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Abstract

Markov decision processes (MDP) have provided general frameworks for many control,
decision making, and optimization stochastic problems. In this paper we are interested
in a special class queuing control that can be model with a Continuous-Time MDP but
that have an exponential actions state space with the classic methods. The Event Based
Dynamic Programming approach deals about this problem and gives some algorithms (value
iteration) to compute the best policy polynomially. However there is no formal definition
on the subclass of MDP problem they can tackle. The first contribution of this paper
to define this class, naming it “Action Decomposable MDP”. The second contribution
is to give a new MDP Linear Programming formulation using “Action Decomposability”
that contributes to extend MDP solution techniques. Finally we give some examples of
application of this framework and give numeric experiments showing the interest of using
the action decomposition properties.

1 Introduction

1.1 Context

Markov decision processes (MDP) have provided general frameworks for many control, decision
making, and optimization stochastic problems. In this paper we are interested in a special class
queuing control that can be model with a Continuous-Time MDP. For instance, as schemed
figure 1, for a single server and n classes of clients, if we want to set an entrance price pi, and
hence the arrival rate λ(pi) of customer i in order to optimize a given gain, we could model this
problem with a Continuous-Time MDP. However with the classic MDP framework in each state
of the process we would have to set the price of each class of clients giving possibly an exponential
number of states of action.
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In the literature, the Event Based Dynamic Programming approach deals about this problem
and gives some algorithms to compute the best policy polynomially. However there is no formal
definition on the subclass of MDP problem they can tackle. This is the first contribution of this
paper to define this class, naming it “Action Decomposable MDP” or simply “Decomposable
MDP” in the following. The second contribution is to give a new MDP Linear Programming
formulation using ‘Action Decomposability” that contributes to extend MDP solution techniques.

λ(p1)

λ(pn)

µ

Figure 1: Queuing example.

1.2 Literature review

If the reader is not familiar with the notion of Markovian processes we refer him to the books of
Puterman [13] or Bertsekas [2, 3]. For results more focused on Continuous-Time MDP, the book
of Guo et al. [8] specialized on the question with notably a chapter really accurate on the Linear
Programming Approach.

Bellman [1] first introduced Dynamic programming to solve Markov decision processes. The
use of linear programming to solve dynamic programming formulations appeared later in Depe-
noux [5] and Manne [12]. Manne [12] studies an average reward Markov decision model with an
infinite planning horizon. Depenoux [5] provides a linear program for the discounted version of
the problem in [12] by linearizing the functional equations of the corresponding dynamic pro-
gram. For the close relationship between Dynamic Programming and Linear Programming we
refer to Byktahtakn [4].

Howard [9] combines dynamic programming with Markov chain theory to develop Markov
decision processes. He also contributes to the solution of infinite horizon problems by developing
the policy iteration method as an alternative to the backward induction method of Bellman [1],
which is known as value iteration. The policy iteration algorithm generates a sequence of sta-
tionary policies by evaluating and improving the policies until the optimal policy is obtained.
Again to have a good overview of the different classic techniques to sove MDP we refer to the
books of Puterman [13] or Bertsekas [2, 3].

Event-based dynamic programming (dp) was first formulated in Koole [10]. Koole introduced
event-based dp as a systematic approach for deriving monotonicity results of optimal policies for
various queueing and resource sharing models. Citing himself “ Event-based dp deals with event
operators, which can be seen as building blocks of the value function. Typically it associates an
operator with each basic event in the system, such as an arrival at a queue, a service completion,
etc. Event-based dp focuses on the underlying properties of the value and cost functions, and
allows us to study many models at the same time.”
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Later Koole [11] extended his theory to all kinds of monotonicity results applied to Stochastic
scheduling problems that he defined as: A system with multiple customers classes having different
service time distributions and needed to be assigned to one or more servers.

2 Decomposable Continuous Time Markov Decision Pro-

cess

In this section we first try to give a rigorous definition of the sub class of Markov Decision Process
where the Event Based Dynamic Programming can be apply. Then we study both the average
reward and discounted reward criterion on infinite horizon. We give for each both the original and
decomposed formulation of the equations of optimality and the Linear program corresponding.
We finally discuss on the advantages to have a Linear Programming formulation.

2.1 Definitions

Let’s first recall the classic CT-MDP formulation and give our definition of the Decomposable
CT-MDP.

Definition 1 (Continuous Time Markov Decision Process, CT-MDP) A Continuous Time
Markov Decision Process is a stochastic control problem involving a finite state space S and a
finite decision space A(s) representing the actions available at each state s. When an action a
is selected in state s, the systems get a stage reward hs(a) per unit of time and evolves to state
t with an instant reward rs,t(a) after an exponentially distributed time with rate λs,t(a). Future
rewards might be discounted by a factor β ∈]0, 1[. The problem is to find the best policy which
maximizes the discounted or average reward.

Definition 2 (Decomposable Continuous Time Markov Decision Process , D-CT-MDP)
A Decomposable Continuous Time Markov Decision Process is a special class of CT-MDP when
in each state s ∈ S, the action set A(s) can be expressed as a Cartesian product of ns independent
subsets: A(s) = A1(s)× . . .×Ans

(s). When an action ai ∈ Ai(s) is selected in state s, the system
get a stage reward hi

s(ai) per unit of time and evolves to state t with an instant reward ris,t(ai)
after an exponentially distributed time with rate λi

s,t(ai). Future rewards might be discounted by
a factor β ∈]0, 1[. In this paper we are looking at the problem of finding the best policy which
maximizes the discounted or average reward .

