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Abstract. In this work, we consider the problem of boundary stabilization for a quasilinear
2 × 2 system of first-order hyperbolic PDEs. We design a new full-state feedback control law, with
actuation on only one end of the domain, which achieves H

2 exponential stability of the closed-
loop system. Our proof uses a backstepping transformation to find new variables for which a strict
Lyapunov function can be constructed. The kernels of the transformation are found to verify a
Goursat-type 4 × 4 system of first-order hyperbolic PDEs, whose well-posedness is shown using
the method of characteristics and successive approximations. Once the kernels are computed, the
stabilizing feedback law can be explicitly constructed from them.
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1. Introduction. In this paper we are concerned with the problem of boundary
stabilization for a 2 × 2 system of first-order hyperbolic quasilinear PDEs, with ac-
tuation at only one of the boundaries. The quasilinear case is of interest since many
relevant physical systems are described by 2 × 2 systems of first-order hyperbolic
quasilinear PDEs, such as open channels [11, 16, 17, 18], transmission lines [6], gas
flow pipelines [14] or road traffic models [12].

This problem has been considered in the past for 2 × 2 systems [13] and even
n × n systems [24], using the explicit evolution of the Riemann invariants along the
characteristics. More recently, an approach using control Lyapunov functions has
been developed, for 2 × 2 systems [2] and n × n systems [3]. These results use only
static output feedback (the output being the value of the state on the boundaries).
However, they do not deal with the same class of systems considered in this work
(which includes an extra term in the equations); with this term, it has been shown
in [1] that there are examples (even for linear 2 × 2 system) for which there are no

control Lyapunov functions of the “diagonal” form
∫ 1

0
z(x, t)TQ(x)z(x, t)dx (see next

section for notation) which would allow the computation of a static output feedback
law to stabilize the system, even if feedback is allowed on both sides of the boundary.

Several other authors have also studied this problem. For instance, the linear case
has been analyzed in [38] (using a Lyapunov approach) and in [25] (using a spectral
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approach). The nonlinear case has been considered by [8] and [15] using a Lyapunov
approach, and in [26], [27], and [11] using a Riemann invariants approach.

The basis of our design is the backstepping method [20]; initially developed for
parabolic equations, it has been used for first-order hyperbolic equations [23], de-
lay systems [21], second-order hyperbolic equations [31], fluid flows [34], nonlinear
PDEs [35] and even PDE adaptive designs [32]. The method allows us to design a
full-state feedback law (with actuation on only one end of the domain) making the
closed-loop system locally exponentially stable in the H2 sense. The gains of the feed-
back law are the solution of a 4 x 4 system of first-order hyperbolic linear PDEs, whose
well-posedness is shown. The proof of stability is based on [3]; we construct a strict
Lyapunov function, locally equivalent to the H2 norm, and written in coordinates
defined by the (invertible) backstepping transformation.

The paper is organized as follows. In Section 2 we formulate the problem. In
Section 3 we consider the linear case and formulate a backstepping design that globally
stabilizes the system in the L2 sense. In Section 4 we present our main result, which
shows that the linear design locally stabilizes the nonlinear system in the H2 sense.
The proof of this result is given in Section 5. We finish in Section 6 with some
concluding remarks. We also include an appendix with the proof of well-posedness of
the kernel equations, and some technical lemmas.

2. Problem Statement. Consider the system

zt + Λ(z, x)zx + f(z, x) = 0, x ∈ [0, 1], t ∈ [0,+∞), (2.1)

where z : [0, 1] × [0,∞) → R
2, Λ : R

2 × [0, 1] → M2,2(R), f : R
2 × [0, 1] → R

2,
with M2,2(R) denoting the set of 2× 2 real matrices. We assume that Λ(z, x) is twice
continuously differentiable with respect to z and x, and we assume that (possibly
after an appropiate state transformation) Λ(0, x) is a diagonal matrix with nonzero
eigenvalues Λ1(x) and Λ2(x) which are, respectively, positive and negative, i.e.,

Λ(0, x) = diag(Λ1(x),Λ2(x)), Λ1(x) > 0,Λ2(x) < 0, (2.2)

where diag(Λ1,Λ2) denotes the diagonal matrix with Λ1 in the first position of the
diagonal and Λ2 in the second.

We also assume that f(0, x) = 0, implying that there is an equilibrium at the
origin, and that f is twice continuously differentiable with respect to z. Denote

∂f

∂z
(0, x) =

[

f11(x) f12(x)
f21(x) f22(x)

]

, (2.3)

and assume that fij ∈ C1 ([0, 1]).
Denoting z = [z1 z2]

T , we study classical solutions of the system under the fol-
lowing boundary conditions

z1(0, t) = G0 (z2(0, t)) , z2(1, t) = U(t), t ∈ [0,+∞) (2.4)

which are consistent (see [28]) with the signs of (2.2), at least for small values of z.
We assume that G0(x) is twice differentiable and vanishes at the origin. In (2.4), U(t)
is the actuation variable, and our task is to find a feedback law for U(t) to make the
origin of system (2.1),(2.4) locally exponentially stable.

Remark 1. The case with f = 0 in (2.1) was addressed in [2] and [3] by using
control Lyapunov functions to design a static output feedback law; this approach has
been shown to fail in [1] for some cases with f 6= 0, at least for a “diagonal” Lyapunov

function of the form
∫ 1

0
zT (x, t)Q(x)z(x, t)dx.
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3. Stabilization of 2 × 2 hyperbolic linear systems. Next, we present a
new design, based on the backstepping method, to stabilize a 2× 2 hyperbolic linear
system; this procedure will be used later to locally stabilize system (2.1), (2.4).

Consider the system

wt = Σ(x)wx + C(x)w, x ∈ [0, 1], t ∈ [0,+∞), (3.1)

where w : [0, 1]× [0,∞) → R
2, Σ, C : [0, 1] → M2,2(R), where the matrices Σ and C

are respectively diagonal and antidiagonal, as follows:

Σ(x) =

(

−ǫ1(x) 0
0 ǫ2(x)

)

, C(x) =

(

0 c1(x)
c2(x) 0

)

, (3.2)

where c1(x), c2(x) are C([0, 1]) and ǫ1(x), ǫ2(x) are C1([0, 1]) functions, verifying that
ǫ1(x), ǫ2(x) > 0, and with boundary conditions

u(0, t) = qv(0, t), v(1, t) = U(t), (3.3)

where q ∈ R and the components of w are w = [u v]T . Our objective is to de-
sign a full-state feedback control law for U(t) to ensure that the closed-loop system
is globally asymptotically stable in the L2 norm, which is defined as ‖w(·, t)‖L2 =
√

∫ 1

0 (u2(ξ, t) + v2(ξ, t)) dξ. There are two cases, depending on whether q in (3.3) is

nonzero or q = 0. We first analyze the first case, thus assuming q 6= 0.

