dominant over randomized policies for Decomposed

CTMDPs.

Proof: Decomposed randomized policies are the solutions of the decomposed dual for the average
discounted criterion which provides the optimal policy. They are therefore dominant over other policies.
�

Remark 2 We can create a randomize policy from a decomposed randomized policy: The discrete

probability p(a|s) to choose action a = (a1, . . . , an) in state s is equal to p(a|s) =
∏n

i=1 p
i(ai|s) =∏n

i=1
π̃i
s(ai)
π̃s

. It allows us to create the classic dual variables π̃s(a) = π̃s ×
∏n

i=1
π̃i
s(ai)
π̃s

.

Theorem 2 The decomposed LP (17) solves the best Decomposable CTMDP discounted reward policy.

It gives deterministic policies as optimal solutions.

Proof: To prove this theorem we are going to study the dual version of the decomposed LP which
is more intuitive. We are going to show that dual equations define a polyedron and that its vertices
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are solutions representing deterministic policies: i.e. ∀s ∈ S, ∀i ∈ [1..n] there exists only one action
selected aj such that π̃i

s(aj) 6= 0 and ∀ai ∈ Ai(s) \ {aj}, π̃i
s(ai) = 0.

First, all variables of the problem are bounded: ∀s ∈ S, 0 ≤ π̃s ≤ 1 and ∀s ∈ S, ∀i ∈ [1..n], ∀ai ∈
Ai(s), 0 ≤ π̃i

s(ai) ≤ 1, therefore the space of feasible solutions is a bounded polyhedron, that is a
polytope.

Secondly, we have |S|×n×k+ |S| variables, hence a vertex of the feasible polytope should at least
tight |S| ×n× k+ |S| constraints. We have already |S|+ |S| ×n equality constraints in our LP. Hence
|S| × n× (k − 1) constraints still remain to be tight.

Now assume that ∀s ∈ S, π̃s 6= 0, otherwise if ∃s ∈ S such that π̃s = 0 we could reduce our
problem by removing state s without changing the solution. Since ∀s ∈ S, π̃s 6= 0 it means that we
have at least one variable π̃i

s(ai) that is not equal to 0 in each of the |S| × n constraints (17b). Hence
∀s ∈ S, ∀i ∈ [1..n], ∃aj ∈ Ai(s) / π̃i

s(aj) 6= 0.

In the end we have to tight |S| × n × (k − 1) constraints (17d) out of |S| × n × k with |S| × n
different not tight. Therefore there exists only one action selected aj such that π̃i

s(aj) 6= 0 and ∀ai ∈
Ai(s) \ {aj}, π̃i

s(ai) = 0 and a vertex of the solution polygon defines a deterministic policies. �

5 Numerical experimentats

In this section we are considering an instance of decomposable CTMDP. We compare the efficiency
(in term of resolution time) between the linear programming formulation and the dynamic formulation
with both the classic and decomposed model.

5.1 Model

We consider a single server and n different classes of clients. We have a finite queue of size C for
each client class. Clients arrivals occur according to independent Poisson processes with rate λi(pi) for
client class i ∈ I = {1, . . . , n} with entrance price pi. When a client of class i enters into the queue we
earn a reward r(pi). Then until he is served we pay a waiting time (holding cost) hi. A client of class
i has processing time exponentially distributed with mean µ−1

i . Figure 3 schemes an example of such
system.

At any time the decision maker has to decide which class of clients is served and what is the entrance
of each class of clients. The system state space is S = {(x1, . . . , xn) | xi < C, ∀i ∈ I} with |S| = Cn

states. For each state s ∈ S we have then to decide the class of clients to process: action d ∈ D with
|D| = n. And we have to select the entrance price of each class of clients: action pi ∈ Ai with |Ai| = k
different prices. In the end the action space for each state is A = (A1 × . . .× An)×D.

5.2 Classic solution techniques

Value Iteration To solve this problem with the value iteration algorithm we write down the Bell-
man’s equations of optimality. To do so we first uniformize the CTMDP into a discrete-time one with
the following notations: let Λi = maxpi∈Ai

λi(pi), Λ =
∑

i∈I Λi and ∆ = maxi∈I {µi}. Moreover let the
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λ1(p1)

λ1(pk)

λn(p1)

λn(pk)

n

C

µ1

µn

Figure 3: An example of D-CTMDP with 1 server, n class of clients with k prices and with a each one
a queue of capacity C.

operator {a}b equals a if the boolean expression b is worth true and 0 otherwise. Finally for a state
s = (x1, . . . , xn) and with ei = (x1 = 0, . . . , xi = 1, . . . , xn = 0) the unitvector of the ith coordinate,
we defined the operator T as follows:

T (v(s)) =
1

Λ +∆
max

(p1,..., pn, d)∈A

{
∑

i∈I

[
xi × hi +

{
λi(pi)×

(
v(s+ ei) + r(pi)

)}xi<C
]

+{µd × v(s− ed)}
xd>0 +

(
Λ−

∑

i∈I

{λi(pi)}
xi<C +∆− {µd}

xd>0

)
× v(s)

}
.

