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Abstract— This paper presents a method for local myocardial 

motion estimation from a conventional SSFP cine-MRI sequence 
using a modified phase-based Optical Flow (OF) technique. 
Initially, the technique was tested on synthetic images to evaluate 
its robustness with regards to Rician noise and to brightness 
variations. The method was then applied to cardiac images 
acquired on 11 healthy subjects. Myocardial velocity is measured 
in cm/s in each studied pixel and visualized as colored vectors 
superimposed on MRI images. The estimated phase-based OF 
results were compared with a reference OF method and gave 
similar results on synthetic images i.e. without a significant 
difference of the mean Angular Error. Applied on cine-MRI of 
normal hearts, the calculated velocities from short axis images 
concord with values obtained in the literature. The advantage of 
the presented method is its robustness with respect to Rician 
noise and to brightness changes often observed in cine-MRI 
sequences, and especially with the through-plane movement of 
the heart. Motion assessment using our method on cine-MR 
images gives promising results on motion estimation on a pixel by 
pixel basis, leading to a regional measurement of the time-
velocity course of myocardial displacement in different segments 
of the heart wall. 
 

Index Terms— Cine-MRI, heart, motion estimation, optical 
flow 

I. INTRODUCTION 

ardiac Magnetic Resonance Imaging (MRI) is a non-
invasive technique allowing the study of the cardiac 

function. ECG-gated SSFP (Steady-State Free Precession) 
cine-MRI sequences have the advantage of providing detailed 
morphological information coupled with an adequate temporal 
resolution and an excellent contrast between structures. These 
sequences are widely used in clinical practice for the study of 
myocardial function [1] through the estimation of Ejection 
Fraction (EF) and myocardial thickness.  
The evaluation of myocardial motion from a cine-MRI 
sequence is often limited to the visual evaluation of the 
regional contractile function [2]. Visual evaluation has the 
drawback of being subjective and the estimation of the time 
course of the wall motion remains difficult even for 
experienced readers. The techniques for cardiac motion 
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estimation are divided into shape-based [3] and pixel-based 
approaches. The technique proposed in this paper is based on 
phase information retrieval by automatically extracting motion 
information from cardiac cine-MRI using a phase-based 
Optical Flow (OF) approach. Optical flow is the representation 
of the apparent two-dimensional (2D) movement of an object 
in a scene. Considering cardiac MRI sequences, this amounts 
to computing the apparent in-plane motion field of the heart. 
This technique allows the detection of the local movement 
estimated at each pixel in the image. Furthermore, OF may 
yield sub-pixel precision and does not rely on prior knowledge 
of image content. 
Despite the multitude of methods available for computing OF 
[4], such techniques are rarely applied to cardiac cine-MRI. As 
the optical flow techniques assume that brightness gradients 
are present, one challenge is to take into account the lack of 
brightness gradients in the relatively homogeneous 
myocardium. Fortunately, the brightness gradients are usually 
sufficient on the myocardium, close to the endocardium, due 
to the contrast between the myocardium and the left ventricle 
cavity, thus allowing the study of the inner wall of the left 
ventricle. Due to noise and through-plane movement of the 
heart causing brightness variations of the image, classical 
methods based on pixel intensity may fail to estimate motion 
on time-series of MRI images because the OF constraint 
equation implies the consistency of the pixel intensity through 
time. To tackle these problems, we propose to consider the 
phase-based OF method initially introduced by Fleet and 
Jepson [5]. The aim of the present study is to develop an 
adaptation of this algorithm that avoids the aforementioned 
limitations and reduces the computational cost. The 
representation of the estimated OF field within an image is 
commonly delineated by a vectorial motion field 
superimposed on the image. The vector field represents the 
local velocity measurements of the various structures within 
the images. Tracking of points of interest then allows a 
quantitative analysis of the myocardial displacement through 
time-radial velocity curves, giving clinicians metrics for the 
assessment of myocardial wall abnormalities. 

II. METHODOLOGY 

A.  Optical flow methods 
Prior works using OF have provided promising results on 
cine-MRI [6]-[8], on tagged MRI [9]-[11], on computed 
tomography [12] and echocardiography [13], [14]. In this 
paper OF methods are evaluated as a way of estimating 
myocardial motion from cine-MRI data. The order of 