3.1. Target system and backstepping transformation. Our approach to
designing U(t), following the backstepping method, is to seek a mapping that trans-
forms w into a target variable γ with asymptotically stable dynamics as follows:

γt = Σ(x)γx, (3.4)

with boundary conditions

α(0, t) = qβ(0, t), β(1, t) = 0, (3.5)

where the components of γ are denoted as

γ(x, t) = [α(x, t) β(x, t)]
T
. (3.6)

System (3.4), (3.5) verifies the properties expressed in the following proposition.
Proposition 3.1. Consider system (3.4), (3.5) with initial condition γ0 ∈

L2([0, 1]). Then, for every λ > 0, there exists c > 0 such that

‖γ(·, t)‖L2 ≤ c e−λt‖γ0‖L2. (3.7)

In fact, the equilibrium γ ≡ 0 is reached in finite time t = tF , where tF is given by

tF =

∫ 1

0

(

1

ǫ1(ξ)
+

1

ǫ2(ξ)

)

dξ. (3.8)

Proof. Define

D(x) =

[

A e−µx

ǫ1(x)
0

0 B eµx

ǫ2(x)

]

, (3.9)
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where A,B, µ > 0 will be computed later. Select:

V1 =

∫ 1

0

γT (x, t)D(x)γ(x, t)dx. (3.10)

Notice that
√
V1 defines a norm equivalent to ‖γ(·, t)‖L2. Computing the derivative

of V1 and integrating by parts, we obtain

V̇1 = −
∫ 1

0

γT (x, t) (D(x)Σ(x))x γ(x, t)dx+
[

γT (x, t)D(x)Σ(x)γ(x, t)
]1

0
, (3.11)

where we have used that Σ(x) and D(x) commute. Since

(D(x)Σ(x))x = µ

[

Ae−µx 0
0 Beµx

]

> 0, (3.12)

and, on the other hand,

[

γT (x, t)D(x)Σ(x)γ(x, t)
]1

0
= −Aα2(1, t)e−µ − (B − q2A)β2(0, t), (3.13)

choosing B = q2A+ λ2, A = λ2e
µ, and µ = λ1ǭ, where ǭ = maxx∈[0,1]

{

1
ǫ1(x)

, 1
ǫ2(x)

}

,

we get that (D(x)Σ(x))x ≥ λ1D(x), therefore:

V̇1 ≤ −λ1V1 − λ2
(

α2(1, t) + β2(0, t)
)

, (3.14)

where λ1, λ2 > 0 can be chosen as large as desired. This shows exponential stability
of the origin for the γ system.

To show finite-time convergence to the origin, one can find the explicit solution
of (3.4) as follows. Define first

φ1(x) =

∫ x

0

1

ǫ1(ξ)
dξ, φ2(x) =

∫ x

0

1

ǫ2(ξ)
dξ, (3.15)

noting that they are monotonically increasing functions of x, and thus invertible. Note
that the components of γ verify the differential equations

αt = −ǫ1(x)αx, (3.16)

βt = ǫ2(x)βx, (3.17)

which can be rewritten as follows

∂

∂t
α(φ−1

1 (x), t) +
∂

∂x
α(φ−1

1 (x), t) = 0, (3.18)

∂

∂t
β(φ−1

2 (x), t) − ∂

∂x
β(φ−1

2 (x), t) = 0. (3.19)

The solution of these equations is α(x, t) = Fα(φ1(x)− t) and β(x, t) = Fβ(φ2(x)+ t),
where Fα and Fβ are arbitrary functions. Now, if α0(x), β0(x) are the initial condition
for the states, one obtains Fα(x) = α0(φ

−1
1 (x)) (valid for 0 < x < φ1(1)) and Fβ(x) =

β0(φ
−1
2 (x)) (valid for 0 < x < φ2(1)). Using the boundary conditions (3.5) one finds

the remaining values of Fα and Fβ , and thus the solution of the system, as follows:

α(x, t) =

{

α0

(

φ−1
1 (φ1(x) − t)

)

t ≤ φ1(x),
qβ(0, t− φ1(x)) t ≥ φ1(x),

(3.20)

β(x, t) =

{

β0
(

φ−1
2 (φ2(x) + t)

)

t ≤ φ2(1)− φ2(x),
0 t ≥ φ2(1)− φ2(x),

(3.21)
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Thus, after t = tF , where

tF = φ1(1) + φ2(1) =

∫ 1

0

(

1

ǫ1(ξ)
+

1

ǫ2(ξ)

)

dξ, (3.22)

one has that α ≡ β ≡ 0.

3.2. Backstepping transformation and kernel equations. To map the orig-
inal system (3.1) into the target system (3.4), we use the following transformation:

γ = w −
∫ x

0

K(x, ξ)w(ξ, t)dξ, (3.23)

where

K(x, ξ) =

(

Kuu(x, ξ) Kuv(x, ξ)
Kvu(x, ξ) Kvv(x, ξ)

)

(3.24)

is a matrix of kernels. Defining

Q0 =

(

0 q
0 1

)

, (3.25)

the original and target boundary conditions (respectively (3.3) and (3.5)) can be
written compactly (omitting dependences in x and t) as

w(0, t) = Q0w(0, t), w(1, t) =

(

0
U

)

, γ(0, t) = Q0γ(0, t), γ(1, t) = 0. (3.26)

Introducing (3.23) into (3.4), applying (3.1), integrating by parts and using the bound-
ary conditions, we obtain that the original system (3.1) is mapped into the target
system (3.4) if and only if one has the following three matrix equations:

0 = C(x) + Σ(x)K(x, x) −K(x, x)Σ(x), (3.27)

0 = Σ(x)Kx(x, ξ) +Kξ(x, ξ)Σ(ξ) +K(x, ξ)Σ′(ξ)−K(x, ξ)C(ξ), (3.28)

0 = K(x, 0)Σ(0)Q0. (3.29)

Expanding (3.27), we get the following kernel equations:

ǫ1(x)K
uu
x + ǫ1(ξ)K

uu
ξ = −ǫ′1(ξ)Kuu − c2(ξ)K

uv, (3.30)

ǫ1(x)K
uv
x − ǫ2(ξ)K

uv
ξ = ǫ′2(ξ)K

uv − c1(ξ)K
uu, (3.31)

ǫ2(x)K
vu
x − ǫ1(ξ)K

vu
ξ = ǫ′1(ξ)K

vu + c2(ξ)K
vv, (3.32)

ǫ2(x)K
vv
x + ǫ2(ξ)K

vv
ξ = −ǫ′2(ξ)Kvv + c1(ξ)K

vu, (3.33)

with boundary conditions obtained from (3.28)–(3.29)

Kuu(x, 0) =
ǫ2(0)

qǫ1(0)
Kuv(x, 0), (3.34)

Kuv(x, x) =
c1(x)

ǫ1(x) + ǫ2(x)
, (3.35)

Kvu(x, x) = − c2(x)

ǫ1(x) + ǫ2(x)
, (3.36)

Kvv(x, 0) =
qǫ1(0)

ǫ2(0)
Kvu(x, 0). (3.37)
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The equations evolve in the triangular domain T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}.
Notice that they can be written as two separate 2×2 hyperbolic systems, one for Kuu

and Kuv and another for Kvu and Kvv.
By Theorem A.1 (see the Appendix), one finds that, for q 6= 0, under the assump-

tion that c1(x), c2(x) are C([0, 1]), ǫ1(x), ǫ2(x) are C1([0, 1]) and that ǫ1(x), ǫ2(x) > 0,
there is a unique solution to (3.30)–(3.37), which is in C(T ).