In the end, depending the action a = (a1, . . . , ans
) we choose in state s, the reward per unit

of time staying in state s worth hs(a) =
∑ns

i=1 h
i
s(ai), the transition rate to go from state s to

state t worth λs,t(a) =
∑ns

i=1 λ
i
s,t(ai) with an instant reward rs,t(a) =

∑ns

i=1

λi
s,t(ai)

λs,t(a)
ris,t(ai). Figure 2

gives a graphical representation of the independence of each subset of action Ai(s). We could add
holding cost, and
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Figure 2: Graphical representation of a decomposable CT-MDP.

This new definition is subject to different remarks.

Remark 1 The formula to compute rs,t(a) might seems complicated to compute but in fact usu-
ally we don’t need to do it because problems are state decomposed in an intrinsic manner.

Remark 2 We could define a stage reward h′
s independent of the action chosen in state s.

However to a have it dependent allows us to model for example a decision upon the usage of a
certain type, numbers, of resources which change the transitions rates but also the stage reward
(or cost) h.

Remark 3 We have in this definition rewards per transition and stage rewards. We could have
only considered one or the other since by a small and easy transformation you can include stage
reward in transition reward and reciprocally.

We define some notions about the policies we can consider in such MDP.

Definition 3 (Deterministic policies) A policy is said deterministic if for each state s we
select always one action a ∈ A(s) in case of CT-MDP, or ai ∈ Ai(s)∀i = 1 . . . ns in case of
D-CT-MDP.

Definition 4 (Randomized policies) In CT-MDP, a policy is said randomized if for each
state s we have a “discrete” probability p(a|s) to select action a ∈ A(s) with

∑
a∈A(s) p(a|s) = 1.

Definition 5 (Decomposable randomized policies) In D-CT-MDP, a policy is said decom-
posable randomized if for each state s we have a “discrete” probability pi(ai|s) to select action
ai ∈ Ai(s)∀i ∈ [1 . . . ns] with

∑
ai∈Ai(s)

pi(ai|s) = 1, ∀i ∈ [1 . . . ns]..

In the following, without loss of generality, we assume that each state s ∈ S has ns = n
subsets of independent actions Ai(s) which contain each one exactly k actions. We will also only
consider and speak about stationary policies, i.e. policies which take always for each state s the
same decision, because they are trivially dominant since we are using exponential distribution
with the memoryless property, c.f. [13].
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2.2 Average Reward criterion

When decisions are made frequently, we can consider that there is no discount rate for future
and therefore study the average reward criterion.

2.2.1 Bellman’s equations

Recall that Bellman’s equations of optimality are defined for Discrete Time MDP (DT-MDP).
Therefore we have to make a “uniformization” by state to transform the CT-MDP into a DT-
MDP.

To do so we use the following notations, let Λi
s,t := maxai∈Ai(s) λ

i
s,t(ai), Λs,t :=

∑n
i=1 Λ

i
s,t,

Λi
s :=

∑
t∈S Λ

i
s,t and Λs :=

∑
t∈S Λs,t, ∀s, t ∈ S, ∀i ∈ [1..n].

We have that the optimal average reward g∗ satisfies with some vector v the following Bell-
man’s equations of optimality [1]:

∀s ∈ S,
g

Λs

+ v(s) = T (v(s)). (1)

With

∀s ∈ S, T (v(s)) = max
a∈A(s)

{
1

Λs

(
hs(a) +

∑

t∈S

[λs,t(a)× [v(t) + rs,t(a)] + (Λs,t − λs,t(a))× v(s)]

)}

= max
(a1, ..., an)

∈ (A1(s)×...×An(s))

{
1

Λs

n∑

i=1

(
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)× [v(t) + ris,t(ai)] + (Λi

s,t − λi
s,t(ai))× v(s)

]
)}

.

(2)

And using that subset of actions Ai are independent, we can reduce the complexity by rewrit-
ing the equations (2) as follows ∀s ∈ S:

T (v(s)) =
1

Λs

n∑

i=1

[
max

ai∈Ai(s)

{
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)× [v(t) + ris,t(ai)] + (Λi

s,t − λi
s,t(ai))× v(s)

]
}]

.

(3)

Finally to compute the best MDP policy we can now use the value iteration algorithm on
Bellman’s equations of optimality (1). We take operator T defined equations (2) or more effi-
ciently (as we’ll see in the section 3.2) on equations (3). Otherwise another method is to use a
Linear Programming formulation given next section.

2.2.2 Classic CT-MDP Linear Program

From Manne [12] we know that it is possible to to compute the best MDP average reward policy
through a Linear Program Indeed as it explained again in detail for instance in Puterman [13],
chapter 8.8, page 391, we can construct a Linear Program from equations (2).
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If the Weak Accessibility condition holds (see Bertsekas [3], Chapter 4.2, page 198), which is
the case of an ergodic chain, then the Bellman’s equations (1) have a solution and the optimal
average reward g∗ is independent from the initial state. Moreover g∗ is the smallest g which
satisfies with some vector v the following inequalities:

g

Λs

+ v(s) ≥ T (v(s)), ∀s ∈ S. (4)

With equations (4), we can formulate the following linear program which has for solution g∗:

Classic Primal - Average Reward

min g

s.t. g ≥
∑

t∈S

[λs,t(a)× [v(t) + rs,t(a)] + hs(a) + (Λs,t − λs,t(a))× v(s)]− Λs × v(s)