M. Xavier, A. Lalande, P. M. Walker, F. Brunotte, L. Legrand 

An adapted optical flow algorithm for robust 
quantification of cardiac wall motion from 

standard cine-MR examinations 

C



TITB-00276-2011 
 

2

magnitude of the velocities for the left ventricle for healthy 
adults is between 3 cm/s and 6.5 cm/s, depending on the 
myocardial segment and the moment of the cardiac cycle 
(systolic peak velocity or diastolic peak velocity) [13], [15], 
[16]. OF methods are based on the brightness consistency of 
pixel intensity as a function of time. So, considering a 
particular location, a stack of images is acquired over time (t) 
covering the cardiac cycle and a 2D motion field can be 
estimated on each image. In order to accurately detect motion, 
the optical flow constraint equation (OFCE) supposes that 
structure displacements between two consecutive images are 
small (around 1 or 2 pixels/frame). Then, to ensure reasonable 
displacements between two consecutive images, the rate of 
image acquisition was adapted. For example, considering the 
10 ms temporal resolution and the 1.2 mm pixel spacing, the 
displacement of 1 pixel between two consecutive frames 
corresponds to a velocity of 12 cm/s (OF techniques provide 
sub-pixel motion precision). In the following two paragraphs, 
the Intensity-based OF (IOF) and the Phase-based OF (POF) 
methods are described. These two methods were chosen as 
reference methods, despite being slower than others, they were 
more accurate on the diverging tree sequence (as shown by 
Liu et al. [17]). Indeed, it is primordial to be accurate when 
analysing medical image sequences for diagnostic purposes.  
Image processing, including pre-processing (noise filtering) 
and motion estimation along the image sequence, was 
performed using a program developed under Matlab 
(MathWorks, Inc) in our laboratory. 
 
Intensity-based methods 
Intensity-based OF (IOF) methods compute image vector 
fields from spatiotemporal derivatives given by image 
intensities. Two of these methods, one developed by Horn and 
Schunck [18] and the other developed by Lucas and Kanade 
[19] have been tested on MR images by Barron [8] on a 
preliminary study. This latter approach showed that the quality 
of the estimated OF directly depends on the quality of the 
estimated spatio-temporal derivatives, which are very sensitive 
to image quality. Intensity based methods need the use of an 
appropriate spatio-temporal smoothness constraint. A global 
smoothness constraint blurs “motion edges” which appear for 
example when the heart goes from contraction to dilatation 
and vice versa. 
 

Phase-based methods 
Phase-based OF (POF) methods for optical flow estimation 
rely on tracking contours of constant phase over time. The 
POF technique was initially developed by Fleet and Jepson 
[5]. They defined component velocity in terms of the 
instantaneous motion normal to level-phase contours in the 
output of band-pass velocity tuned filters.  
The use of complex Gabor filters that are orientation-sensitive 
filters in Fourier space allows one to deal with phase 
information and then, allows an estimation of the 
instantaneous velocity field. Gabor filters are sinusoidally-
modulated Gaussian functions. The response �����, t� of a 

complex Gabor filter can be decomposed into its amplitude 
�����, t� and its phase 	����, t� :  

��x��, 
� � ��x��, 
�. 
��� �	�x��, 
��      (1) 
The use of a set of filters (filter bank) is motivated by the 
phase-based optical flow constraint equation (POFCE) 

 �	����, 
�. �����, 
� �  	�����, 
� � 0       (2) 

where �	 � �	�
	�

� is the spatial phase gradient, �����, t� � ������ 
is the velocity vector to determine, 	� the temporal phase 
gradient and ��� a pixel at position (x,y). From the POFCE, one 
can write: 

�����, 
� � � !����,��." ����,��
#" ����,��#$         (3) 

where #�	����, 
�# is the Euclidean norm of the spatial 
gradient.�
The POFCE only provides the velocity component normal to 
the contour: this is defined as the aperture problem. For a pixel 
with (x, y, t) coordinates, at least two equations are necessary 
to get the two-dimensional velocity vector in order to compute 
the full velocity. The Fleet and Jepson algorithm initially used 
a complex 3D Gabor filter bank involving a high 
computational cost [20] and a low OF density (where the OF 
density is the percentage of non-zero velocity vectors within 
the image) in spite of the use of separable filters and a 
reasonably efficient implementation. To counter these flaws, 
Bruno and Pellerin [21] proposed a new algorithm providing 
accurate computation of the optical flow between only two 
frames, without needing spatiotemporal filtering over a large 
number of frames. They used a spatial Gabor-like filter bank 
which avoids the aperture problem. The velocity was then 
robustly estimated with M-estimators. Large and small motion 
vectors were recovered with a multiresolution scheme. Indeed, 
to ensure the assessment of both the low and fast velocities, a 
pyramidal decomposition of images by Gaussian low-pass 
filtering was considered [22]. 
The velocity field �����, t� was robustly estimated by using a 
least squares technique in a  local neighborhood. Using matrix 
notations, as Lucas and Kanade [19], one can write: 

� � %&'(&)�*&'( +         (4) 
where & �  %�	����*, 
�, … , �	����-, 
�)', 
( �  .�/0%(����*, 
�, … , (����-, 
�) containing the coefficients 
of a 2D Gaussian function, which reflects the degree of 
confidence one can have in the estimated speed, and + �
 1%	�����*, 
�, … , 	�����-, 
�)'. If matrix &'(& is invertible, 
then matrix  � exists.�

B. Proposed approach 

Noise filtering 
MR magnitude data are described by a Rician noise 
distribution [23] in general and by a Rayleigh distribution in 
the background. This noise comes from complex Gaussian 
noise in the original frequency domain (k-space). In the case 
of phase-array coils, data from parallel imaging with 
GRAPPA (generalized autocalibrating partially parallel 
imaging acquisition) are followed by an adaptive 
reconstruction of the complex images of the channel, then the 
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noise properties are described by the Rayleigh distribution on 
the background [24].  
Moreover, the probability density function of the MR 
magnitude image tends towards a Gaussian distribution when 
the Signal-to-Noise Ratio (SNR) is higher than three [23]. For 
example, in this study the mean SNR of the myocardium was 
10. As a result, MR images are usually pre-smoothed using a 
Gaussian filter. However, the smoothing step using a Gaussian 
filter causes blurring within the image and consequently 
reduces the signal-to-background contrast. For this reason, all 
magnitude images were pre-filtered using another noise 
removal algorithm, rather than a Gaussian filter. Several 
correction schemes have been proposed to estimate the signal 
intensity from the magnitude MR signal. Among them, an 
unbiased estimator of the signal intensity that depends on the 
second moment of the magnitude signal was developed by 
McGibney and Smith [25]. In the case of a Rician noise, the 
second-order moment 23456 of the amplitude 4 of a 
measured noisy MR signal can be written 

23456 � 75 �  295       (5) 
where 7 is the original noiseless MR signal and 95 the noise 
variance. The estimation of the noiseless image is then given 
by : 

7: � ;<45= 1  295        (6) 
It depends on the second order moment computed in a 
neighborhood <45=, and requires prior knowledge of the noise 
variance 95. This filtering method is based on the assumption 
that the noise in the background follows a Rayleigh 
distribution. The noise estimator was computed from the 
maximum of the histogram of the local first order moment. 
Therefore, the noise removal algorithm operates from the 
second order moment of the image and the noise estimator. 
 
Developed optical flow method: the MPOF method 
To improve efficiency and OF density compared with the 
initial algorithm of Fleet and Jepson, we developed a modified 
version of the POF algorithm (MPOF) using the spatial 
filtering introduced by Bruno and Pellerin. Depending on the 
settings for the acquisition (temporal resolution and pixel size) 
and the behavior of the heart, using a pyramidal 
decomposition of images by Gaussian low-pass filtering [22] 
may be necessary to extend the field of velocities allowed (up 
to 5 pixels per frame). Here, a three level Gaussian low-pass 
pyramidal image decomposition was used: Levels 0, 1 and 2 
respectively cover velocity ranges 0–1.25, 1.25–2.5 and 2.5–
5.0 pixels per frame. This ensures the assessment of both the 
low and fast velocities of the myocardium. 
Instead of using complex 3D Gabor filters for estimating 
optical flow, MPOF consists in a complex 2D spatial Gabor 
filtering followed by a temporal second-order differentiation. 
It uses a complex 2D Gabor filter bank made of N filters. Each 
filter corresponds to a pair of diametrically opposed 2D 
Gaussians oriented at an angle θi and whose impulse response 

),( yxgi  at the ith filter is:
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where 0f and σ are respectively the central frequency and 

the standard deviation of the Gaussian envelope of the filter. 
As advocated in the initial method of Fleet and Jepson, the 

following parameters were used: N=6, 0.25=0f , 
N

iθ i

π=  

and 3=σ . To ensure sufficient confidence in the measure of 
OF vector estimates, i.e. to avoid unreliable measurements, a 
constraint on the estimated velocities was added. Using the 
matrix notations, singularity and round off errors in &'(& 
inversion (equation 4) can be avoided by testing the 
eigenvalues. The settings were defined as proposed by Bruno 

and Pellerin [21] ( ελλ ≤12 / , where 2λ  is the smaller 

eigenvalue and the threshold ε  is set to 0.01). We used this 
value with synthetic images, whereas we have empirically 
fixed the constraint ε  equal to 0.5 for the MR images. This 
ensures a sufficient OF density in the MR images. To 
summarize, the main differences between the method 
proposed by Bruno and Pellerin and the MPOF algorithm are 
the values of the spatial frequency f0 and of the constraintε . 
The settings of these parameters were best adapted to the MR 
images.  

III.  METHOD EVALUATION 

A. Synthetic Data 

The two optical flow algorithms have previously been 
evaluated on standard test sequences [4] for optical flow 
computation. Although there are available mathematical 
models of cardiac deformation [26], [27] (often obtained from 
tagged-MRI), they are relatively complex and difficult to 
apply in our case. Therefore, we preferred to create a synthetic 
image sequence reflecting basic motions of contraction and 
dilation. As the method we developed uses 2D Gabor filters 
[21], and as optical flow methods estimate the displacement 
vector fields without any a priori knowledge of the movement 
that occurs in the image sequence, the test sequence consisted 
in a simple 2D disk. The dilating and the contracting phases 
were equal in duration. This sequence was performed using 
the computer graphics software Blender1 (Fig. 1).  
The image sequence consisted of 30 images, included two 
phases, the expansion phase of a 2D disk followed by its 
contraction. The disk radius evolves linearly through time (one 
pixel per frame). The disk has slightly varying grey level 
pixels within an image. The advantage of dealing with 
synthetic images is that the motion field is known and can be 
compared with the estimated flow field. 
Moreover, the main advantage of the OF techniques is that it 
does not rely on any model to detect motion in image 
sequences. 

