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An adapted optical flow algorithm for robust
guantification of cardiac wall motion from
standard cine-MR examinations

M. Xavier, A. Lalande, P. M. Walker, F. Brunotte,llegran:

Abstract— This paper presents a method for local myocardial
motion estimation from a conventional SSFP cine-MRkequence
using a modified phase-based Optical Flow (OF) tedique.
Initially, the technique was tested on synthetic images to evaluate
its robustness with regards to Rician noise and tdrightness
variations. The method was then applied to cardiadmages
acquired on 11 healthy subjects. Myocardial velogjtis measured
in cm/s in each studied pixel and visualized as aykd vectors
superimposed on MRI images. The estimated phase-leas OF
results were compared with a reference OF method ahgave
similar results on synthetic images i.e. without asignificant
difference of the mean Angular Error. Applied on che-MRI of
normal hearts, the calculated velocities from shortaxis images
concord with values obtained in the literature. Theadvantage of
the presented method is its robustness with respe¢d Rician
noise and to brightness changes often observed inne-MRI
sequences, and especially with the through-plane wement of
the heart. Motion assessment using our method on ng-MR
images gives promising results on motion estimatioon a pixel by
pixel basis, leading to a regional measurement ofhé time-
velocity course of myocardial displacement in diffeent segments
of the heart wall.

Index Terms— Cine-MRI, heart, motion estimation, optical
flow

I. INTRODUCTION

Cardiac Magnetic Resonance Imaging (MRI) is a nory

estimation are divided intshape-based [3] and pixel-based
approaches. The technique proposed in this papsasied on
phase information retrieval by automatically extirag motion
information from cardiac cine-MRI using a phasedshs
Optical Flow (OF) approach. Optical flow is the megentation
of the apparent two-dimensional (2D) movement obhbject

in a scene. Considering cardiac MRI sequences athisunts
to computing the apparent in-plane motion fieldtted heart.
This technique allows the detection of the localvement
estimated at each pixel in the image. Furtherm@ie, may
yield sub-pixel precision and does not rely on pkisowledge
of image content.

Despite the multitude of methods available for catimy OF
[4], such techniques are rarely applied to cardiae-MRI. As
the optical flow techniques assume that brightrgrsslients
are present, one challenge is to take into accthentack of
brightness gradients in the relatively homogeneous
myocardium. Fortunately, the brightness gradiergsusually
sufficient on the myocardium, close to the endoicaind due
to the contrast between the myocardium and thevégtitricle
cavity, thus allowing the study of the inner wafl the left
ventricle. Due to noise and through-plane movenwdnthe
heart causing brightness variations of the imadassal
methods based on pixel intensity may fail to estémaotion
on time-series of MRI images because the OF cdnstra
equation implies the consistency of the pixel istgnthrough
ime. To tackle these problems, we propose to densthe

invasive technique allowing the study of the cadiaphase-hased OF method initially introduced by Flaed
function. ECG-gated SSFP (Steady-State Free Piengss Jepson [5]. The aim of the present study is to ldgven

cine-MRI sequences have the advantage of providatgiled

morphological information coupled with an adequataporal

resolution and an excellent contrast between strest These
sequences are widely used in clinical practicettierstudy of
myocardial function [1] through the estimation ofe&ion

Fraction (EF) and myocardial thickness.

adaptation of this algorithm that avoids the afogationed
limitations and reduces the computational cost.
representation of the estimated OF field withiniamrage is
commonly delineated by a vectorial motion field
superimposed on the image. The vector field reptesthe
local velocity measurements of the various strieguwithin

The

The evaluation of myocardial motion from a cine-MRIthe images. Tracking of points of interest therowd a

sequence is often limited to the visual evaluatwnthe
regional contractile function [2]. Visual evaluatidhas the
drawback of being subjective and the estimatiorhef time
course of the wall motion
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remains difficult evenr fo
experienced readers. The techniques for cardiaciomot

quantitative analysis of the myocardial displacentbrough
time-radial velocity curves, giving clinicians mies for the
assessment of myocardial wall abnormalities.

Il. METHODOLOGY

A. Optical flow methods

Prior works using OF have provided promising resun
cine-MRI [6]-[8], on tagged MRI [9]-[11], on comped
tomography [12] and echocardiography [13], [14]. this
paper OF methods are evaluated as a way of estignati
myocardial motion from cine-MRI data. The order of
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magnitude of the velocities for the left ventrider healthy
adults is between 3 cm/s and 6.5 cm/s, dependinghen