∀s ∈ S, ∀a ∈ A(s) = A1(s)× . . .× An(s)

v(s) ∈ R ∀s ∈ S

g ∈ R

Classic Dual - Average Reward

max
∑

s∈S

∑

a∈A

πs(a)×

[
hs(a) +

∑

t∈S

λs,t(a)× rs,t(a)

]

s.t.
∑

a∈A(s)

∑

t∈S

πs(a)× λs,t(a) =
∑

t∈S

∑

a∈A(t)

πt(a)× λt,s(a) ∀s ∈ S

∑

s∈S

∑

a∈A(s)

πs(a) = 1

πs(a) ≥ 0 ∀s ∈ S, ∀a ∈ A(s) = A1(s)× . . .× An(s)

An advantage of the dual formulation is that we can interpret the dual variables πs(a) as the
average amount of time spent in state s choosing action a.

Note the the classical dual linear program formulation has |S|×kn variables and |S|×kn +
|S|+1 constraints .

2.2.3 Decomposable CT-MDP Linear Program

Using the Event Based Programming approach we can formulate a new Linear Program. To do
so we first formulate the next lemma.
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Lemma 1 For any finite sets S, I, A, any set of data coefficients γs,i,a ∈ R : s ∈ S, i ∈ I, a ∈
A, the value

g∗ = max
s∈S

{
∑

i∈I

max
a∈A

{γs,i,a}

}

is the solution of the following linear program:

minimize g

subject to m(s, i) ≥ γs,i,a ∀s ∈ S, ∀i ∈ I, ∀a ∈ A

g ≥
∑

i∈I

m(s, i) ∀s ∈ S

m(s, i) ∈ R ∀s ∈ S, ∀i ∈ I

g ∈ R

Proof : Let g∗ be an optimal solution of this linear program. It is trivial that g∗ ≥
maxs∈S

{∑
i∈I m(s, i)

}
, and since we are minimizing g without any other constraints on it, we

have therefore g∗ = maxs∈S
{∑

i∈I m(s, i)
}
.

For any optimal solution g∗, there exists s′ ∈ S such that
∑

i∈I m(s′, i) = maxs∈S
{∑

i∈I m(s, i)
}
=

g∗ and ∀i ∈ I, m(s′, i) = maxa∈A {γs′,i,a}.

Indeed otherwise it would mean that for all s′ ∈ S such that
∑

i∈I m(s′, i) = maxs∈S
{∑

i∈I m(s, i)
}
=

g∗ there exists i′ ∈ I such that m(s′, i′) > maxa∈A {γs′,i′,a} and we would have a strictly better
solution with m(s′, i′) = maxa∈A {γs′,i′,a}.

In the end it gives us that g∗ = maxs∈S
{∑

i∈I maxa∈A {γs,i,a}
}
. �

Again if the Weak Accessibility condition holds then the Bellman’s equation (1) has a solution
and the optimal average reward g∗ is solution of the following equations:

g∗ = min g such that
g

Λs
+ v(s) ≥ T (v(s)), ∀s ∈ S, .

⇔

g∗ = max
s∈S

{Λs × (T (v(s))− v(s))}

= max
s∈S

{
n∑

i=1

[
max

ai∈Ai(s)

{
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)× [v(t) + ris,t(ai)] + (Λi

s,t − λi
s,t(ai))× v(s)

]
− Λi

s × v(s)

}]}

= max
s∈S

{
n∑

i=1

[
max

ai∈Ai(s)

{
hi
s(ai) +

∑

t∈S

λi
s,t(ai)× [v(t)− v(s) + ris,t(ai)]

}]}
.

Thus from lemma 1, g∗ is the solution of the following linear program:
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Decomposable Primal - Average Reward

min g (5a)

s.t. m(s, i) ≥ hi
s(ai) +

∑

t∈S

λi
s,t(ai)× [v(t)− v(s) + ris,t(ai)] ∀s ∈ S, ∀i ∈ [1..n], ∀ai ∈ Ai(s)

(5b)

g ≥
n∑

i=1

m(s, i) ∀s ∈ S

(5c)

m(s, i) ∈ R ∀s ∈ S, ∀i ∈ [1..n]
(5d)

v(s) ∈ R ∀s ∈ S
(5e)

g ∈ R (5f)

Note that we can rewrite equations (5b) as follows to construct the dual more easily:

∀s ∈ S, ∀i ∈ [1..n], ∀ai ∈ Ai(s),

m(s, i) +
∑

t∈S

λi
s,t(ai)× v(s)−

∑

t∈S

λi
s,t(ai)× v(t) ≥ hi

s(ai) +
∑

t∈S

λi
s,t(ai)× ris,t(ai).

Decomposable Dual - Average Reward

max
∑

s∈S

n∑

i=1

∑

ai∈Ai

πi
s(ai)×

[
hi
s(ai) +

∑

t∈S

λi
s,t(ai)× ris,t(ai)

]
(6a)

s.t.

n∑

i=1

∑

ai∈Ai(s)

πi
s(ai)×

∑

t∈S

λi
s,t(ai) =

∑

t∈S

n∑

i=1

∑

ai∈Ai(t)

πi
t(ai)× λi

t,s(ai) ∀s ∈ S (6b)

∑

ai∈Ai(s)

πi
s(ai) = πs ∀s ∈ S, ∀i ∈ [1..n] (6c)

∑

s∈S

πs = 1 (6d)

πi
s(ai) ≥ 0 ∀s ∈ S, ∀i ∈ [1..n], ∀ai ∈ Ai(s) (6e)

πs ≥ 0 ∀s ∈ S (6f)

Again an advantage of the Dual formulation is that we can interpret πs as the average amount
of time spent in state s and πi

s(ai) as the average amount of time spent in state s choosing action
ai ∈ Ai(s) among all actions Ai(s). This interpretation allows to see equations (6b) as the
flow conservation constraints, and equations (6c) and (6d) as the Markov Chain Stationary
distribution constraints.
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Note that the decomposable dual linear program formulation has |S|×(k × n + 1) variables
and |S|×((k + 1)× n+ 2) + 1 constraints.