B. MRI Protocol 

Cine-MR images were acquired using breathhold retrospective 
ECG-gated SSFP-type sequences on a 3T imager (Trio TIM, 
Siemens Medical Solution, Germany) using a dedicated 

 
1 http://www.blender.org/ 



TITB-00276-2011 
 

4

cardiovascular 8-channel surface-coil array. Parallel imaging 
with the GRAPPA algorithm was applied with an acceleration 
factor of R = 2. Images from 11 representative normal hearts 
(4 men, 7 women, mean age: 39 ± 17 years, mean ejection 
fraction measured from MRI: 62 ± 7 %) and one heart 
presenting a severe parietal dyssynchrony were used to 
evaluate our method and acquisitions along the short- and 
long-axis orientations were considered. Nominal acquisition 
parameters included: TR/TE = 2.51 ms/1.84 ms, 50° flip 
angle, 6 mm slice thickness, 60 phases/cardiac cycle, 
breathhold duration of 15-17 s corresponding to 20-25 
heartbeats, acquisition matrices (respectively, the pixel sizes) 
were 198 × 288 and 256 × 224 for the short- and long-axis 
orientations (respectively 1.0 × 1.0 and 1.2 × 1.2 mm²) with 
rectangular field of view and temporal resolution of 10-15 
ms/frame. The acquisition matrices were not interpolated. 
These images were then built using the manufacturer’s 
reconstruction algorithm used on our MRI scanner. 

C. Evaluation 

The IOF (method of Horn and Shunck, and defined as the 
reference method) and the MPOF techniques have initially 
been tested on a synthetic image sequence. The aim was to 
investigate the behavior of the MPOF method and the IOF 
method when confronted with specific MRI characteristics 
such as brightness variations and noise. 
The quantitative analysis of the cardiac wall motion from real 
MRI data was performed by tracking points of interest from 
different myocardial segments over time. Time-radial velocity 
curves (cm/s) as well as absolute displacement curves (mm) 
were then computed. The analysis of the different curves 
allowed us to extract parameters reflecting the temporal delay 
between two myocardial segments at the early systole from the 
velocity curves and at the end of the systole from the 
displacement curves.  
 
Metrics for the optical flow evaluation  
The evaluation of the OF performance was carried out using 
the computation of the Angular Error (AE) [4],[5]. The AE 

between the correct velocity ( )cc vu ,  and an estimated one 

( )ee vu ,   is equal to: 
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AE   (8) 

This provides the error (expressed in degrees) between the true 
and estimated motion at each pixel location with respect to the 
velocity modulus and orientation errors. The density of the OF 
was also evaluated on each image as the percentage of non-
zero velocity vectors within the image. The mean AE refers to 
the mean angular error for a given OF density that is to say the 
mean AE for non-zero velocity estimates. All the images of 
the sequence were considered for the calculation of the mean 
AE and the OF density. 
All data were expressed as mean±standard deviation of the 
AE. Statistical analysis was performed by a t-test to evaluate if 
the difference between two optical flow methods was 
significant. p<0.05 was considered statistically significant. 
 
Settings of the tested OF approaches 
Motion estimation was achieved using the classical OF 
methods of Horn and Shunck based on pixel intensity [18]. 
Settings of this method are similar to the original algorithm 
with at most 100 iterations, and motion is computed between 
two consecutive images. Furthermore, as mentioned by Horn 
and Schunck [18], and proposed by Barron et al. [4], an 
additional constraint on the magnitude of the local gradient  

( 0.1≥∇ I ) ensures that there is sufficient local information 

for a reliable motion estimation. These settings define the IOF 
method. Motion estimation was also achieved using the 
method of Fleet and Jepson based on phase information with 
3D filtering (referenced as the POF method) [5]. To compute 
the motion field with the POF method, the corresponding 
program implemented by Barron is utilized. The developed 
method, dedicated to MR images, is called MPOF and is a 
modified version of the POF technique with 2D filtering. In 
this study we then considered the IOF approach as being the 
reference method.  
 

 
Fig. 1. Optical flow is displayed on the synthetic image sequence during the expansion of the 2D disk with (a) the correct motion (b) the IOF method (50
iterations were necessary and the constraint on the gradient magnitude was ||∆||≥1), and with c) the MPOF method. 
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Robustness against noise and brightness variations of the OF 
methods 
In order to evaluate the robustness and the sensitivity of the 
methods, the mean AE was also computed in the presence of 
Rician noise or brightness variations on the synthetic image 
sequence. Rician noise is characterized by its standard 
deviation σ . So, the images were corrupted with a Rician 
noise whose standard deviation varied from 1 to 20 (the last 
value corresponds to highly corrupted images). The brightness 
variation is the pixel intensity variation expressed in 
percentage between two consecutive images. For this test, the 
mean AE was evaluated when global brightness variation on 
pixel intensities occurred from 1 to 16% (increasing levels: 
from low to high brightness variations). 
Moreover, the noise removal algorithm proposed by 
McGibney and Smith was compared with a Gaussian filtering 
on two synthetic images corrupted with a Rician noise, the 
first with a standard deviation equal to 10 and the second with 
a standard deviation equal to 20. The mean square error 
(MSE) was calculated between the original and the filtered 
images. 
 