myocardial segment and the moment of the cardiadecy

(systolic peak velocity or diastolic peak velocif#3], [15],
[16]. OF methods are based on the brightness densig of
pixel intensity as a function of time. So, considgr a
particular location, a stack of images is acquiedr time (t)
covering the cardiac cycle and a 2D motion fieldh dze
estimated on each image. In order to accuratelgcti@otion,
the optical flow constraint equation (OFCE) suppgos$ieat
structure displacements between two consecutivgeésare
small (around 1 or 2 pixels/frame). Then, to engassonable
displacements between two consecutive images, atee of
image acquisition was adapted. For example, corisgi¢he
10 ms temporal resolution and the 1.2 mm pixel sgadhe
displacement of 1 pixel between two consecutivenés
corresponds to a velocity of 12 cm/s (OF techniqueside
sub-pixel motion precision). In the following twanagraphs,
the Intensity-based OF (IOF) and the Phase-base{PO¥F)
methods are described. These two methods were rchazse
reference methods, despite being slower than gttierg were
more accurate on the diverging tree sequence @snrshy
Liu et al [17]). Indeed, it is primordial to be accurateemh
analysing medical image sequences for diagnostjgoses.
Image processing, including pre-processing (noikerihg)
and motion estimation along the
performed using a program developed under
(MathWorks, Inc) in our laboratory.

Intensity-based methods

complex Gabor filter can be decomposed into its |lange
p(X,t) and its phase (X, t) :

RG t) = p( t). exp(ip(, 1)) @)
The use of a set of filters (filter bank) is moted by the
phase-based optical flow constraint equation (POFCE

Vo, t).VXt) + ¢.Xt)=0 (2)
whereVe¢ = [¢x] is the spatial phase gradieWtx,t) = [z;]
y

is the velocity vector to determing, the temporal phase
gradient an& a pixel at position (x,y). From the POFCE, one
can write:

> N _ —PeEH)TVP(L)
VED == Gor ®)

where ||[V¢(X,t)|| is the Euclidean norm of the spatial
gradient.

The POFCEonly provides the velocity component normal to
the contour: this is defined as the aperture prabkeor a pixel
with (X, y, t) coordinates, at least two equatians necessary
to get the two-dimensional velocity vector in ortieicompute
the full velocity. The Fleet and Jepson algorithnitially used

a complex 3D Gabor filter bank involving a high
computational cost [20] and a low OF density (whitre OF
density is the percentage of non-zero velocity aectvithin
the image) in spite of the use of separable filtarsl a
reasonably efficient implementation. To countersthélaws,

image sequence wBiuno and Pellerin [21] proposed a new algorithrovjiting
,\/"a“aq)ccurate computation of the optical flow betweety dwo

frames, without needing spatiotemporal filteringeowa large
number of frames. They used a spatial Gabor-likerfbank
which avoids the aperture problem. The velocity wiaesn

Intensity-based OF (IOF) methods compute image ovectrobustly estimated with M-estimators. Large and lsmation

fields from spatiotemporal derivatives given by gea
intensities. Two of these methods, one developeddm and
Schunck [18] and the other developed by Lucas aadake
[19] have been tested on MR images by Barron [8]aon
preliminary study. This latter approach showed thatquality
of the estimated OF directly depends on the qualftythe
estimated spatio-temporal derivatives, which arg gensitive
to image quality. Intensity based methods needuieeof an
appropriate spatio-temporal smoothness constrainglobal
smoothness constraint blurs “motion edges” whicheap for
example when the heart goes from contraction tatatibn
and vice versa.

Phase-based methods

Phase-based OF (POF) methods for optical flow editm
rely on tracking contours of constant phase oweretiThe
POF technique was initially developed by Fleet degson
[5]. They defined component velocity in terms ofeth
instantaneous motion normal to level-phase contaurthe
output of band-pass velocity tuned filters.

The use of complex Gabor filters that are orientasensitive
filters in Fourier space allows one to deal witha
information and then, allows an estimation of
instantaneous velocity field. Gabor filters areusioidally-
modulated Gaussian functions. The respoR{g,t) of a

vectors were recovered with a multiresolution scheimdeed,
to ensure the assessment of both the low and &stities, a
pyramidal decomposition of images by Gaussian laasp
filtering was considered [22].
The velocity fieldV (%, t) was robustly estimated by using a
least squares technique in a local neighborho@ihdJmatrix
notations, as Lucas and Kanade [19], one can write:
V=[ATWA]7*ATW b 4)
where A = [VopRE,t), ... Vo, t)]7,
W = diag[W (X,,t), ..., W(X,, t)] containing the coefficients
of a 2D Gaussian function, which reflects the degod
confidence one can have in the estimated speed,basd
—[p:Z, 1), ..., P (X, ]T. If matrix ATWA is invertible,
then matrixV exists.