Lemma 2 Solutions of the decomposable linear program are decomposable randomized policies.

Proof : In state s , the “discrete” probability pi(ai|s) to choose action ai out of all action Ai(s)

equals to pi(ai|s) =
πi
s(ai)
πs

, and we have moreover
∑

ai∈Ai(s)
pi(ai|s) = 1. �

Corollary 1 Decomposable randomized policies are dominant among randomized policies since
they are the solutions of the Decomposable Dual for Average Reward which provides the optimal
policy. We have the probability p(a|s) to choose action a = (a1, . . . , an) in state s equal to

p(a|s) =
∏n

i=1 p
i(ai|s) =

∏n
i=1

πi
s(ai)
πs

. This gives us finally the value of Classic Dual variables

πs(a) = πs ×
∏n

i=1
πi
s(ai)
πs

.

Theorem 1 The decomposable linear program solves the Decomposable Continuous Time Markov
Decision Process and gives deterministic policies as optimal solutions.

Proof : To prove this theorem we are going to study the dual version of the Average reward
linear program which is more intuitive. We are going to show that dual equations define a
polytope and that its vertices represent deterministic strategy solutions: i.e. ∀s ∈ S, ∀i ∈ [1..n]
there exists only one action selected aj such that πi

s(aj) 6= 0 and ∀ai ∈ Ai(s) \ {aj}, πi
s(ai) = 0.

First, all variables of the problem are bounded: ∀s ∈ S, 0 ≤ πs ≤ 1 and ∀s ∈ S, ∀i ∈
[1..n], ∀ai ∈ Ai(s), 0 ≤ πi

s(ai) ≤ 1, therefore the space of feasible solutions is a bounded
polyhedron, that is a polytope.

Secondly, we have |S|×n × k + |S| variables, hence a vertex of the feasible polytope should
satisfy at least |S|×n × k + |S| constraints with equality (we say tight). Since we can remove
one of the |S| flow constraints of equations (6b) without changing the solution, we already have
|S|+|S|×n equality constraints in our LP. Therefore only |S|×n× (k−1) constraints still remain
to be tight.

Assume now that ∀s ∈ S, πs 6= 0, otherwise if ∃s ∈ S with πs = 0 we could reduce our
problem by removing state s without changing the optimal solution. Since ∀s ∈ S, πs 6= 0 it
means that we have at least one variable πi

s(ai) in each of the |S|×n constraints (6c) not equal
to 0. Hence ∀s ∈ S, ∀i ∈ [1..n], ∃aj ∈ Ai(s) such that πi

s(aj) 6= 0.

In the end we have to tight |S|×n × (k − 1) constraints (6e) out of |S|×n × k with |S|×n
different not tight. Therefore there exists only one action selected aj such that πi

s(aj) 6= 0 and
∀ai ∈ Ai(s) \ {aj}, πi

s(ai) = 0 and a vertex of the solution polygon defines a deterministic
policy. �
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2.3 Discounted Reward criterion

We study now the discounted reward criterion, i.e. when future rewards are discounted by factor
β ∈]0, 1[.

In this section in order to have a better interpretation of the formulation we will use a positive
scalar αs, s ∈ S which satisfies

∑
s∈S αs = 1. Any other positive constant would work but the

sum equals to 1 allows an interpretation as a initial state probability distribution over S.

2.3.1 Bellman’s equations

Again to use Bellman’s equation of optimality defined on Discrete Time MDP (DT-MDP), we
use an uniformization by state to transform our CT-MDP into a DT-MDP.

To do so we use the following notations, let Λi
s,t := maxai∈Ai(s) λ

i
s,t(ai), Λs,t :=

∑n
i=1 Λ

i
s,t,

Λi
s :=

∑
t∈S Λ

i
s,t and Λs :=

∑
t∈S Λs,t, ∀s ∈ S, ∀i ∈ [1..n]. We also define βi = β

n
, ∀i ∈ [1..n]

We have then that the optimal expected discounted reward per state v∗ satisfies the following
Bellman’s equations of optimality [1]:

∀s ∈ S, v(s) = T (v(s)). (7)

With

∀s ∈ S, T (v(s)) = max
a∈A(s)

{
1

β + Λs

(
hs(a) +

∑

t∈S

[λs,t(a)× (v(t) + rs,t(a)) + (Λs,t − λs,t(a))× v(s)]

)}

= max
(a1, ..., an)

∈ (A1(s)×...×An(s))

{
n∑

i=1

[
1

β + Λs

(
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)× (v(t) + ris,t(ai)) + (Λi

s,t − λi
s,t(ai))× v(s)

]
)]}

(8)

And using that subset of actions Ai are independent, we can reduce the complexity by rewrit-
ing the equations (8) as follows ∀s ∈ S:

T (v(s)) =

n∑

i=1

[
max

ai∈Ai(s)

{
1

β + Λs

(
hi
s(ai) +

∑

t∈S

[
λi
s,t(ai)× (v(t) + ris,t(ai)) + (Λi

s,t − λi
s,t(ai))× v(s)

]
)}]

.