3.3. The inverse transformation. To study the invertibility of transformation
(3.23), we look for a transformation of the the target system (3.4) into the original
system (3.1) as follows:

w(x, t) = γ(x, t) +

∫ x

0

L(x, ξ)γ(ξ, t)dξ, (3.38)

where

L(x, ξ) =

(

Lαα(x, ξ) Lαβ(x, ξ)
Lβα(x, ξ) Lββ(x, ξ)

)

. (3.39)

Introducing (3.38) into (3.1), applying (3.4), integrating by parts and using the bound-
ary conditions, we obtain as before a set of kernel equations:

ǫ1(x)L
αα
x + ǫ1(ξ)L

αα
ξ = −ǫ′1(ξ)Lαα + c1(x)L

βα, (3.40)

ǫ1(x)L
αβ
x − ǫ2(ξ)L

αβ
ξ = ǫ′2(ξ)L

αβ + c1(x)L
ββ, (3.41)

ǫ2(x)L
βα
x − ǫ1(ξ)L

βα
ξ = ǫ′1(ξ)L

βα − c2(x)L
αα, (3.42)

ǫ2(x)L
ββ
x + ǫ2(ξ)L

ββ
ξ = −ǫ′2(ξ)Lββ − c2(x)L

αβ , (3.43)

with boundary conditions

Lαα(x, 0) =
ǫ2(0)

qǫ1(0)
Lαβ(x, 0), (3.44)

Lαβ(x, x) =
c1(x)

ǫ1(x) + ǫ2(x)
, (3.45)

Lβα(x, x) = − c2(x)

ǫ1(x) + ǫ2(x)
, (3.46)

Lββ(x, 0) =
qǫ1(0)

ǫ2(0)
Lβα(x, 0). (3.47)

Again by Theorem A.1 (see the Appendix), one finds that there is a unique
solution to these equations, which is C(T ).

3.4. Control law and main result. From the transformation (3.23) evaluated
at x = 1, one gets

U =

∫ 1

0

Kvu(1, ξ)u(ξ, t)dξ +

∫ 1

0

Kvv(1, ξ)v(ξ, t)dξ. (3.48)

With control law (3.48) the following result holds.
Theorem 3.2. Consider system (3.1) with boundary conditions (3.3), control

law (3.48), and initial condition w0 ∈ L2([0, 1]). Then, for every λ > 0, there exists
c > 0 such that

‖w(·, t)‖L2 ≤ c e−λt‖w0‖L2. (3.49)
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In fact, the equilibrium w ≡ 0 is reached in finite time t = tF , where tF is given by
(3.8).

Proof. Since the transformation (3.23) is invertible, when applying control law
(3.48) the dynamical behavior of (3.1) is the same as the behavior of (3.4), which is
well-posed from standard results and whose explicit solution and stability properties
we know from Proposition 3.1. Thus, we obtain the explicit solutions of w from the
direct and inverse transformation, as follows:

w(x, t) = γ∗(x, t) +

∫ x

0

L(x, ξ)γ∗(ξ, t)dξ, (3.50)

where γ∗(x, t) is the explicit solution of the α, β system, given by (3.20)–(3.21), with
initial conditions:

γ0(x) = w0(x)−
∫ x

0

K(x, ξ)w0(ξ)dξ. (3.51)

In particular, we know that γ goes to zero in finite time t = tF , therefore w also
shares that property. Finally, since the origin of the γ system is L2 exponentially
stable with an arbitrary large exponential decay rate, we conclude, using the inverse
transformation, that the origin of the w system is also L2 exponentially stable with an
arbitrary large exponential decay rate. Equation (3.49) follows by using the inverse
and direct transformations to relate the L2 norms of w and γ (using the fact that the
kernels of the transformations are continuous, and thus bounded, functions).

3.5. The case q = 0. If the coefficient q is zero in (3.3), the method presented
in the paper is not valid since (3.34) would require the value of one of the control
kernels to be infinity at the boundary of the domain T . Similarly, if the coefficient
is close to zero one still gets very large values for the kernels close to the boundary,
resulting in potentially large control laws.

The method can be modified to accommodate zero or small values of q by setting
a slightly different target system (3.16)–(3.17), as follows:

αt = −ǫ1(x)αx + g(x)β(0, t), (3.52)

βt = ǫ2(x)βx, (3.53)

where g(x) is to be obtained from the method; regardless of the value of g(x), this is
a cascade system which is still L2 exponentially stable and converges in finite time by
the same arguments of Proposition 3.1, since now, using the same Lyapunov function
V1 defined in (3.10), we obtain

V̇1 = −
∫ 1

0

γT (x, t) (D(x)Σ(x))x γ(x, t)dx +
[

γT (x, t)D(x)Σ(x)γ(x, t)
]1

0

+2β(0, t)

∫ 1

0

α(x, t)A
e−µx

ǫ1(x)
g(x)dx, (3.54)

The new term (which is the last one) can be controlled by slightly modifying the
coefficients of D(x) in the proof of Proposition 3.1, obtaining the same result as
before.

The kernel equations resulting from the transformation are still the same (3.30)–
(3.33), with the same boundary conditions (3.35)–(3.37) for Kuv, Kvu, and Kvv
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(which reduces to Kvv(x, 0) = 0 when q = 0), but one obtains an undetermined
boundary conditions for Kuu:

Kuu(x, 0) = h(x), (3.55)

where h(x) can be chosen as desired; by choosing at least a continuous function, one
can apply Theorem A.1 and thus the kernel equations are well-posed. After h(x) has
been chosen and the kernels have been computed, one obtains the value of g(x) as

g(x) = qǫ1(0)h(x)− ǫ2(0)K
uv(x, 0). (3.56)

Invertibility of the transformation follows as before, thus one obtains the same
result of Theorem 3.2. The non-uniqueness in (3.55) gives the designer some freedom
in shaping the input function g(x) from β to α. Also note that this has no impact in
the feedback law as the kernels Kvu and Kvv (which are the ones appearing in (3.48))
are uniquely defined and independent of the non-unique Kuu and Kuv.

4. Application of the linear backstepping controller to the nonlinear

system. We wish to show that the linear controller (3.48) designed using backstep-
ping works locally for the nonlinear system, in terms that will be made precise.