B. Proposed approach

Noise filtering
MR magnitude data are described by a Rician noise
distribution [23] in general and by a Rayleigh disition in
the background. This noise comes from complex Gawiss
noise in the original frequency domain (k-spaca)the case

o of phase-array coils, data from parallel imagingthwi
th&RAPPA  (generalized autocalibrating partially  pledal

imaging acquisition) are followed by an adaptive
reconstruction of the complex images of the charthein the
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noise properties are described by the Rayleighiloligion on
the background [24].
Moreover, the probability density function of the RM
magnitude image tends towards a Gaussian distibuthen
the Signal-to-Noise Ratio (SNR) is higher than ¢hj23]. For
example, in this study the mean SNR of the myocandivas
10. As a result, MR images are usually pre-smootisdg a
Gaussian filter. However, the smoothing step usifigaussian
filter causes blurring within the image and conssuly
reduces the signal-to-background contrast. Forréason, all
magnitude images were pre-filtered using anotheiseno
removal algorithm, rather than a Gaussian filteevesal
correction schemes have been proposed to estimatsignal
intensity from the magnitude MR signal. Among theam,
unbiased estimator of the signal intensity thatetels on the
second moment of the magnitude signal was develdped
McGibney and Smith [25]. In the case of a Riciafsapthe
second-order momeng{M?} of the amplitudeM of a
measured noisy MR signal can be written

E{M?} = B? + 20? (5)
whereB is the original noiseless MR signal amé the noise
variance. The estimation of the noiseless imagbda given

by :
B = [(M?) — 202 (6)

where fo and o are respectively the central frequency and

the standard deviation of the Gaussian envelopheofilter.
As advocated in the initial method of Fleet andsaep the

n

following parameters were useé=6, fy =0.25, 9, =i

and o = 3. To ensure sufficient confidence in the measure of
OF vector estimates, i.e. to avoid unreliable meaments, a
constraint on the estimated velocities was addesndJthe
matrix notations, singularity and round off errarsATWA
inversion (equation 4) can be avoided by testing th
eigenvalues. The settings were defined as propogdstuno

and Pellerin [21] do /A < &, where A5 is the smaller
eigenvalue and the threshold is set to 0.01). We used this
value with synthetic images, whereas we have eogllyi
fixed the constraintc equal to 0.5 for the MR images. This
ensures a sufficient OF density in the MR images. T
summarize, the main differences between the method
proposed by Bruno and Pellerin and the MPOF allgoriare

the values of the spatial frequenfgyand of the constrairt.

The settings of these parameters were best adapteé MR
images.

. METHOD EVALUATION

It depends on the second order moment computed in a
neighborhoodM?), and requires prior knowledge of the noisey_ Synthetic Data

variances?. This filtering method is based on the assumptiorlmhe two optical flow algorithms have previously bee
that the noise in the background follows a RayleiggvaIuateol on standard test sequences [4] for optioe

distribution. The noise estimator was computed fridme
maximum of the histogram of the local first ordeonrent.
Therefore, the noise removal algorithm operatesnfrihe
second order moment of the image and the noise&tsir.

Developed optical flow method: the MPOF method

To improve efficiency and OF density compared wiitie
initial algorithm of Fleet and Jepson, we developadodified
version of the POF algorithm (MPOF) using the sgpati
filtering introduced by Bruno and Pellerin. Deperglion the
settings for the acquisition (temporal resolutiowl pixel size)
and the behavior of the heart,
decomposition of images by Gaussian low-pass ifilgef22]
may be necessary to extend the field of velocaiésved (up
to 5 pixels per frame). Here, a three level GauskBav-pass
pyramidal image decomposition was used: Levels and 2
respectively cover velocity ranges 0-1.25, 1.25-h8 2.5—
5.0 pixels per frame. This ensures the assessnfidrttio the
low and fast velocities of the myocardium.

Instead of using complex 3D Gabor filters for egtiimg
optical flow, MPOF consists in a complex 2D spatsdbor
filtering followed by a temporal second-order diffatiation.
It uses a complex 2D Gabor filter bank madéldilters. Each
filter corresponds to a pair of diametrically oppds2D

using a pyramid

computation. Although there are available matherahti
models of cardiac deformation [26], [27] (often @ibktd from
tagged-MRI), they are relatively complex and diffic to
apply in our case. Therefore, we preferred to eraadynthetic
image sequence reflecting basic motions of contnacand
dilation. As the method we developed uses 2D Géiers
[21], and as optical flow methods estimate the ldsgment
vector fields without any a priori knowledge of thevement
that occurs in the image sequence, the test sequemsisted
in a simple 2D disk. The dilating and the contregtphases
ere equal in duration. This sequence was perforosilg
e computer graphics softwaBéender (Fig. 1).
The image sequence consisted of 30 images, incladed
phases, the expansion phase of a 2D disk followedts
contraction. The disk radius evolves linearly thglotime (one
pixel per frame). The disk has slightly varying ygreevel
pixels within an image. The advantage of dealinghwi
synthetic images is that the motion field is knoawrd can be
compared with the estimated flow field.
Moreover, the main advantage of the OF technigsi¢hat it
does not rely on any model to detect motion in ienag
sequences.