Measurement of the heart wall displacement 
A visual evaluation of the OF results on MR images (color 
coding was used on these images) allows one to verify 
whether the estimated motion field is coherent with the heart 
behavior during a cardiac cycle. This is, however, not 
sufficient and a quantitative analysis of the results is also 
necessary. On the first image of the series, four points of 
interest of the myocardium close to the endocardium are 
located at the anterior, septal, posterior and lateral areas. The 

position of these points from one frame to another is 
calculated according to the velocity vectors computed on each 
frame. The projection of the velocity vectors perpendicular to 
the endocardium is calculated thereby providing the velocity 
of the motion. For each point, the calculation of the associated 
velocity on each frame allows the creation of time-radial 
velocity curves. This analysis is performed on short-axis 
slices. From the time-radial velocity curve of the normal heart, 

Peak Systolic Velocity (PSV) and Peak Diastolic Velocity 
(PDV) are calculated and expressed as pixels per frame, but 
are converted into cm/s with knowledge of spatial and 
temporal resolutions. The mean velocities were calculated for 
the 11 normal subjects. The temporal delay of 7 images 
(corresponding to a temporal support of 15 images [28]) 
required by the POF and MPOF techniques is overcome by the 
use of retrospective ECG-gated sequences: in this way it is 
possible to compute the vectors in the first and last images of a 
given sequence. 

IV. RESULTS 

A. Synthetic sequence 

Noiseless synthetic sequence 
Considering the original synthetic sequence, the estimated 
motion fields of the IOF and MPOF methods are depicted on 
Fig. 1. Vectors are orientated in the direction of the motion, 
i.e. in the outer disk for the dilating phase. Statistical results 
are presented in Table 1 according to the different techniques. 
For each technique, the mean and standard deviation of the AE 
according to the motion density were evaluated. The OF 
techniques give sub-pixel motion precision.  
The regularization constraint of the IOF applied on a uniform 

background gives poor results (mean AE of 12.6± 11.4°) 
because motion is detected beyond the outer edge of the disk 
(i.e. on the black background), even in the absence of 
movement. To overcome this problem, the IOF method has a 
constraint on the gradient magnitude (as gradients are 
supposed to be null on a uniform background). As the motion 
is hardly ever detected on the background, the density of the 
estimated OF decreases (55%) approaching the real motion 
density (48%) and the mean AE is improved (4.9°±6.7°) when 
compared with the initial IOF method. The initial POF 
technique gives a mean AE of 4.5°±8.5°. The modified 
version of the POF algorithm (MPOF) using 2D spatial 
filtering gives statistical results close to the reference method 
(IOF) with a mean AE of 5.7°±2.8°. Finally, our method 
(MPOF) with the additional constraint to avoid unreliable 

measurements ( ελλ ≤12 / ) has an AE of 5.3°±3.0°. This 

additional constraint not only decreased the estimated motion 

TABLE I 
OPTICAL FLOW (OF) RESULTS FOR DIFFERENT TECHNIQUES APPLIED ON THE 

SYNTHETIC SEQUENCE 

Technique OF 
Density 

Mean AE 

Horn and Schunck  100% 12.6°±11.4° 

 IOF (Referenced method) * 55% 4.9°±6.7° 

 POF* 13% 4.5°±8.5° 

MPOF* 52% 5.7°±2.8° 

MPOF with ( 01.0/ 12 ≤λλ
 
)* 36% 5.3°±3.0° 

The mean angular error (AE) and its standard deviation are reported for a 
certain density (i.e. percentage of non-zero velocity estimates within the 
images). The theoretical OF density of the image is 48.1%.  
* No significant difference between the different methods. 

Fig. 2. Study of the angular error (AE, in degrees) of IOF and MPOF 
methods against Rician noise and brightness variations for the synthetic 
image sequence during contraction. The AE of the IOF and MPOF methods 
are respectively depicted by black and white bars. There is no significant 
difference between the IOF and MPOF methods when there is no noise and 
no brightness variation (*: p<10-5).  
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density, but reduced the mean AE. This constraint is necessary 
in the case of a real image analysis to ensure sufficient 
confidence in the estimates. Finally, there are no significant 
differences between the IOF, the POF and MPOF methods 
(p<10-5). 
 