(9)

Finally to compute the best MDP policy we can now use the value iteration algorithm on
Bellman’s equations of optimality (7). We take operator T defined equations (8) or more effi-
ciently (as we’ll see in the section 3.2) on equations (9). Otherwise another method is to use a
Linear Programming formulation given next section.
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2.3.2 Classic CT-MDP Linear Program

From D’epenoux [5] we know that it is possible to to compute the best MDP discounted reward
policy with a Linear Program. As it is well explained in Puterman [13], chapter 6.9, page 223,
we can construct a Linear Program from equations (8).

Again if the Weak Accessibility condition holds (see Bertsekas [3], Chapter 4.2, page 198)),
which is the case of an ergodic chain, then the Bellman’s equation (7) has a solution and the
optimal expected reward per state v∗ is the vector v with the smallest value

∑
s∈S αs×v(s) which

satisfies:
v(s) ≥ T (v(s)), ∀s ∈ S. (10)

With equations (10), we can formulate the following linear program which has for solution
v∗:

Classic Primal - Discounted Reward

min
∑

s∈S

αs × v(s)

s.t. (β +
∑

t∈S

λs,t(a))× v(s)−
∑

t∈S

λs,t(a)× v(t) ≥ hs(a) +
∑

t∈S

λs,t(a)× rs,t(a) ∀s ∈ S, ∀a ∈ A(s)

v(s) ∈ R ∀s ∈ S

Classic Dual - Discounted Reward

max
∑

s∈S

∑

a∈A(s)

π̃s(a)×

(
hs(a) +

∑

t∈S

λs,t(a)× rs,t(a)

)

s.t.
∑

a∈A(s)

(β +
∑

t∈S

λs,t(a))× π̃s(a)−
∑

t∈S

∑

a∈A(t)

λt,s(a)× π̃t(a) = αs ∀s ∈ S

π̃s(a) ≥ 0 ∀s ∈ S, ∀a ∈ A(s) = A1(s)× . . .× An(s)

Again an advantage of the dual formulation is that we can interpret the dual variables π̃s(a) as
the total discounted joint probability under initial state distribution αs that the system occupies
state s ∈ S and chooses action a ∈ A(s). Some other interpretations can be retrieved in
Puterman [13] p.226.

Note that the classic dual linear program has |S|×kn variables and |S|×(kn + 1) constraints.

2.3.3 Decomposable CT-MDP Linear Program

Using Event Based Programming approach we can construct a new Linear Program. To do so
we first state the next lemma.
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Lemma 3 For any finite sets S, I, A, any set of data coefficients αs, γs,t,i,a, δs,i,a ∈ R : s, t ∈
S, i ∈ I, a ∈ A, the vector v ∈ R

|S| with the smallest value
∑

s∈S αs × v(s) satisfying:

0 ≥ max
s∈S

{
∑

i∈I

max
a∈A

{
∑

t∈S

γs,t,i,a × v(s) + δs,i,a

}}

is the solution of the following linear program:

minimize
∑

s∈S

αs × v(s)

subject to m(s, i) ≥
∑

t∈S

γs,t,i,a × v(s) + δs,i,a ∀s ∈ S, ∀i ∈ I, ∀a ∈ A

0 ≥
∑

i∈I

m(s, i) ∀s ∈ S

m(s, i) ∈ R ∀s ∈ S, ∀i ∈ I

v(s) ∈ R ∀s ∈ S

Proof : It is clear that we are minimizing
∑

s∈S αs × v(s). Now for any vector v we can
see that ∀s ∈ S, ∀i ∈ I m(s, i) ≥ maxa∈A

{∑
t∈S γs,t,i,a × v(s) + δs,i,a

}
, and we have ∀s ∈

S
∑

i∈I m(s, i) ≤ 0. Therefore any vector v solution must satisfy 0 ≥
∑

i∈I maxa∈A
{∑

t∈S γs,t,i,a × v(s) + δs,i,a
}

S and therefore 0 ≥ maxs∈S
{∑

i∈I maxa∈A
{∑

t∈S γs,t,i,a × v(s) + δs,i,a
}}

. �

Again if the Weak Accessibility condition holds then Bellman’s equations (7) have a solution
and the optimal expected reward per state v∗ is the solution of the following equations:

min
∑

s∈S

αs × v(s)

Such that:
v(s) ≥ T (v(s)), ∀s ∈ S.

⇔

0 ≥ max
s∈S

{T (v(s))− v(s)}

≥ max
s∈S

{(β + Λs)× (T (v(s))− v(s))}

≥ max
s∈S

{
n∑

i=1

[
max

ai∈Ai(s)

{
hi
s(ai)

+
∑

t∈S

[
λi
s,t(ai)× [v(t) + ris,t(ai)] + (Λi

s,t − λi
s,t(ai))× v(s)

]
− (Λi

s + βi)× v(s)

}]}

≥ max
s∈S

{
n∑

i=1

[
max

ai∈Ai(s)

{
hi
s(ai) +

∑

t∈S

λi
s,t(ai)× [v(t)− v(s) + ris,t(ai)]− βi × v(s)

}]}
.
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Thus from lemma 3, v∗ is the solution of the following linear program.