B. MRI Protocol

Gaussians oriented at an angl@nd whose impulse responseCine-MR images were acquired using breathhold se&otive

0, (X, y) attheith filter is:

2 2 2 f .
g (X1y) - 5 5 e-(x +y°)20 Xe] 21 fy (x cosg +ysing;) (7)
' To

ECG-gated SSFP-type sequences on a 3T imager TTvip
Siemens Medical Solution, Germany) using a deditcate

! http:/imww.blender.org/
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(@) (b)

Fig. 1. Optical flow is displayed on the synthdticage sequence during the expansiorthef 2D disk with (a) the correct motiob)(the IOF method (¢
iterations were necessarv and the constraint oortidient maanitude w lIAIB1). and with ¢) the MPOF methc
cardiovascular 8-channel surface-coil array. Palrathaging

with the GRAPPA algorithm was applied with an aecafion Ul + Vv, +1

factor of R = 2. Images from 11 representative rajrhe_art_s \/Ue2 +Ve2 +1 \/Uc2 _,_ch +1
(4 men, 7 women, mean age: 39 £ 17 years, meatiogjec

fraction measured from MRI: 62 + 7 %) and one hearthis provides the error (expressed in degrees)dmstvhe true
presenting a severe parieta| dyssynchrony were used and estimated motion at each piXel location ngp&:t to the
evaluate our method and acquisitions along thetstamd  Vvelocity modulus and orientation errors. The dgnsftthe OF
long-axis orientations were considered. Nominaluisiion ~Was also evaluated on each image as the perceotaysn-
parameters included: TR/TE = 2.51 ms/1.84 ms, 5ipr f zero velocity vectors within the image. The meanraters to
angle, 6 mm slice thickness, 60 phases/cardiac ecycthe mean angular error for a given OF densityithed say the
breathhold duration of 15-17 s corresponding to230- Mean AE for non-zero velocity estimates. All theages of

AE = arccos| 8)

heartbeats, acquisition matrices (respectively,pixel sizes)
were 198 x 288 and 256 x 224 for the short- and)-xis
orientations (respectively 1.0 x 1.0 and 1.2 x hr@2) with
rectangular field of view and temporal resolutioh 1®-15
ms/frame. The acquisition matrices were not intkteal.

the sequence were considered for the calculaticheoinean
AE and the OF density.

All data were expressed as meantstandard deviatiche
AE. Statistical analysis was performed biytast to evaluate if
the difference between two optical flow methods was

These images were then built using the manufacsuresignificant. p<0.05 was considered statisticalyngicant.

reconstruction algorithm used on our MRI scanner.

C. Evaluation

The IOF (method of Horn and Shunck, and definedhas
reference method) and the MPOF techniques havilipit
been tested on a synthetic image sequence. Thavasnto
investigate the behavior of the MPOF method and I®ie
method when confronted with specific MRI charactics
such as brightness variations and noise.

The quantitative analysis of the cardiac wall motiom real
MRI data was performed by tracking points of ingerfom
different myocardial segments over time. Time-rhd@ocity
curves (cm/s) as well as absolute displacementesufmm)
were then computed. The analysis of the differamves
allowed us to extract parameters reflecting theptenal delay
between two myocardial segments at the early sy$toin the
velocity curves and at the end of the systole frtme
displacement curves.

Metrics for the optical flow evaluation
The evaluation of the OF performance was carrigdusing
the computation of the Angular Error (AE) [4],[5The AE

between the correct velocit(uc,vc) and an estimated one

(Ue, Ve) is equal to:

Settings of the tested OF approaches

Motion estimation was achieved using the classiCdt
methods of Horn and Shunck based on pixel inter{4igy.
Settings of this method are similar to the origialjorithm
with at most 100 iterations, and motion is computetiveen
two consecutive images. Furthermore, as mentioryeddrn
and Schunck [18], and proposed by Barmnal. [4], an
additional constraint on the magnitude of the lgraldient

(||DI || > 1.0) ensures that there is sufficient local informatio

for a reliable motion estimation. These settinginegethe 10F
method. Motion estimation was also achieved usihg t
method of Fleet and Jepson based on phase infamaith
3D filtering (referenced as the POF method) [5].cbonpute
the motion field with the POF method, the corresjiog
program implemented by Barron is utilized. The deped
method, dedicated to MR images, is called MPOF iand
modified version of the POF technique with 2D filibg. In
this study we then considered the IOF approacheagkthe
reference method.



TITB-00276-2011 5

Robustness against noise and brightness variatibtise OF
methods

In order to evaluate the robustness and the satsitf the
methods, the mean AE was also computed in the qresef
Rician noise or brightness variations on the syithienage
sequence. Rician noise is characterized by its datan

deviation 0 . So, the images were corrupted with a Ricia

noise whose standard deviation varied from 1 tqtB6 last
value corresponds to highly corrupted images). Qifightness
variation is the pixel intensity variation expredsen
percentage between two consecutive images. Fotdsiisthe
mean AE was evaluated when global brightness vamiain
pixel intensities occurred from 1 to 16% (increagsievels:
from low to high brightness variations).