Noisy synthetic sequence 
When corrupting the synthetic image sequence with Rician 
noise, the mean AE evolves differently according to the OF 
method (Fig. 2a): For the IOF technique, the greater the noise 
level, the more the detected motion was perturbed. This results 
in an important increase of the AE. The corresponding results 
for the MPOF technique are better. Moreover, when 
brightness variations occur, the quality of the IOF field 
deteriorates whereas the MPOF method does not seem to be 
altered (Fig. 2b). It should be noted that the mean AE of the 
IOF technique increases due to an overestimation of the 
velocity magnitudes although the movement orientation 
appears to be correct. More generally, and with reference to 
the two bar graphs on Fig. 2, the mean and standard deviation 
of the AE may appear abnormally high for the IOF method, 

but it is the consequence of extensive tests on highly 
deteriorated images. By comparison, the standard deviation for 
the MPOF method is lower.  
Concerning the noise filtering algorithm, the MSE was lower 
with the noise removal algorithm proposed by McGibney and 
Smith [25] than with the Gaussian filter (6.3 vs 14.2 for the 
synthetic image corrupted with a Rician noise with a standard 
deviation equal to 10, and 17.2 vs 45.6 for the synthetic image 
corrupted with a Rician noise with a standard deviation equal 
to 20). 

B. Application to MRI 

To illustrate the two methods (IOF and MPOF) we present the 
results obtained on two representative cardiac MRI 
examinations from two normal hearts on the long-axis and 
short-axis orientations (Fig. 3 and 4).  
 
Visual interpretation of the velocity vectors 
The visual evaluation of the estimated flow field of the IOF 
and MPOF throughout the MRI sequences shows that when 
the POFCE is respected, such as on the myocardial areas on 
the long-axis images of the first examination (Fig. 3), the 
estimated motion field is quite spatially homogeneous and 
similar when using either the IOF (Fig. 3a and 3c) or the 
MPOF techniques (Fig. 3b and 3d). The global motion 
estimated within the images, using these two OF techniques, 
was faithful to normal heart behavior and the estimated flow 
field was consistent with the direction of the movement 
(myocardial contraction and relaxation). There is enough 
texture information on the myocardium of the short axis 
images to detect the rotational component of motion due to the 
left ventricular twist at the early systole. 
 
Velocity measurements 
Table 2 gives the velocities PSV and PDV obtained on the 11 
healthy subjects with the MPOF method at each myocardial 
segment on a 4-segmental model.  
Fig. 5 and Fig. 6 present the evolution of the absolute 
displacement and the radial velocity of the septal and lateral 
segments on the short-axis orientations along the entire 
cardiac cycle of respectively, the first normal heart and a heart 
presenting a severe parietal dyssynchrony. The temporal 
delays (∆t) measured from the displacement curves at the end 
of the systole are respectively 79 ms (Fig. 5a) and 305 ms 
(Fig. 6a) for the normal and desynchronized heart. The 
temporal delays measured from the radial velocity curves at 
the early systole are 21 ms (Fig. 5b) and 106 ms (Fig. 6b).  
For one normal case, we have compared the absolute 
displacement measurements obtained with MPOF method on 
cine-MR images on a short-axis basal slice with the results 

TABLE 2 
MAGNITUDE OF THE ESTIMATED VELOCITIES (CM/S) CALCULATED ON 11 

HEALTHY SUBJECTS USING THE 4-SEGMENTAL MODEL AT PSV (PEAK 

SYSTOLIC VELOCITY) AND PDV (PEAK DIASTOLIC VELOCITY).  
 PSV PDV 

Anterior 4.7 ± 1.0 4.0 ± 1.0 
Lateral 4.6 ± 0.7 5.0 ± 1.0 

Posterior 5.1 ± 0.9 6.1 ± 1.5 
Septum 2.9 ± 0.5 3.1 ± 0.9 

 

 

 
Fig. 3.  OF estimates on the four-chamber MRI sequence for the first normal 
heart at PSV (on the first row) and PDV (on the second row) using either the 
IOF on the left (with the constraint on gradient magnitude set to ||∆||≥1) or 
MPOF method on the right. The OF visualization was restricted to the 
myocardium area. A mask was applied in order to display the vector field 
only at the level of the myocardium. 
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obtained with the inTag software [29] applied on tagged MRI 
on the same slice. Although the values are slightly higher with 
the MPOF method on cine-MR images, we can say on this 
example, that the results are very close between the two 
approaches for the anterior wall (6.3 mm vs 5.2 mm), lateral 
wall (7.4 mm vs 7.4 mm), posterior wall (6.8 mm vs 6.4 mm) 
and the septum (4.8 mm vs 4.4 mm).” 
 