Decomposable Primal - Discounted Reward

min
∑

s∈S

αs × v(s) (11a)

s.t. m(s, i) ≥ hi
s(ai) +

∑

t∈S

λi
s,t(ai)× [v(t)− v(s) + ris,t(ai)]− βi × v(s) (11b)

∀s ∈ S, ∀i ∈ [1..n], ∀ai ∈ Ai(s) (11c)
n∑

i=1

m(s, i) ≤ 0 ∀s ∈ S ≤ 0

(11d)

m(s, i) ∈ R ∀s ∈ S, ∀i ∈ [1..n]
(11e)

v(s) ∈ R ∀s ∈ S
(11f)

To construct easily the dual equations (11c) can be rewritten:

∀s ∈ S, ∀i ∈ [1..n], ∀ai ∈ Ai(s),

m(s, i) +

(
βi +

∑

t∈S

λi
s,t(ai)

)
× v(s)−

∑

t∈S

λi
s,t(ai)× v(t) ≥ hi

s(ai) +
∑

t∈S

λi
s,t(ai)× ris,t(ai).

Decomposable Dual - Discounted Reward

max
∑

s∈S

n∑

i=1

∑

ai∈Ai(s)

π̃i
s(ai)×

(
hi
s(ai) +

∑

t∈S

λi
s,t(ai)× ris,t(ai)

)
(12a)

s.t.
∑

ai∈Ai(s)

π̃i
s(ai) = π̃s ∀s ∈ S, ∀i ∈ [1..n]

(12b)
n∑

i=1

∑

ai∈Ai(s)

(
βi +

∑

t∈S

λi
s,t(ai)

)
× π̃i

s(ai)−
∑

t∈S

n∑

i=1

∑

ai∈Ai(t)

λi
t,s(ai)× π̃i

t(ai) = αs ∀s ∈ S

(12c)

π̃i
s(ai) ≥ 0 ∀s ∈ S, ∀i ∈ [1..n], ∀ai ∈ Ai(s) (12d)

π̃s ≥ 0 ∀s ∈ S (12e)

We can interpret π̃s as the total discounted joint probability under initial state distribution
αs that the system occupies state s ∈ S. While π̃i

s(ai) represents the total discounted joint
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probability under initial state distribution αs that the system occupies state s ∈ S and choose
action ai ∈ Ai(s) out of Ai(s).

Note that the decomposable dual linear program has |S|×(k×n+1) variables and |S|×((k+
1)× n + 2) constraints.

Lemma 4 Solutions of the decomposable linear program are decomposable randomized policies.

Proof : In state s , the “discrete” probability pi(ai|s) to choose action ai out of all action Ai(s)

equals to pi(ai|s) =
π̃i
s(ai)
π̃s

, and we have moreover
∑

ai∈Ai(s)
pi(ai|s) = 1. �

Corollary 2 Decomposable randomized policies are dominant over randomized policies since
they are the solutions of the Decomposable Dual for Discounted Reward which gives the optimal
policy. We have the probability p(a|s) to choose action a = (a1, . . . , an) in state s equal to

p(a|s) =
∏n

i=1 p
i(ai|s) =

∏n
i=1

π̃i
s(ai)
π̃s

. This gives us finally the value of Classic Dual variables

π̃s(a) = π̃s ×
∏n

i=1
π̃i
s(ai)
π̃s

.

Theorem 2 Optimal solutions of the decomposable linear program are deterministic policies.

Proof : To prove this theorem we are going to study the dual version of the Discounted Reward
linear program which is more intuitive. We are going to show that dual equations define a
polyedron and that its vertices represent deterministic strategy solutions: i.e. ∀s ∈ S, ∀i ∈ [1..n]
there exists only one action selected aj such that π̃i

s(aj) 6= 0 and ∀ai ∈ Ai(s) \ {aj}, π̃i
s(ai) = 0.

First, all variables of the problem are bounded: ∀s ∈ S, 0 ≤ π̃s ≤ 1 and ∀s ∈ S, ∀i ∈
[1..n], ∀ai ∈ Ai(s), 0 ≤ π̃i

s(ai) ≤ 1, therefore the space of feasible solutions is a bounded
polyhedron, that is a polytope.

Secondly, we have |S|×n×k+ |S| variables, hence a vertex of the feasible polytope should at
least tight |S|×n× k + |S| constraints. We have already |S|+|S|×n equality constraints in our
LP. Hence |S|×n× (k − 1) constraints still remain to be tight.

Now assume that ∀s ∈ S, π̃s 6= 0, otherwise if ∃s ∈ S such that π̃s = 0 we could reduce our
problem by removing state s without changing the solution. Since ∀s ∈ S, π̃s 6= 0 it means that
we have at least one variable π̃i

s(ai) in each of the |S|×n constraints (12b) not equal to 0. Hence
∀s ∈ S, ∀i ∈ [1..n], ∃aj ∈ Ai(s) / π̃i

s(aj) 6= 0.

In the end we have to tight |S|×n× (k − 1) constraints (12d) out of |S|×n× k with |S|×n
different not tight. Therefore there exists only one action selected aj such that π̃i

s(aj) 6= 0 and
∀ai ∈ Ai(s)\{aj}, π̃

i
s(ai) = 0 and a vertex of the solution polygon defines a deterministic policies.

�
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2.4 Advantages of a LP formulation against DP

First let recall that this particular Linear Programming formulation for the Decomposable CT-
MDP, which uses the paradigm of event based dynamic programming allows us to have a com-
plexity polynomial in the number of independent subsets of actions: |S|×(k × n + 1) variables
and |S|×((k + 1) × n + 2) constraints; Whereas the classical linear programming formulation
grows exponentially: |S|×kn variables and |S|×(kn + 1) constraints. This has a huge impact on
the computational results given in the next section.