For that, we write our quasilinear system (2.1) in a form equivalent (up to linear
terms) to (3.1). Define

ϕ1(x) = exp

(∫ x

0

f11(s)

Λ1(s)
ds

)

, ϕ2(x) = exp

(

−
∫ x

0

f22(s)

Λ2(s)
ds

)

. (4.1)

We obtain a new state variable w from z using the following transformation:

w(x, t) =

[

u(x, t)
v(x, t)

]

=

[

ϕ1(x) 0
0 ϕ2(x)

] [

z1(x, t)
z2(x, t)

]

= Φ(x)z(x, t), (4.2)

so that

z(x, t) =







1

ϕ1(x)
0

0
1

ϕ2(x)






w(x, t) = Φ−1(x)w(x, t). (4.3)

It follows that w verifies the following equation:

wt + Λ̄(w, x)wx + f̄(w, x) = 0, (4.4)

where

Λ̄(w, x) = Φ(x)Λ(Φ−1(x)w, x)Φ−1(x), (4.5)

f̄(w, x) = Φ(x)f(Φ−1(x)w, x) + Λ̄(w, x)









−f11(x)
Λ1(x)

0

0
f22(x)

Λ2(x)









w. (4.6)

It is evident that Λ̄(0, x) = Φ(x)Λ(0, x)Φ−1(x) = Λ(0, x) and that f̄(0, x) = 0. Also,

C(x) = − ∂f̄(w, x)

∂w

∣

∣

∣

∣

w=0

=

[

0 −f12(x)
−f21(x) 0

]

. (4.7)
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Thus, it is possible to write (4.4) as a linear system with the same structure as (3.1)
plus nonlinear terms:

wt − Σ(x)wx − C(x)w + ΛNL(w, x)wx + fNL(w, x) = 0, (4.8)

where

Σ(x) = −Λ(0, x), (4.9)

and

ΛNL(w, x) = Λ̄(w, x) + Σ(x), fNL(w, x) = f̄(w, x) + C(x)w. (4.10)

Computing the boundary conditions of (4.8) by combining (2.4) with the trans-

formation (4.2), and defining q = ∂G0(v)
∂v

∣

∣

∣

v=0
and GNL(v) = G0(v)− qv, one obtains

u(0, t) = qv(0, t) +GNL(v(0, t)), v(1, t) = Ū(t), (4.11)

where U(t) = ϕ2(1)U(t). In what follows we will consider the case q 6= 0; the case
q = 0 is analogous (see Remark 2).

Notice that the linear parts of (4.8) and (4.11) are identical to (3.1) and (3.3),
and that the coefficients C(x) and Σ(x) verify the assumptions of Section 3. Also, it
is clear that the nonlinear terms verify ΛNL(0, x) = 0, fNL(0, x) = ∂fNL

∂w (0, x) = 0,

and GNL(0) =
∂GNL

∂w (0) = 0

Therefore, we consider using the feedback law:

Ū =

∫ 1

0

Kvu(1, ξ)u(ξ, t)dξ +

∫ 1

0

Kvv(1, ξ)v(ξ, t)dξ, (4.12)

which implies, in terms of the original z variable:

U =
1

ϕ2(1)

(
∫ 1

0

Kvu(1, ξ)z1(ξ, t)ϕ1(ξ)dξ +

∫ 1

0

Kvv(1, ξ)z2(ξ, t)ϕ2(ξ)dξ

)

,(4.13)

where the kernels are computed from (3.30)–(3.37) using the coefficients C(x) and
Σ(x) from (4.7) and (4.9).

Next, we show that the control law (4.13), which is computed for the linear part of
the system, asymptotically stabilizes the nonlinear system, although locally. However,
the right space to prove stability of the closed-loop system is H2, instead of the space
L2 that was used in Section 3 for the linear system.

Denoting:

q0 =

[

1
0

]

, G(z) = G0(z2), q1 =

[

0
1

]

, k(x) =

[

ϕ1(x)K
vu(1,x)

ϕ2(1)
ϕ2(x)K

vv(1,x)
ϕ2(1)

]

, (4.14)

the boundary conditions of the closed loop system would be written as:

qT0 z(0, t) = G(z(0, t)), qT1 z(1, t) =

∫ 1

0

kT (ξ)z(ξ, t)dξ. (4.15)
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A necessary condition for system (2.1) with boundary conditions (4.15) to be well-
posed in the space H2 is that the initial conditions verify the corresponding second-
order compatibility condition. These are

0 = G(z0(0))− qT0 z0(0), (4.16)

0 =

∫ 1

0

kT (ξ)z0(ξ)dξ − qT1 z0(1), (4.17)

0 = G′(z0(0)) (Λ(z0(0), 0)z
′
0(0) + f(z0(0), 0))

−qT0 (Λ(z0(0), 0)z
′
0(0) + f(z0(0), 0)) , (4.18)

0 =

∫ 1

0

kT (ξ) (Λ(z0(ξ), ξ)z
′
0(ξ) + f(z0(ξ), ξ)) dξ

−qT1 (Λ(z0(1), 1)z
′
0(1) + f(z0(1), 1)) . (4.19)

While (4.16) and (4.18) are natural compatibility conditions, the conditions (4.17) and
(4.19) are artificial (since they show up due to the feedback law that has been designed)
and rather stringent, as they require very specific values of the initial conditions. Thus,
we modify our control law in a way that, without losing its stabilizing character, does
not require any specific values in the initial values beyond the natural conditions
(4.16) and (4.18). The modification in the boundary conditions consists in adding a
dynamic extension to the controller as follows:

qT0 z(0, t) = G(z(0, t)), qT1 z(1, t) =

∫ 1

0

kT (ξ)z(ξ, t)dξ + a(t) + b(t), (4.20)

where a(t) is one of the states of the following system:

ȧ = −d1a, ḃ = −d2b, (4.21)

where the constants d1 and d2 can be chosen as desired with the only conditions that
d1, d2 > 0 and d1 6= d2. It is evident that with positive values of these constants, (4.21)
is always stable. The initial conditions of a(t) and b(t) are an additional degree of
freedom that can be used to eliminate the compatibility conditions (4.17) and (4.19).
With the modification of the control law, these compatibility conditions are now

0 =

∫ 1

0

kT (ξ)z0(ξ)dξ + a(0) + b(0)− qT1 z0(1), (4.22)

0 =

∫ 1

0

kT (ξ) (Λ(z0(ξ), ξ)z0x(ξ) + f(z0(ξ), ξ)) dξ − d1a(0)− d2b(0)

−qT1 (Λ(z0(1), 1)z0x(1) + f(z0(1), 1)) . (4.23)

Call

P1(z0) = qT1 z0(1)−
∫ 1

0

kT (ξ)z0(ξ)dξ, (4.24)

P2(z0) = qT1 (Λ(z0(1), 1)z0x(1) + f(z0(1), 1))

−
∫ 1

0

kT (ξ) (Λ(z0(ξ), ξ)z0x(ξ) + f(z0(ξ), ξ)) dξ. (4.25)

Selecting

a(0) = −P2(z0) + d2P1(z0)

d1 − d2
, b(0) =

d1P1(z0) + P2(z0)

d1 − d2
, (4.26)
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the compatibility conditions are automatically verified.
We are now ready to state our main result. Define the norms ‖z(·, t)‖H1 =