Classic Dual LP We can also directly write the dual LP formulation.

max
∑

s∈S

∑

a∈A

πs(a)×

n∑

i=1

(
xi × hi +

{
λi(pi)× ri(pi)

}xi<C
)

s.t.
∑

a∈A

πs(a)

(
{µd}

xd>0 +
n∑

i=1

{λi(pi)}
xi<C

)

=
∑

i∈I

∑

a∈A

[
{πs−ei(a)× λi(pi)}

xi>0 + {πs+ed(a)× µd}
xd<C

]
∀s ∈ S

∑

s∈S

∑

a∈A

πs(a) = 1

πs(a) ≥ 0 ∀s ∈ S, ∀a ∈ A
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5.3 Decomposed solution techniques

Value Iteration To use the value iteration with the decomposed model we define the operator T as
follows:

T (v(s)) =
1

Λ +∆



∑

i∈I


xi × hi + max

pi∈Ai

xi<C

{
λi(pi)×

(
v(s+ ei) + r(pi)

)
+
(
Λi − λi(pi)

)
× v(s)

}


+max
d∈D
xd>0

{
µd × v(s− ed) + (∆− µd)× v(s)

})
.

Decomposed LP Using what we show in section 3.2.2 we can write the decomposed LP: With
a = (p1, . . . , pn, d) ∈ A

max
∑

s∈S

n∑

i=1

(
πs × xi × hi +

∑

pi∈Ai

{
πi
s(pi)× λi(pi)× ri(pi)

}xi<C
)

s.t.
∑

i∈I

(
∑

pi∈Ai

{
πi
s(pi)× λi(pi)

}xi<C

+
{
πs(d)× µd

}xd>0
)

=
∑

i∈I




∑

pi∈Ai(t)

{
πi
s−ei

(pi)× λi(pi)
}xi>0

+
{
πs+ed(d)× µd

}xd<C



 ∀s ∈ S

∑

pi∈Ai

πi
s(pi) = πi

s ∀s ∈ S, ∀i ∈ I

∑

d∈D

πs(d) = πs ∀s ∈ S, ∀i ∈ I

∑

s∈S

πs = 1

πi
s(pi) ≥ 0 ∀s ∈ S, ∀i ∈ I, ∀pi ∈ Ai(s)

πs(d) ≥ 0 ∀s ∈ S, ∀d ∈ D

πs ≥ 0 ∀s ∈ S

5.4 Results

We create instances with n classes of client with k prices. A client of class i ∈ I with price j ∈ {1, . . . , k}
generates a reward ri(pj) = j × 2, arrives with transition rate λi(pj) = (4 − i) × (10 − ri(pj)), costs
hi = −24−i per unit of time and has a processing time rate µi = 20− 4 × i. Moreover there is always
the possibility to refuse a client, ∀i ∈ I, ri(0) = 0 and λi(0) = 0.

Algorithms are tested on a Intel core 2 duo 2.4 Ghz processor with 2 GB of RAM. Heuristics are
written in JAVA and LP solved with Gurobi 4.6. Legend (F-M) has to be read as follows: F stands
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for Formulation with C for Classic or D for Decomposed; M stands for Method with VI-ǫ for Value
Iteration at the given tolerance ǫ or LP for Linear Programming.

We want to compare the computation time of the different algorithms on a same instance. We
are looking specifically at the influence of the capacity of the queue C, table 1, the number of classes
n, table 2, and the number of prices proposed, table 3. We have confronted 6 solution methods: the
value iteration algorithm classic or decomposed for two values of ǫ: 10−3 and 10−5 and the classic and
decomposed LP.

First for classic formulations as for decomposed ones, as we expected the value iteration computation
time depends on the precision asked: diminishing per 100 ǫ increases in the order of 2 the computation
time. We also clearly see that the computation time of value iteration algorithm is from far much
smaller than the LP formulation. In general roughly a ratio 3 for a precision ǫ = 10−3 and 6 for a
precision ǫ = 10−3.

Secondly the benefice of the decomposition appears obvious. When the number of states grows,
variations on the queue capacity C (table 1) or the number of classes n (table 2) influence less the
decomposed formulation. It is even more clear when we increase the number of proposed prices k, indeed
on table 3 we can see that the difference of computation time between the classic and decomposed
formulation increases exponentially with the number of prices.

(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(5,3,4) 0.79 0.09 2.16 0.71 4.94 0.27
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(15,3,4) 82.71 4.24 143.2 7.22 4244 290

Table 1: Influence of capacity C on the algorithms computation time (in s.).

(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(10,1,4) 0 0 0 0 0.03 0.03
(10,2,4) 0.07 0.01 0.08 0.02 0.36 0.13
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(5,4,4) 87.9 0.89 383 3.56 541.7 3.72

Table 2: Influence of the number of classes n on the algorithms computation time (in s.).

(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(10,3,2) 2.51 0.45 2.67 0.54 7.1 1.1
(10,3,3) 6.12 0.55 10.60 0.81 20.4 2.6
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(10,3,5) 37.56 1.2 80.23 2.03 331 9.7

Table 3: Influence of the number of prices k on the algorithms computation time (in s.).
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