Secondly even if the Linear Programming formulation is slower to solve than a Dynamic
Programming one, as is it said in Puterman [13] and showed again in a following section, this
Mathematical Programming approach offers some advantages:

• The dual Linear Program formulation is really simple to write and does not need the
uniformization necessary to the DP which is sometimes source of waste of time and error.

• Linear Program formulation can help to characterize the polyhedral structure of discrete
optimization problems, c.f. [4].

• It is possible to use sensitive analysis methods of Linear Programming, c.f. [7] for a good
survey.

• We can also use Approximate Linear Programming techniques, c.f. [6] for details.

• Moreover we have the ability to add extra constraints in the linear program formulation
which is impossible in the Dynamic Program. Examples are given next section.

2.4.1 Average Reward criterion constraints

Stationary distribution constraints We can constrain the stationary distribution to force
a quality of service q on a subset T ⊂ S of state:

∑

s∈T

πs ≥ q.

Nevertheless we have to be aware that such constraint can have for optimal strictly randomized
(mixed) policies.

More action selection constraints

Lemma 5 The following equation force in a state s ∈ S to select at least m and at most M ac-
tions in a set of k actions aji belonging to different subsets of independent actions, aji ∈ Ai(s), j ∈
[1..k]:

m ≤

k∑

j=1

πi
s(a

j
i )

πs
≤ M.
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Proof : We only have to see that
πi
s(a

j
i )

πs
is the discrete probability to take in state s action aji

out of all actions Ai(s). See lemma 2. �

Remark 4 We have to be aware that such constraints may lead to optimal solutions that are
strictly randomized policies. In this case to ensure with a probability 1 to have at least m and at
most M actions you would need to generate a posteriori the randomized policy sequence of action
to take.

2.4.2 Discounted Reward constraints

State value constraints Constraints on the v(s). Example?

Lemma 6 The following equation force in a state s ∈ S to a select at least m and at most
M actions in a set of k actions aji belonging to different subsets of independent actions, aji ∈
Ai(s), j ∈ [1..k]:

m ≤
k∑

j=1

π̃i
s(a

j
i )

π̃s

≤ M.

Proof : We only have to see that
π̃i
s(a

j
i )

π̃s
is the discrete probability to take in state s action aji

out of all actions Ai(s). See lemma 4. �

Remark 5 As in remark 4, we have to be aware that such constraints may lead to optimal
solutions that are strictly randomized policies.

3 Examples

3.1 A Linear Programming Model with additional constraints

A finite number n of the same resource need to be shared into different class of clients. Assume it
is a bumper car rental (or short term bicycle rental) and we have 3 client classes: the children c,
the student s and the adult a arriving at rate λc(p

k
c ) resp. λs(p

k
s) and λa(p

k
a), with pki , k = 1 . . . 3

the 3 discrete ordered increasing prices to rent a resource at class i. All rentals are for the same
amount of time following an exponential distribution of mean 1

µ
.

The states S of the system are the number of vehicles rented. For each state we want to
define the price to rent one vehicle for each class of client.

To attract clients there need to have enough vehicles playing on the playground so people
would have fun. So we constraint the system to be two third of the time with more than half of
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the vehicles rented. We can express this constraint as follows

n∑

s=n/2

πs ≥
2

3
.

Moreover the manager can’t rent a vehicle to a student at a price higher that an adult,
otherwise the student will pay the adult price! So if the price p1a is lower than price p2s and p3s in
each state we have to put the constraint to select at most one price:

∀s ∈ S,
πs(p

2
s)

πs

+
πs(p

3
s)

πs

+
πs(p

1
a)

πs

≤ 1.

In the end we want to maximize the average revenue.

3.2 Numeric experimentation

In this section we are considering a decomposable CT-MDP problem and look at the efficiency
(in term of resolution time) between the linear programming formulation and the dynamic for-
mulation with the classic and decomposable approach.

3.2.1 Model

Let’s consider a single server and n different client classes. We have a finite queue (buffer) of
size C for each class. The system state space is S = {(x1, . . . , xn) | xi < C, ∀i ∈ [1, n]}, and we
have therefore |S|= Cn states.

For each states of the system we want to decide

• A price for each client of class i to enter into the system: r(ai).

– It is model by the selection of an action ai out of all actions Ai with |Ai|= k.

– Clients of class i will then arrive in the system following a Poisson distribution with
rate λi(ai) which depends on the price r(ai) chosen.

• The class of client to process d

– It is model by the selection of an action d ∈ D which elect the class d to process out
of all classes with |D|= n.

– Clients of class i have a process time µi by the server.

– The waiting time cost per unit of time for a client of class i worth hi.

In the end the action space for each state is A = (A1 × . . .× An)×D.
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3.2.2 Bellman equations

To solve this problem with the value iteration algorithm we have to write down the Bellman
equation of optimality. To do so, to uniformize the CT-MDP into a discrete one we’ll need the
following notations: let Λi = maxai∈Ai

λi(ai), Λ =
∑n

i=1 Λi and ∆ = maxi∈[1...n] {µi}. More over
let the operator {a}b := a if the boolean expression b = true, 0 otherwise.

For a state s = (x1, . . . , xn), the classic approach the operator T can be defined as follows:

T (v(s)) =
1

Λ +∆
max

(a1,..., an, d)∈A

{
n∑

i=1

[
xi × hi + {λi(ai)× (v(s+ ei) + r(ai))}

xi<C
]

+{µd × v(s− ed)}
xd>0 + (Λ−

n∑

i=1

{λi(ai)}
xi<C +∆− {µd}

xd>0)× v(s)

}
.