Moreover, the noise removal
McGibney and Smith was compared with a Gaussiserifilg
on two synthetic images corrupted with a Riciansapithe
first with a standard deviation equal to 10 andgbeond with

algorithm proposed b

601

o 2 0 12 14 16
Bnghtness vanatlon in %

(b)
Fig. 2. Study of the angular error (AE, in degree$)IOF and MPOI
methods against Rician noise and brightness vammtfor the synthet
image sequence during contraction. The AE of theé #d MPOF metho

Mean angular error
N i S
8 8 8
Mean angular error
@ 5 o @
8 8 g 3

N
8

=

Standard dewatlcn of the R|<:|an nolse

are respectively depicted by black and white ba@kere is no significa
difference between the IOmd MPOF methods when there is no noise

no brightness variation (*: p<H

Peak Systolic Velocity (PSV) and Peak Diastolic dodly
(PDV) are calculated and expressed as pixels pendy but
are converted into cm/s with knowledge of spatiad a

a standard deviation equal to 20. The mean squatE e temporal resolutions. The mean velocities wereutated for

(MSE) was calculated between the original and iheréd
images.

Measurement of the heart wall displacement
A visual evaluation of the OF results on MR imadeslor

the 11 normal subjects. The temporal delay of 7gesa
(corresponding to a temporal support of 15 imageR])[
required by the POF and MPOF techniques is overdonthe
use of retrospective ECG-gated sequences: in thig itvis
possible to compute the vectors in the first astlilmages of a

coding was used on these images) allows one tdyvergiven sequence.

whether the estimated motion field is coherent wfith heart

behavior during a cardiac cycle. This is, howeveot

sufficient and a quantitative analysis of the resus also

necessary. On the first image of the series, faintp of

interest of the myocardium close to the endocardiama

located at the anterior, septal, posterior anddht&reas. The
TABLE |

OPTICAL FLOW (OF) RESULTS FOR DIFFERENT TECHNIQUES APPLIED ON THE
SYNTHETIC SEQUENCE

Technique OF Mean AE
Density
Horn and Schunck 100% 12.6°+11.4°
IOF (Referenced method) * 55% 48°7°
POF* 13% 4.5%8.5°
MPOF* 52% 5.7%2.8°
36% 5.3%3.0°

MPOF with (A, / A, < 001 )

The mean angular error (AE) and its standard dewiadre reported for a
certain density (i.e. percentage of non-zero veloestimates within the
images). The theoretical OF density of the imagiid %.
* No significant difference between the differergtimods.

position of these points from one frame to anotler
calculated according to the velocity vectors coraguin each
frame. The projection of the velocity vectors pagtieular to
the endocardium is calculated thereby providing wbkcity
of the motion. For each point, the calculationtef fissociated
velocity on each frame allows the creation of tiradial
velocity curves. This analysis is performed on tlaais
slices. From the time-radial velocity curve of tiegmal heart,

IV. RESULTS

A. Synthetic sequence

Noiseless synthetic sequence

Considering the original synthetic sequence, thémesed

motion fields of the IOF and MPOF methods are degion

Fig. 1. Vectors are orientated in the directionttid motion,

i.e. in the outer disk for the dilating phase. iStatal results
are presented in Table 1 according to the diffetectiniques.
For each technique, the mean and standard deviattite AE

according to the motion density were evaluated. Tfe

techniques give sub-pixel motion precision.

The regularization constraint of the IOF appliedaoaniform

background gives poor results (mean AE of H2.51.4°)

because motion is detected beyond the outer edfeeadisk

(i.,e. on the black background), even in the abseate
movement. To overcome this problem, the IOF methasl a
constraint on the gradient magnitude (as gradiests

supposed to be null on a uniform background). Asrtiotion

is hardly ever detected on the background, theigeokthe

estimated OF decreases (55%) approaching the retibmm
density (48%) and the mean AE is improved (#87°) when

compared with the initial IOF method. The initialOP

technique gives a mean AE of 4tB°5°. The modified
version of the POF algorithm (MPOF) using 2D spatia
filtering gives statistical results close to théerence method
(IOF) with a mean AE of 5.#2.8°. Finally, our method
(MPOF) with the additional constraint to avoid uUralele

measurementsAp / A; < £) has an AE of 5.3%3.0°. This
additional constraint not only decreased the eséchanotion
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|OF method

MPOF method

<nTu

(a)

<07

(d) i

(c)

Fig. 3. OF estimates on the focltamber MRI sequence for the first nor
heart at PSV (on the first row) and PDV (on theoselcrow) using either tl
IOF on the left (with the constraint on gradientgmiéude set to A1) or
MPOF method on the righfThe OF visualization was restricted to
myocardium area. A mask was applied in order tplajsthe vector fiel
only at the level of the myocardium.

density, but reduced the mean AE. This constraineicessary
in the case of a real image analysis to ensurecmrit
confidence in the estimates. Finally, there aresigmificant

TABLE 2
MAGNITUDE OF THE ESTIMATED VELOCITIEYCM/S) CALCULATED ON 11
HEALTHY SUBJECTS USING THE}-SEGMENTAL MODEL AT PSV(PEAK
SYSTOLIC VELOCITY) AND PDV (PEAK DIASTOLIC VELOCITY).