‖z(·, t)‖L2 + ‖zx(·, t)‖L2 and ‖z(·, t)‖H2 = ‖z(·, t)‖H1 + ‖zxx(·, t)‖L2 .
Theorem 4.1. Consider system (2.1) and (4.21) with boundary conditions (4.20)

and initial conditions z0 = [z01 z02 ]
T ∈ H2([0, 1]), and a(0) and b(0) verifying (4.26),

with the kernels Kvu and Kvv obtained from (3.30)–(3.37) where the coefficients C(x)
and Σ(x) are computed from (4.7) and (4.9). Then, under the assumptions of smooth-
ness for the coefficients stated in Section 2, for every λ > 0, there exist δ > 0 and
c > 0 such that such that, if ‖z0‖H2 ≤ δ and if the compatibility conditions (4.16) and
(4.18) are verified, then:

‖z(·, t)‖2H2 + a2(t) + b2(t) ≤ c e−λt
(

‖z0‖2H2 + a2(0) + b2(0)
)

. (4.27)

5. Proof of Theorem 4.1.

5.1. Preliminary definitions. We first establish some definitions and notation.
For γ(x) ∈ R

2 with components α(x) and β(x) denote |γ(x)| = |α(x)| + |β(x)|, and

‖γ‖∞ = sup
x∈[0,1]

|γ(x)|, ‖γ‖L1 =

∫ 1

0

|γ(ξ)|dξ. (5.1)

In what follows, for a time-varying vector γ(x, t), we denote |γ| = |γ(x, t)| and ‖γ‖ =
‖γ(·, t)‖ to simplify our notation. For a 2× 2 matrix M , denote:

|M | = max{|Mγ|; γ ∈ R
2, |γ| = 1}. (5.2)

For the kernel matrices K(x, ξ) and L(x, ξ) denote

‖K‖∞ = sup
(x,ξ)∈T

|K(x, ξ)|. (5.3)

For γ ∈ H2([0, 1]), recall the following well-known inequalities, that will be used later:

‖γ‖L1 ≤ C1‖γ‖L2 ≤ C2‖γ‖∞, (5.4)

‖γ‖∞ ≤ C3 [‖γ‖L2 + ‖γx‖L2] ≤ C4‖γ‖H1 , (5.5)

‖γx‖∞ ≤ C5 [‖γx‖L2 + ‖γxx‖L2 ] ≤ C6‖γ‖H2 . (5.6)

Define the following linear functionals, the first two of which are, respectively, the
inverse and direct transformations (3.23) and (3.38):

K[γ](x) = γ(x, t)−
∫ x

0

K(x, ξ)γ(ξ, t)dξ, (5.7)

L[γ](x) = γ(x, t) +

∫ x

0

L(x, ξ)γ(ξ, t)dξ, (5.8)

K1[γ](x) = −K(x, x)γ(x, t) +

∫ x

0

Kξ(x, ξ)γ(ξ, t)dξ, (5.9)

K2[γ](x) = −K(x, x)γ(x, t)−
∫ x

0

Kx(x, ξ)γ(ξ, t)dξ, (5.10)

L1[γ](x) = L(x, x)γ(x, t) +

∫ x

0

Lx(x, ξ)γ(ξ, t)dξ, (5.11)

L11[γ](x) = (Lx(x, x) + Lξ(x, x))γ(x, t) + Lx(x, x)γ(x, t)

+

∫ x

0

Lxx(x, ξ)γ(ξ, t)dξ. (5.12)
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For simplicity, in what follows we drop writing the x dependence in functionals and
the t dependence in the variables.

Using (5.7) and (5.8), we define F1[γ] and F2[γ] as:

F1 = ΛNL (L[γ], x) , F2 = fNL (L[γ], x) . (5.13)

To prove Theorem 4.1, we notice that if we apply the (invertible) backstepping
transformation (3.23) to the nonlinear system (4.8) we obtain the following trans-
formed system:

0 = γt − Σ(x)γx + ΛNL(w, x)wx + fNL(w, x)

+

∫ x

0

K(x, ξ) (ΛNL(w, ξ)wx(ξ)− fNL(w, ξ)) dξ, (5.14)

and using the inverse transformation (3.38) the equation can be expressed fully in
terms of γ as:

γt − Σ(x)γx + F3[γ, γx] + F4[γ] = 0, (5.15)

where the functionals F3 and F4 are defined as

F3 = K [F1[γ]γx] , (5.16)

F4 = K [F1[γ]L1 [γ] + F2[γ]] . (5.17)

The boundary conditions are

α(0, t) = qβ(0, t) +GNL(β(0, t)), β(1, t) = a(t) + b(t). (5.18)

By the assumptions on the coefficients and applying Theorem A.2, the direct and
inverse transformations (3.23) and (3.38) have kernels that are C2(T ) functions. Dif-
ferentiating twice with respect to x in these transformations, it can be shown that the
H2 norm of γ is equivalent to the H2 norm of z (see for instance [33]). Thus, if we
show H2 local stability of the origin for (5.15)–(5.18), the same holds for z.

We proceed by analyzing (using a Lyapunov function) the growth of ‖γ‖L2, ‖γt‖L2

and ‖γtt‖L2. Relating these norms with ‖γ‖H2 , we then prove H2 local stability for
γ.

5.2. Analyzing the growth of ‖γ‖L2. Define

V1 =

∫ 1

0

γT (x, t)D(x)γ(x, t)dx, (5.19)

for D(x) as in (3.9). Proceeding analogously to (3.11)–(3.14), we get some extra
nonlinear terms:

V̇1 = −
∫ 1

0

γT (x, t) (D(x)Σ(x))x γ(x, t)dx +
[

γT (x, t)D(x)Σ(x)γ(x, t)
]1

0

−2

∫ 1

0

γT (x, t)D(x) (F3[γ, γx] + F4[γ]) dx. (5.20)

Let us analyze first the last term:

2

∣

∣

∣

∣

∫ 1

0

γT (x, t)D(x) (F3[γ, γx] + F4[γ]) dx

∣

∣

∣

∣

≤ K1

∫ 1

0

|γ| (|F3[γ, γx]|+ |F4[γ]|) dx.
(5.21)
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Applying Lemma B.2 (see the Appendix), we obtain that there exists a δ1, such
that for ‖γ‖∞ < δ1,

∫ 1

0

|γ||F3[γ, γx]|dx ≤ K2‖γx‖∞‖γ‖2L2, (5.22)

∫ 1

0

|γ||F4[γ]|dx ≤ K3‖γ‖∞‖γ‖2L2, (5.23)

and using inequality (5.5) and noting that ‖γ‖L2 ≤ K4V
1/2
1 , we obtain

∫ 1

0

|γ||F3[γ, γx]|dx ≤ K5‖γx‖∞V1, (5.24)

∫ 1

0

|γ||F4[γ]|dx ≤ K6‖γx‖∞V1 +K7V
3/2
1 . (5.25)

Now,
[

γT (x, t)D(x)Σ(x)γ(x, t)
]1

0
= Ba2(t)eµ −Aα2(1, t)e−µ −Bβ2(0, t)

+A(qβ(0, t) +GNL(β(0, t)))
2, (5.26)

and for ‖γ‖∞ < δ1, |GNL(β(0, t))| ≤ K8|β(0, t)|, and A > 0, we obtain
[

γT (x, t)D(x)Σ(x)γ(x, t)
]1

0
≤ −Aα2(1, t)e−µ + (A(|q|+K8)

2 −B)β2(0, t)

+Ba2(t)eµ (5.27)

Thus, choosing B = (|q|+K8)
2A+λ2 and A and µ as in the proof of Proposition 3.1,

we obtain the following proposition:
Proposition 5.1. There exists δ1 such that if ‖γ‖∞ < δ1 then

V̇1 ≤ −λ1V1 − λ2
(

α2(1, t) + β2(0, t)
)

+ C1V
3/2
1 + C2‖γx‖∞V1

+C3(a
2(t) + b2(t)), (5.28)

where λ1, λ2, C1, C2 and C3 are positive constants.