Image quality: Brightness variation, partial volume effect, 
blood inflow  

Considering the short-axis sequence of the first examination, 
the through plane motion of the heart at the very basal part of 
the heart may cause brightness variations and partial volume 
effects. This will degrade the results of the IOF by 
overestimating the myocardial motion field. PDV at the lateral 
and posterior walls of, respectively, 8.3 and 15.2 cm/s were 
found (Fig. 4c). This behavior has already been observed 
during the testing of the IOF method on the synthetic image 
sequence when confronted with brightness variations. This is 
due to the failure to comply with the OFCE that implies 

 
Fig. 4. OF estimates on the short-axis MRI sequence for the first normal heart (a-d) and on the long-axis orientation for the second normal heart (e-f). For the first 
sequence, motion is displayed at (a-b) PSV and (c-d) PDV. For the second sequence, motion is depicted during early systole. Two OF techniques are used, the 
IOF on the left (with the constraint on gradient magnitude set to ||∆||≥1) and MPOF method on the right. Considering the IOF technique, the white arrows depict 
(a) motion singularities due to blood inflow through vessels, (c) overestimated movement due to important through-plane motion and (e) poorer results due to the 
through-plane incoming of fat tissues. 
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brightness consistency. With regards to the long-axis sequence 
(Fig. 3c) of the same examination, the OFCE is better 
respected and thus the results between the two OF methods are 
closer. Moreover, in the presence of partial volume effects 
(Fig. 4c and 4d) on the inferoseptal and inferior LV segments, 
especially when coupled with low tissue contrast, the IOF 
technique gives poorer results (Fig. 4c) compared with the 
MPOF method (Fig. 4d).  
The left and right cavities are subject to blood flow 
disturbances causing inconsistent motion detection when using 
the IOF method. This is particularly visible at PDV along the 
short-axis orientations (Fig. 4c). However, this will not affect 
the motion analysis at the level of the heart wall: the estimated 
motion field at the level of the endocardium is homogeneous 
and concords with the myocardial relaxation movement. 
Moreover, small vessels close to the inferolateral heart 
segment on the short-axis images (Fig. 4a) present motion 
singularities. They are induced by blood inflow through those 
vessels that alters the quality of the velocity flow field given 
by the IOF method (Fig. 4a). With the MPOF method, the 
singularities are discarded by the confidence measure 
constraint.  
Finally, on the examination of the second normal heart, the 
through-plane incoming of fat tissues (corresponding to the 
appearance of an hyper-intense signal on Fig. 4e and 4f), close 
to the epicardium on the apicolateral LV segment, led to an 
absurd motion field for the IOF method (Fig. 4e). This was not 
the case with the MPOF technique. 

V. DISCUSSION 

In this paper we have presented an adapted optical flow 
approach to extract local myocardial motion directly from 
cine-MRI sequences. Although the study of global myocardial 
function is widely assessed using cardiac cine-MRI [1], [30], 
the study of local contractile function to detect movement 
abnormalities with MRI necessitates post-processing and thus, 
is not commonly used in clinical practice.  
The available techniques to assess local motion include tagged 
MRI [29], [31]-[33], displacement encoding sequence 
(DENSE) [34] and velocity-encoded phase contrast MRI [35]. 
Among these techniques, tagged MRI is generally the most 
utilized [1]. This technique gives information on heart wall 
displacements by following the distortion of tag lines 
throughout the cardiac cycle. The detection and tracking of tag 
lines through the image sequence is not straightforward [36] 
and necessitate the use of dedicated software [29], [37], [38]. 
This kind of analysis allows the study of heart tag deformation 
by measuring the myocardial strain and torsion [39],[40]. 
However, even if local motion information is well assessed 
with myocardial tagged MRI, it is noteworthy that the quality 
of the results depends on tag persistence, spacing and 
thickness. Besides, tagged MRI cannot entirely replace cine-
MRI for estimating EF and myocardial thickness and requires 
an additional acquisition. 
The study of cardiac wall motion in terms of LV 
dyssynchrony is also available with echocardiography [41] 
using different modalities: M-mode, TDI (Tissue Doppler 

Imaging), myocardial deformation imaging (based on speckle 
tracking) and 2D and 3D echocardiography.  
The benefits of optical flow techniques are two-fold. Firstly, 
no further MRI acquisitions are necessary. The limitation of 
MRI examination duration improves patient comfort and 
image quality by reducing the number of breathholds. The 
second benefit is that motion information naturally present in 
classical cine-MRI is utilized, thus taking advantage of the 
excellent spatio-temporal resolution provided by SSFP 
sequences. Concerning the quality of the proposed MPOF 
method, the estimated velocities are globally similar with 
values obtained in other studies with echocardiography or 
MRI. In particular, using the Tissue Doppler Imaging (TDI) 

modality, Miyatake et al. [15] found a velocity of 5.1± 1.0 
cm/s at the LV posterior wall on 7 subjects who did not 
present cardiac disease. Bussadori et al. found on 30 healthy 
subjects a mean peak systolic velocity of  4.7 ± 1.2 cm/s for 
the lateral wall and of 4.4 ± 1.1 cm/s in the septal wall, and a 
mean peak diastolic velocity of 6.2 ± 1.7 cm/s for the lateral 
wall and of 5.2 ± 1.8 cm/s in the septal wall [13]. These values 
are slightly higher than ours, except for the peak systolic 
velocity in the lateral wall. On ten patients without evidence of 
prior infarction, Karwatowski et al. have found a mean 
velocity of 5.6 ± 1.7 cm/s for all segments from MR images 
[16]. However, in a previous study with MR velocity mapping 
in 31 healthy subjects [42], at the level of the LV posterior 
wall during early diastole, the mean measured velocity was 9
± 3 cm/s. The mean corresponding velocity estimate with our 
MPOF method for the normal hearts was lower (6.1 ± 1.5 
cm/s). Maret et al. have found on 13 patients a mean radial 
value of 3.74 cm/s from long-axis cine-MRI [43]. The 
variation in the results can be explained by the chosen 