PSV PDV
Anterior 47+1.0 40+1.0
Lateral 46+0.7 50+1.0
Posterior 5.1+0.9 6.1+15
Septum 29+05 3.1+09

but it is the consequence of extensive tests orhhhig
deteriorated images. By comparison, the standarititen for
the MPOF method is lower.

Concerning the noise filtering algorithm, the MSEsMower
with the noise removal algorithm proposed by Mc@ipmand
Smith [25] than with the Gaussian filter (6.3 vs.2l4or the
synthetic image corrupted with a Rician noise veitetandard
deviation equal to 10, and 17.2 vs 45.6 for thalsstic image
corrupted with a Rician noise with a standard dexaequal
to 20).

B. Application to MRI

To illustrate the two methods (IOF and MPOF) wesprd the
results obtained on two representative cardiac MRI
examinations from two normal hearts on the long-aamnd
short-axis orientations (Fig. 3 and 4).

Visual interpretation of the velocity vectors

The visual evaluation of the estimated flow fielidtbe 10F
and MPOF throughout the MRI sequences shows thanwh
the POFCE is respected, such as on the myocandiak an
the long-axis images of the first examination (F8), the
estimated motion field is quite spatially homogameand
similar when using either the IOF (Fig. 3a and 8c)the
MPOF techniques (Fig. 3b and 3d). The global motion
estimated within the images, using these two ORriegies,
was faithful to normal heart behavior and the ested flow
field was consistent with the direction of the maent
(myocardial contraction and relaxation). There sowgh
texture information on the myocardium of the shaxis
images to detect the rotational component of matios to the
left ventricular twist at the early systole.

differences between the IOF, the POF and MPOF mdstho

(p<10°).

Noisy synthetic sequence

When corrupting the synthetic image sequence wittiaR
noise, the mean AE evolves differently accordinghte OF
method (Fig. 2a): For the IOF technique, the grette noise
level, the more the detected motion was perturbbis results
in an important increase of the AE. The correspogadesults
for the MPOF technique are better. Moreover,
brightness variations occur, the quality of the IGEld
deteriorates whereas the MPOF method does not sedra
altered (Fig. 2b). It should be noted that the m&&nof the
IOF technique increases due to an overestimatiorthef
velocity magnitudes although the movement orieotati
appears to be correct. More generally, and witereszfce to
the two bar graphs on Fig. 2, the mean and stardkan@tion
of the AE may appear abnormally high for the IOFthod,

whe

Velocity measurements

Table 2 gives the velocities PSV and PDV obtainedha 11
healthy subjects with the MPOF method at each myiala
segment on a 4-segmental model.

Fig. 5 and Fig. 6 present the evolution of the aliso
displacement and the radial velocity of the septal lateral
segments on the short-axis orientations along thtree
cardiac cycle of respectively, the first normal thead a heart
Bresenting a severe parietal dyssynchrony. The deahp
delays At) measured from the displacement curves at the end
of the systole are respectively 79 ms (Fig. 5a) 868 ms
(Fig. 6a) for the normal and desynchronized hedtte
temporal delays measured from the radial velocityves at

the early systole are 21 ms (Fig. 5b) and 106 rits @b).

For one normal case, we have compared the absolute
displacement measurements obtained with MPOF metinod
cine-MR images on a short-axis basal slice with risults
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obtained with the inTag software [29] applied oggied MRI  Considering the short-axis sequence of the firstrération,
on the same slice. Although the values are slighitiher with  the through plane motion of the heart at the vexgab part of
the MPOF method on cine-MR images, we can say @ tlthe heart may cause brightness variations andapadiume
example, that the results are very close betweentwo effects. This will degrade the results of the IOk b
approaches for the anterior wall (6.3 mm vs 5.2 materal overestimating the myocardial motion field. PDMta |ateral
wall (7.4 mm vs 7.4 mm), posterior wall (6.8 mm6:4 mm) and posterior walls of, respectively, 8.3 and 1&n2s were

and the septum (4.8 mm vs 4.4 mm).” found (Fig. 4c). This behavior has already beeneniesd

during the testing of the IOF method on the synit¢hiehage

Image quality: Brightness variation, partial volureffect, sequence when confronted with brightness variatidhss is

blood inflow due to the failure to comply with the OFCE that liep
IOF method MPOF method