5.3. Analyzing the growth of ‖γt‖L2. Define η = γt. Notice that the norms
of η and γx are related (see Lemma B.6 in the Appendix). Taking a partial derivative
in t in (5.14) we obtain an equation for η as follows:

ηt + (F1[γ]− Σ(x)) ηx + F5[γ, γx, η] + F6[γ, η] = 0, (5.29)

where F5 and F6 are defined as

F5 = K1 [F1[γ]η] +

∫ x

0

K(x, ξ)F12[γ, γx]η(ξ)dξ +K(x, 0)ΛNL (γ(0), 0) η(0)

+K [F11[γ, η]γx] , (5.30)

F6 = K [F11[γ, η]Lx [γ]] +K [F1[γ]Lx [η]] +K[F21[γ, η]], (5.31)

where

F11 =
∂ΛNL

∂γ
(L[γ], x)L[η], (5.32)

F12 =
∂ΛNL

∂γ
(L[γ], x) (γx + Lx[γ]) +

∂ΛNL

∂x
(L[γ], x) , (5.33)

F21 =
∂fNL

∂γ
(L[γ], x)L[η]. (5.34)
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The boundary conditions for η = [η1 η2]
T are

η1(0, t) = qη2(0, t) +G′
NL(β(0, t))η2(0, t), η2(1, t) = −d1a(t)− d2b(t). (5.35)

To find a Lyapunov function for η, we use the next lemma:
Lemma 5.2. There exists δ > 0 such that, for ‖γ‖∞ < δ, there exists a symmetric

matrix R[γ] > 0 verifying the identity:

R[γ] (Σ(x)− F1[γ])− (Σ(x)− F1[γ])
T
R[γ] = 0, (5.36)

and the following bounds:

R[γ](x) ≤ c1 + c2‖γ‖∞, (5.37)

| ((R[γ]−D(x)) Σ(x))x | ≤ c2‖γ‖∞ (1 + ‖γx‖∞) , (5.38)

| (R[γ])t | ≤ c3 (|η|+ ‖η‖L1) , (5.39)

where c1, c2, c3 are positive constants.
Proof. We explicitly construct R[γ] as

R[γ] = D(x) + Θ[γ], (5.40)

with

Θ[γ] =

[

0 ψ[γ]
ψ[γ] 0

]

, (5.41)

where ψ[γ] is defined as:

ψ[γ] =
D11(x) (F1[γ])12 −D22(x) (F1[γ])21
ǫ2(x) + ǫ1(x) + (F1[γ])11 − (F1[γ])22

, (5.42)

where (F1[γ])ij denotes the coefficient in row i and column j in the matrix F1[γ].
Identity (5.36) follows by using the construction of R[γ](x) in (5.40)–(5.42), and the
fact that D(x) and Σ(x) are diagonal and commute. To ensure that the denominator
of (5.42) is different from zero, denote K1 = minx∈[0,1] (ǫ1(x) + ǫ2(x)) > 0. Applying
(B.13) from Lemma B.2, there exists δ1 for which, if ‖γ‖∞ < δ1, one gets:

ǫ2(x) + ǫ1(x) + (F1[γ])22 − (F1[γ])11 ≥ K1 −K2‖γ‖∞, (5.43)

thus if ‖γ‖∞ ≤ min{δ1, δ2} with δ2 = K1

2K2
, we obtain

ǫ2(x) + ǫ1(x) + (F1[γ])22 − (F1[γ])11 ≥ K1

2
, (5.44)

thus ψ[γ] is well-defined. Applying again (B.13) in the numerator of (5.42) to bound
(5.41), we obtain:

‖Θ[γ]‖ ≤ K3‖γ‖∞, (5.45)

and noting K4 = ‖D‖∞, we obtain directly the bound (5.37), and by choosing ‖γ‖∞ ≤
min{δ1, δ2, δ3}, with δ3 = K4

2K3
, we show R[γ] > 0.

Inequality (5.38) is equivalent to showing:

| (Θ[γ]Σ(x))x | ≤ c2‖γ‖∞ (1 + ‖γx‖∞) . (5.46)
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We first use (5.45) to bound |Θ[γ](x)Σx(x)|, and for |Θx[γ](x)Σ(x)| we take a deriva-
tive in x in (5.42), use the bound (5.44) and use the fact that ∂

∂xF1[γ] = F12[γ, γx]
and using Lemma B.3, there exists δ4 such that if ‖γ‖∞ ≤ δ4,

|F12[γ, γx]| ≤ K1 (‖γ‖∞ + ‖γx‖∞) . (5.47)

To show (5.39) we use ∂
∂tF1[γ] = |F11[γ, η] and apply Lemma B.3. Setting δ =

min{δ1, δ2, δ3, δ4} the lemma follows.
Define:

V2 =

∫ 1

0

ηT (x, t)R[γ](x)η(x, t)dx. (5.48)

Computing V̇2, applying Lemma 5.2, and integrating by parts, we find

V̇2 = −
∫ 1

0

ηT (x, t) (R[γ] (Σ(x)− F1[γ]))x η(x, t)dx

+
[

ηT (x, t)R[γ](x) (Σ(x) − F1[γ](x)) η(x, t)
]x=1

x=0
+

∫ 1

0

ηT (x, t) (R[γ])t η(x, t)dx

−2

∫ 1

0

ηT (x, t)R[γ]F5[γ, γx, η, ηx, ]dx− 2

∫ 1

0

ηT (x, t)R[γ]F6[γ, η]dx. (5.49)

The first three terms of (5.49) are analyzed using Lemma 5.2. Thus, there exists δ1
such that, for ‖γ‖∞ < δ, we find, for the first term:

−
∫ 1

0

ηT (x, t) (R[γ] (Σ(x)− F1[γ]))x η(x, t)dx

≤ −λ1V2 +K1‖η‖2L2 (‖γ‖∞ + ‖γx‖∞) . (5.50)

The second term of (5.49) is bounded using the boundary conditions, (3.11)–(3.14),
and Lemma 5.2, as:

[

ηT (x, t)R[γ](x) (Σ(x)− F1[γ](x)) η(x, t)
]x=1

x=0

≤ −λ2
(

η21(1, t) + η22(0, t)
)

+K2‖γ‖∞
(

η22(0, t) + η21(1, t)
)

+K3(1 + ‖γ‖∞)(a(t)2 + b(t)2). (5.51)

Finally, we bound the third term of (5.49) applying Lemma 5.2 as follows:

∫ 1

0

ηT (x, t) (R[γ])t η(x, t)dx ≤ K3

∫ 1

0

|η|2 (|η|+ ‖η‖L1) dx ≤ K4‖η‖2L2‖η‖∞. (5.52)

Applying Lemmas 5.2 and B.3 to the last terms of (5.49), we get, for ‖γ‖∞ < δ,

2

∣

∣

∣

∣

∫ 1

0

ηT (x, t)R[γ]F5[γ, γx, η, ηx]dx

∣

∣

∣

∣

≤ K5

∫ 1

0

|η||F5[γ, η]|dx

≤ K6‖η‖2L2 (‖γ‖∞ + ‖γx‖∞) +K7‖η‖L2|η(0, t)||γ(0, t)|, (5.53)

and

2

∣

∣

∣

∣

∫ 1

0

ηT (x, t)R[γ]F6[γ, η]dx

∣

∣

∣

∣

≤ K8

∫ 1

0

|η||F6[γ, η]|dx ≤ K9‖η‖2L2‖γ‖∞. (5.54)
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Thus, it is clear that by choosing ‖γ‖∞ small enough, using Lemma B.6 to bound
‖γx‖∞ by ‖η‖∞, and noting ‖η‖L2 ≤ K10V

1/2, we obtain the following proposition:
Proposition 5.3. There exists δ2 such that if ‖γ‖∞ < δ2

V̇2 ≤ −λ3V2 − λ4
(

η21(1, t) + η22(0, t)
)

+K1V2‖η‖∞ +K2b(t)
2, (5.55)

for λ2, λ3,K1,K2 positive constants.

5.4. Analyzing the growth of ‖γtt‖L2. Define θ = ηt. Notice that the norms
of θ and ηx are related (see Lemma B.8 in the Appendix). Taking a partial derivative
in t in (5.29) we obtain an equation for θ:

θt + (F1[γ]− Σ(x)) θx + F7[γ, γx, η, ηx, θ] + F8[γ, η, θ] = 0, (5.56)

where F7 and F8 are defined as

F7 = K1 [F11[γ, η]η] +

∫ x

0

K(x, ξ)F12[γ, γx]θ(ξ)dξ +K1 [F1[γ]θ]

+

∫ x

0

K(x, ξ)F14[γ, γx, η, ηx]η(ξ)dξ +K(x, 0)
∂ΛNL

∂γ
(γ(0), 0) η(0)η(0)

+K(x, 0)ΛNL (γ(0), 0) θ(0) +K [F11[γ, η]ηx] +K [F13[γ, η, θ]γx] , (5.57)

F8 = 2K [F11[γ, η]Lx [η]] +K [F1[γ]Lx [θ]] +K [F13[γ, η, θ]Lx [γ]]

+K[F22[γ, η, θ]], (5.58)

where

F13 =
∂Λ2

NL

∂γ2
(L[γ], x)L[η]L[η] + ∂ΛNL

∂γ
(L[γ], x)L[θ], (5.59)

F14 =
∂2ΛNL

∂γ2
(L[γ], x)L[η] (γx + L1[γ]) +

∂ΛNL

∂γ
(L[γ], x) (ηx + L1[η])

+
∂2ΛNL

∂x∂γ
(L[γ], x)L[η], (5.60)

F22 =
∂2fNL

∂γ2
(L[γ], x)L[η]L[η] + ∂fNL

∂γ
(L[γ], x)L[θ]. (5.61)

The boundary conditions for θ = [θ1 θ2]
T are

θ1(0, t) = qθ2(0, t) +G′
NL(β(0, t))θ2(0, t) +G′′

NL(β(0, t))η
2
2(0, t), (5.62)

θ2(1, t) = d21a(t) + d22b(t). (5.63)

Since (5.56) has the same structure as (5.29), we define:

V3 =

∫ 1

0

θT (x, t)R[γ](x)θ(x, t)dx, (5.64)

where R[γ](x) was defined in Lemma 5.2.
Computing V̇3, and proceeding exactly as in (5.49), we find:

V̇3 = −
∫ 1

0

θT (x, t) (R[γ] (Σ(x)− F1[γ]))x θ(x, t)dx

+
[

θT (x, t)R[γ](x) (Σ(x)− F1[γ](x)) θ(x, t)
]x=1

x=0
+

∫ 1

0

θT (x, t) (R[γ])t θ(x, t)dx

−2

∫ 1

0

θT (x, t)R[γ]F7[γ, γx, η, ηx, θ]dx− 2

∫ 1

0

θT (x, t)R[γ]F6[γ, η, θ]dx. (5.65)
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The first three terms of (5.65) are analyzed as in (5.50)–(5.52):

V̇3 ≤ −λ1V3 +K1‖θ‖2L2 (‖γ‖∞ + ‖γx‖∞) + (K2‖γ‖∞ − λ2)
(

θ21(1, t) + θ22(0, t)
)

+2

∣

∣

∣

∣

∫ 1

0

θT (x, t)R[γ]F6[γ, η, θ]dx

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∫ 1

0

θT (x, t)R[γ]F7[γ, γx, η, ηx, θ]dx

∣

∣

∣

∣

+K3‖θ‖2L2‖η‖∞ +K4(η
4
2(0, t) + (1 + ‖γ‖∞)(a2(t) + b2(t))). (5.66)

Finally, applying Lemmas 5.2 and B.4 in the last two terms of (5.66), there exists a
δ, such that for ‖γ‖∞ < δ,

2

∣

∣

∣

∣

∫ 1

0

θT (x, t)R[γ]F7[γ, γx, η, ηx, θ]dx

∣

∣

∣

∣

≤ K5

∫ 1

0

|θ||F7[γ, γx, η, ηx, θ]|dx

≤ K6‖θ‖2L2 (‖γ‖∞ + ‖γx‖∞) +K7‖θ‖L2‖η‖2L2 +K8‖θ‖L2‖ηx‖L2‖η‖∞ +K9‖θ‖L2

+K10‖θ‖L2

(

‖η‖L2‖η‖2∞ + |η(0, t)|2 + |γ(0, t)||θ(0, t)|
)

, (5.67)

and

2

∣

∣

∣

∣

∫ 1

0

θT (x, t)R[γ]F8[γ, η, θ]dx

∣

∣

∣

∣

≤ K11

∫ 1

0

|θ||F8[γ, η, θ]|dx

≤ K11‖θ‖2L2‖γ‖∞ +K12‖η‖L2‖θ‖L2‖η‖∞ +K12‖η‖L2‖θ‖2L2 +K13‖η‖2L2‖θ‖L2.(5.68)

Thus, by choosing ‖γ‖∞ and ‖η‖∞ small enough to apply Lemma B.8, we finally
obtain the following proposition:

Proposition 5.4. There exists δ3 such that if ‖γ‖∞ + ‖η‖∞ < δ3 then

V̇3 ≤ −λ5V3 − λ6
(

θ21(1, t) + θ22(0, t)
)

+K1V3V
1/2
2 +K2V2V

1/2
3

+K3V
3/2
3 +K4‖η‖∞η22(0, t) +K5(a

2 + b2), (5.69)

where λ5, λ6,K1,K2,K3,K4,K5 are positive constants.