Fig. 6. (a) Absolute displacement and (b) radial velocity curves along the 
cardiac cycle expressed as a percentage of the R-R interval (726 ms) 
according to the septal and lateral segments of a short-axis MRI sequence of 
a patient with intraventricular dyssynchrony. ∆t is the temporal delay. The 
MPOF method was used to estimate the motion vector field. The LV ejection 
fraction computed from MRI was 31%. 

Fig. 5. (a) Absolute displacement and (b) radial velocity curves along the 
cardiac cycle expressed as a percentage of the R-R interval (719 ms) 
according to the septal and lateral segments of the short-axis MRI sequence 
of the normal heart examination. ∆t is the temporal delay. The MPOF 
method was used to estimate the motion vector field. The LV ejection 
fraction computed from MRI was 72%. The PSV and the PDV appear at 
respectively 27% and 66% of R-R duration. 



TITB-00276-2011 
 

9

technique or the studied population. Moreover, the synthetic 
sequence shows that the MPOF method is relatively more 
robust to brightness variations and noise than the IOF 
approach.  
OF techniques necessitate taking into account both the MR 
image properties and the OF technique requirements. The OF 
estimation requires a sufficient temporal sampling that ensures 
small displacements of the structures between two consecutive 
images. This is partly performed by tuning MRI acquisition 
parameters such as temporal resolution and pixel size, but is 
not always sufficient. The MPOF algorithm is set to precisely 
detect motion from 0 to 1.25 pixel/frame (the velocity must be 
less than the half-period of the highest spatial frequency [44]), 
although the heart wall displacements can exceed this 
threshold. According to the acquisition setting (temporal 
resolution and pixel size) and heart behavior, the use of a 
Gaussian low-pass pyramidal image decomposition [22] is 
necessary to extend the domain of the allowed velocities. The 
choice of the acquisition plane orientation is assumed to be 
free because the OF technique does not need prior information 
on the image content. Regarding the noise removal algorithm, 
the signal-to-background contrast is more faithfully restored, 
improving the gradient estimation in this area. In this way, 
when considering MR examinations, gradient estimation is 
well performed in areas close to the air-tissue and in particular 
epicardium-lung interface. Finally, the 3T SSFP sequence is 
subject to off-resonance or banding artifacts that cannot be 
fully avoided, but may be moved out of the current ROI for 
cardiac MRI [45]. This prevents incorrect motion detection on 
the myocardium. Compared with data acquired at 1.5 T, the 
use of a 3T magnetic field improves the SNR in the images. 
However, the use of parallel imaging introduces a drop in 
SNR [46]. The increase in baseline SNR for 3.0 T imaging 
overcompensated for the SNR reduction from parallel 
imaging. Thus, the gain is principally a time reduction in the 
data acquisition. Therefore the results obtained at 3.0 T with 
parallel imaging should be the same as those obtained at 1.5 T 
without parallel imaging. Although MPOF seems to provide 
interesting results when applied to cardiac MR images, some 
limitations appear.  Indeed, as working on the phase 
information of the signal is more stable (compared with the 
signal intensity), MPOF better succeeds in estimating motion. 
However, the high computational time (around one hour on a 
conventional microcomputer to estimate the motion on 60 
images), the difficulty to respect the POFCE in the event of 
poor quality images and the difficulty to validate the technique 
in absence of a gold standard for MRI remain limitations. 
Optical flow algorithms are generally either very accurate and 
slow, or very fast and inaccurate. For diagnostic purposes, it is 
better to focus on accurate algorithms such as frequency-based 
methods, knowing that many researchers are working on 
hardware implementations in order to accelerate results [47]. 

VI.  CONCLUSION 

In conclusion, 2D optical flow applied to cardiac SSFP-type 
cine-MRI examinations gives promising results. In 
conjunction with cardiac cine-MRI, OF techniques may help 

in detecting local wall motion abnormalities and measuring 
their velocity in each studied pixel. From local motion 
information, regional motion parameters can be determined, 
giving displacements and velocities per myocardial segment 
along the cardiac cycle.  
One potential perspective of this approach would be the 
quantification of LV mechanical dyssynchrony. The 
mechanical dyssynchrony could be assessed from the time-
radial velocity curves according to each myocardial segment 
by estimating the temporal delay between the curves. In this 
particular pathology, an estimation of the peak systolic 
velocities for each segment would provide an accurate 
estimation of the dyssynchrony. Indeed, it is well known that 
the peak velocities will not occur at the same time in the event 
of mechanical dyssynchrony. 
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