\\\\\

/ 5 P .

o Wt y e Rl
Fig. 4. OF estimates 0$1 the short-axis MRI sequéorctne first normal heart (afd) and on the loxgsarientation for the second normal heart (d-. the firs
sequence, motion is displayed at (a-b) PSV art) @DBV. For the second sequence, motion is depittethg early systole. Two OF techniques are ute
IOF on the left (with the constraint on gradientgmidude set toA]>1) and MPOF method on the rigitonsidering the IOF technique, the white arrowsict
(a) motion singularities due to blood inflow thrdugessels, (c) overestimated movement due to impbtitiroughplane motion and (e) poorer results due t
through-plane incoming of fat tissues.
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brightness consistency. With regards to the lorig-sgquence
(Fig. 3c) of the same examination, the OFCE is ebett
respected and thus the results between the two €Rkoas are
closer. Moreover, in the presence of partial voluefiects
(Fig. 4c and 4d) on the inferoseptal and inferigr4egments,
especially when coupled with low tissue contrabg tOF
technique gives poorer results (Fig. 4c) compardth the
MPOF method (Fig. 4d).

The left and right cavities are subject to blooawfl
disturbances causing inconsistent motion deteetioen using
the IOF method. This is particularly visible at PR\6ng the
short-axis orientations (Fig. 4c). However, thidl wbt affect
the motion analysis at the level of the heart wthl: estimated
motion field at the level of the endocardium is loganeous
and concords with the myocardial relaxation movetmen
Moreover, small vessels close to the inferolatenalart
segment on the short-axis images (Fig. 4a) preswiton
singularities. They are induced by blood inflowaihgh those
vessels that alters the quality of the velocityMlfield given
by the IOF method (Fig. 4a). With the MPOF methtth

At
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Fig. 5. (a) Absolute displacement arg) ¢adial velocity curves along t
cardiac cycle expressed as a percentage of tie iRerval (719 m:
according to the septal and lateral segments oflieetaxis MRI sequenc
of the normal heart examinationt is the temporal delay. The MP
method was used to estimatiee motion vector field. The LV ejecti
fraction computed from MRI was 72%. The PSV and Bi&V appear
respectively 27% and 66% of R-R duration.
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Fig. 6. (a) Absolute displacement arg) fadial velocity curves along t
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singularities are discarded by the confidence nreasucardiac cycle expressed as a percentage of the ileRval (75 ms

constraint.

Finally, on the examination of the second normalrhehe
through-plane incoming of fat tissues (correspogdanthe
appearance of an hyper-intense signal on Fig. det§nclose
to the epicardium on the apicolateral LV segmesd,tb an
absurd motion field for the IOF method (Fig. 4ehisTwas not
the case with the MPOF technique.

V. DISCUSSION

In this paper we have presented an adapted optimal
approach to extract local myocardial motion dinediiom
cine-MRI sequences. Although the study of globaboaydial
function is widely assessed using cardiac cine-YiR| [30],
the study of local contractile function to detecowement
abnormalities with MRI necessitates post-procesaimdjthus,
is not commonly used in clinical practice.

The available techniques to assess local motidodectagged
MRI [29], [31]-[33], displacement
(DENSE) [34] and velocity-encoded phase contrast I3R].
Among these techniques, tagged MRI is generally riiwest
utilized [1]. This technique gives information ordnt wall
displacements by following the distortion of tagnes
throughout the cardiac cycle. The detection antking of tag
lines through the image sequence is not straightfol [36]
and necessitate the use of dedicated software [29], [38].
This kind of analysis allows the study of heart deformation
by measuring the myocardial strain and torsion ,[30].
However, even if local motion information is wekseessed
with myocardial tagged MR, it is noteworthy thaetquality
of the results depends on tag persistence, spaaimt)
thickness. Besides, tagged MRI cannot entirelyaeplcine-
MRI for estimating EF and myocardial thickness aequires
an additional acquisition.

according to the septal and lateral segments bbe-axis MRI sequence

a patient with intraventricular dyssynchromt. is the temporal delay. T
MPOF method was used to estimate the motion véiedd: The LV ejectiol
fraction computed from MRI was 31%.

Imaging), myocardial deformation imaging (basedspeckle
tracking) and 2D and 3D echocardiography.