For the decomposable approach the operator T can be defined as follows:

T (v(s)) =
1

Λ +∆




n∑

i=1


xi × hi + max

ai∈Ai
xi<C

{λi(ai)× (v(s+ ei) + r(ai)) + (Λi − λi(ai))× v(s)}




+max
d∈D
xd>0

{µd × v(s− ed) + (∆− µd)× v(s)}

)
.

3.2.3 Linear program

Classic With a = (a1, . . . , an, d) ∈ A, we can write the classical Linear Programming:

max
∑

s∈S

∑

a∈A

πs(a)×

n∑

i=1

[
xi × hi + {λi(ai)× ri(ai)}

xi<C
]

s.t.
∑

a∈A

πs(a)

[
{µd}

xd>0 +
n∑

i=1

{λi(ai)}
xi<C

]
=

n∑

i=1

∑

a∈A

[
{πs−ei(a)× λi(ai)}

xi>0 + {πs+ed(a)× µd}
xd<C

]

∑

s∈S

∑

a∈A

πs(a) = 1

πs(a) ≥ 0 ∀s ∈
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Decomposed Using what we show in section 2.2.3 we can write the decomposable CT-MDP
as follows:

max
∑

s∈S

n∑

i=1

[
πs × xi × hi +

∑

ai∈Ai

{πi
s(ai)× λi(ai)× ri(ai)}

xi<C

]

s.t.

n∑

i=1

[
∑

ai∈Ai

{πi
s(ai)× λi(ai)}

xi<C + {πs(d)× µd}
xd>0

]

=

n∑

i=1



∑

ai∈Ai(t)

{πi
s−ei

(ai)× λi(ai)}
xi>0 + {πs+ed(d)× µd}

xd<C


 ∀s ∈ S

∑

ai∈Ai

πi
s(ai) = πi

s ∀s ∈ S, ∀i ∈ [1..n]

∑

d∈D

πs(d) = πs ∀s ∈ S, ∀i ∈ [1..n]

∑

s∈S

πs = 1

πi
s(ai) ≥ 0 ∀s ∈ S, ∀i ∈ [1..n], ∀ai ∈ Ai(s)

πs(d) ≥ 0 ∀s ∈ S, ∀d ∈ [1..n],

πs ≥ 0 ∀s ∈ S

3.2.4 Results

We create instances with n classes of client with k prices. A customer of class i ∈ [1..n] with
price j ∈ [1..k] generates a reward ri(aj) = j × 2, arrives with transition rate λi(aj) = (4− i)×
(10 − ri(aj)), cost hi = −24−i and can have a processing time µi = 20 − 4 × i. More over there
is always the possibility to refuse a client, ∀i ∈ [1..n], ri(0) = 0 and λi(0) = 0.

Algorithm are tested on a Intel core 2 duo 2.4 Ghz processor with 2 Go of ram. Heuristics
are written in JAVA and Linear Programs solved with Gurobi 4.6. Legend (F-M) has to be read
as follow. F for Formulation: either C for Classic or D for Decomposable. M for Method: either
VI-ǫ for Value Iteration at the given tolerance ǫ or LP for Linear Programming.

We want to compare the computation time of the different algorithms on a same instance.
We are looking specifically at the influence of the capacity of the queue C, table 1, the number
of classes n, table 2, and the number of prices proposed, table 3.

We have confronted 6 solution methods: the Value Iteration algorithm Decomposed or Classic
for two values of ǫ: 10−3 and 10−5 and the classic and decomposed Linear Program.

First for classic formulation as for decomposed one, we expected the Value Iteration com-
putation time depends on the precision asked: diminishing per 100 ǫ increase in the order of 2
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the time. We also clearly see that the computation time of value iteration algorithm is from far
much smaller than the Linear Program formulation. In general roughly a ratio 3 for a precision
ǫ = 10−3 and 6 for a precision ǫ = 10−3.

Secondly the benefice of the decomposition appears obviously. When the number of states
are growing, variation on the queue capacity C (table 1) or the number of classes n (table 2)
influence less the decomposable formulation. And it is even more clear when we increase the
number of proposed prices k (table 3), indeed on this table we can see that the difference of
computation time between the classic and decomposed formulation increases exponentially with
the number of prices.

(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(5,3,4) 0.79 0.09 2.16 0.71 4.94 0.27
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(15,3,4) 82.71 4.24 143.2 7.22 4244 290

Table 1: Influence of capacity C on the algorithms computation time (in s.).

(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(10,1,4) 0 0 0 0 0.03 0.03
(10,2,4) 0.07 0.01 0.08 0.02 0.36 0.13
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(5,4,4) 87.9 0.89 383 3.56 541.7 3.72

Table 2: Influence of the number of classes n on the algorithms computation time (in s.).

(C,n,k) C-VI-10−2 D-VI-10−2 C-VI-10−5 D-VI-10−5 C-LP D-LP

(10,3,2) 2.51 0.45 2.67 0.54 7.1 1.1
(10,3,3) 6.12 0.55 10.60 0.81 20.4 2.6
(10,3,4) 18.02 1.05 34.89 1.70 101.8 7.08
(10,3,5) 37.56 1.2 80.23 2.03 331 9.7

Table 3: Influence of the number of prices k on the algorithms computation time (in s.).
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