The benefits of optical flow techniques are twadfoFirstly,
no further MRI acquisitions are necessary. Thethtion of
MRI examination duration improves patient comfomda
image quality by reducing the number of breathholtise
second benefit is that motion information naturghgsent in
classical cine-MRI is utilized, thus taking advaggaof the
excellent spatio-temporal resolution provided by FBS
sequences. Concerning the quality of the proposé&DM
method, the estimated velocities are globally simiwith
values obtained in other studies with echocardglgyaor
MRI. In particular, using the Tissue Doppler Imagi¢TDI)

modality, Miyatakeet al. [15] found a velocity of 5.% 1.0

encoding sequencem/s at the LV posterior wall on 7 subjects who diok

present cardiac disease. Bussa@oral. found on 30 healthy
subjects a mean peak systolic velocity of 4.7 2 dm/s for
the lateral wall and of 4.4 £ 1.1 cm/s in the skptall, and a
mean peak diastolic velocity of 6.2 + 1.7 cm/s thoe lateral
wall and of 5.2 £ 1.8 cm/s in the septal wall [1Bhese values
are slightly higher than ours, except for the pagktolic
velocity in the lateral wall. On ten patients withh@vidence of
prior infarction, Karwatowski et al. have found aean
velocity of 5.6 + 1.7 cm/s for all segments from NiRages
[16]. However, in a previous study with MR velocibapping
in 31 healthy subjects [42], at the level of the pdsterior
wall during early diastole, the mean measured Wglacas 9
+ 3 cm/s. The mean corresponding velocity estimatk wir
MPOF method for the normal hearts was lower (6.1.%
cm/s). Maret et al. have found on 13 patients anmedial

The study of cardiac wall motion in terms of LVyaye of 3.74 cm/s from long-axis cine-MRI [43]. &h

dyssynchrony is also available with echocardiogyaphl]
using different modalities: M-mode, TDI (Tissue [bgr

variation in the results can be explained by theseh
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technique or the studied population. Moreover, siethetic

sequence shows that the MPOF method is relativedyem
robust to brightness variations and noise than D&

approach.

OF technigues necessitate taking into account bwhMR

image properties and the OF technique requireméhis.OF
estimation requires a sufficient temporal samptimgt ensures
small displacements of the structures between tmsecutive
images. This is partly performed by tuning MRI asifion

parameters such as temporal resolution and pizel &iut is
not always sufficient. The MPOF algorithm is septecisely
detect motion from 0 to 1.25 pixel/frame (the vélpenust be
less than the half-period of the highest spatidjdiency [44]),
although the heart wall displacements can exceed

threshold. According to the acquisition settingmperal

resolution and pixel size) and heart behavior, tke of a
Gaussian low-pass pyramidal image decompositior] [22
necessary to extend the domain of the allowed iteec The
choice of the acquisition plane orientation is assd to be
free because the OF technique does not need pfamiation

on the image content. Regarding the noise remdgalithm,

the signal-to-background contrast is more faitlyfutbstored,
improving the gradient estimation in this area.this way,

when considering MR examinations, gradient estiomatis

well performed in areas close to the air-tissueiarghrticular
epicardium-lung interface. Finally, the 3T SSFPussge is
subject to off-resonance or banding artifacts tteatnot be
fully avoided, but may be moved out of the currB@I for

cardiac MRI [45]. This prevents incorrect motiortedgion on
the myocardium. Compared with data acquired atTl.the

use of a 3T magnetic field improves the SNR in ithaeges.
However, the use of parallel imaging introducesrapdin

SNR [46]. The increase in baseline SNR for 3.0 &dng

overcompensated for the SNR reduction from parall‘%

imaging. Thus, the gain is principally a time retilut in the
data acquisition. Therefore the results obtained.@tT with

parallel imaging should be the same as those aataah 1.5 T
without parallel imaging. Although MPOF seems toyide

interesting results when applied to cardiac MR iegagome
limitations appear.
information of the signal is more stable (compavéth the

signal intensity), MPOF better succeeds in estimgathotion.

However, the high computational time (around onertan a
conventional microcomputer to estimate the motion 69

images), the difficulty to respect the POFCE in éwvent of
poor quality images and the difficulty to validéte technique
in absence of a gold standard for MRI remain litiotss.

Optical flow algorithms are generally either vepcarate and
slow, or very fast and inaccurate. For diagnostixppses, it is
better to focus on accurate algorithms such asiéecy-based
methods, knowing that many researchers are working
hardware implementations in order to accelerataltsepl7].

VL.

In conclusion, 2D optical flow applied to cardiaSFP-type
cine-MRI examinations gives promising results.
conjunction with cardiac cine-MRI, OF techniquesynteelp

CONCLUSION

Indeed, as working on the phaz{b

in detecting local wall motion abnormalities and asring
their velocity in each studied pixel. From local tioo
information, regional motion parameters can be rdstesd,
giving displacements and velocities per myocardigment
along the cardiac cycle.

One potential perspective of this approach would tihe
quantification of LV mechanical dyssynchrony. The
mechanical dyssynchrony could be assessed frontirtiee
radial velocity curves according to each myocardegment
by estimating the temporal delay between the curkreshis
particular pathology, an estimation of the peaktdics
velocities for each segment would provide an adeura
estimation of the dyssynchrony. Indeed, it is vi@lbwn that

thhe peak velocities will not occur at the same timéhe event

of mechanical dyssynchrony.
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