5.5. Proof of H2 stability of γ. Defining W = V1 + V2 + V3, and combining
Propositions 5.1, 5.3, and 5.4, there exists δ such that if ‖γ‖∞ + ‖η‖∞ < δ

Ẇ ≤ −λ1W + C1W
3/2 + C2(a

2 + b2), (5.70)

for λ,C1, C2 > 0. To compensate the last term, we augment this Lyapunov function

and define S =W + c
2 (

a2

d1
+ b2

d2
). Then,

Ṡ ≤ −λ1W + C1W
3/2 + (C2 − c)(a2 + b2), (5.71)

and choosing c > C2, one obtains

Ṡ ≤ −λ2S + C1S
3/2, (5.72)

for some positive λ2. Following [2] and noting ‖γ‖∞ + ‖η‖∞ ≤ C2S, then for suffi-
ciently small S(0), it follows that S(t) → 0 exponentially.

Given that W (by Proposition B.5) is equivalent to the H2 norm of γ when
‖γ‖∞ + ‖η‖∞ is sufficiently small, and since by construction γ0 verifies the required
second-order compatibility conditions, there exists δ > 0 and c > 0 such that if
‖γ0‖H2 ≤ δ, then:

‖γ‖2H2 + a(t)2 + b(t)2 ≤ c e−λt
(

‖γ0‖2H2 + a(0)2 + b(0)2
)

. (5.73)
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Since, as we argued, for small enough ‖z‖H2 the H2 norms of z and γ are equivalent,
this proves Theorem 4.1.

Remark 2. The proof has been carried out for the case q 6= 0. If q = 0, we have
to modify the target system following Section 3.5 and this implies the appearance of
a linear boundary term (a coefficient times β(0, t)) in the γ system; similarly, in the η
and θ systems, η2(0, t) and θ2(0, t) terms will appear. These terms can be controlled
using the same Lyapunov function by following the strategy outlined in Section 3.5

6. Concluding remarks. We have solved the problem of full-state boundary
stabilization for a 2× 2 system of first-order hyperbolic quasilinear PDEs with actu-
ation on only one boundary. We have shown, using a strict Lyapunov function, H2

local exponential stability of the state. It is possible to extend this result to design an
observer, as shown in [36], and combining both results one obtains an output-feedback
controller with similar properties (see [37]).

It would be of interest to extend the method to n × n systems. For instance, a
3×3 first-order hyperbolic system of interest is the Saint-Venant-Exner system, which
models open channels with a moving sediment bed [7]; the extension is shown (for the
linear case) in [9]. While extending the Lyapunov analysis to n× n systems has been
done [3], considerable extra effort is required to extend backstepping to a general n×n
system, even in the linear case. In general, the method needs n2 kernels resulting in
a n2 × n2 system of coupled first-order hyperbolic equations, whose well-posedness
depends critically on the exact choice of the transformation and target system. The
extension has been shown possible, for the linear case, if the system has n positive
and one negative transport speeds, with actuation only on the state corresponding to
the negative velocity [10].

Appendix A. Well-posedness of the kernel equations. We show well-
posedness of the following hyperbolic 4×4 system, which is generic enough to contain
all the kernel equation systems that appear in the paper:

ǫ1(x)F
1
x + ǫ1(ξ)F

1
ξ = g1(x, ξ) +

4
∑

i=1

C1i(x, ξ)F
i(x, ξ), (A.1)

ǫ1(x)F
2
x − ǫ2(ξ)F

2
ξ = g2(x, ξ) +

4
∑

i=1

C2i(x, ξ)F
i(x, ξ), (A.2)

ǫ2(x)F
3
x − ǫ1(ξ)F

3
ξ = g3(x, ξ) +

4
∑

i=1

C3i(x, ξ)F
i(x, ξ), (A.3)

ǫ2(x)F
4
x + ǫ2(ξ)F

4
ξ = g4(x, ξ) +

4
∑

i=1

C4i(x, ξ)F
i(x, ξ), (A.4)

evolving in the domain T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}, with boundary conditions:

F 1(x, 0) = h1(x) + q1(x)F
2(x, 0) + q2(x)F

3(x, 0), (A.5)

F 2(x, x) = h2(x), F 3(x, x) = h3(x), (A.6)

F 4(x, 0) = h4(x) + q3(x)F
2(x, 0) + q4(x)F

3(x, 0). (A.7)

This type of system has been called “generalized Goursat problem” by some au-
thors [19]. However the boundaries of the domain T are characteristic for (A.1)
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and (A.4), thus the general results derived in [19] cannot be applied. The following
theorems discusses existence, uniqueness and smoothness of solutions to the equations.

Theorem A.1. Consider the hyperbolic system (A.1)–(A.7). Under the as-
sumptions qi, hi ∈ C([0, 1]), gi, Cji ∈ C(T ), i, j = 1, 2, 3, 4 and ǫ1, ǫ2 ∈ C([0, 1]) with
ǫ1(x), ǫ2(x) > 0, there exists a unique C(T ) solution F i, i = 1, 2, 3, 4.

Theorem A.2. Consider the hyperbolic system (A.1)–(A.7). Under the assump-
tions of Theorem A.1, and the additional assumptions ǫi, qi, hi ∈ CN([0, 1]), gi, Cji ∈
CN (T ), there exists a unique CN (T ) solution F i, i = 1, 2, 3, 4.

Next we prove the theorems; the proof is based on transforming the equations into
integral equations and then solving them using a successive approximation method.

A.1. Transformation to integral equations. The equations can be trans-
formed into integral equations by the method of characteristics. For that, it is neces-
sary to define:

φ1(x) =

∫ x

0

1

ǫ1(z)
dz, φ2(x) =

∫ x

0

1

ǫ2(z)
dz, (A.8)

and φ3(x) = φ1(x)+φ2(x). Note that all the φ functions are monotonically increasing
and thus invertible, due to positivity of the ǫ coefficients. Under the assumptions of
Theorem A.1, it also holds that φi, φ

−1
i ∈ C1([0, 1]).

Define, for (x, ξ) ∈ T , the characteristic lines along which (A.1)–(A.4) evolve:

x1(x, ξ, s) = φ−1
1 (φ1(x) − φ1(ξ) + s) , (A.9)

ξ1(x, ξ, s) = φ−1
1 (s), (A.10)

x2(x, ξ, s) = φ−1
1

(

φ1
(

φ−1
3 (φ1(x) + φ2(ξ))

)

+ s
)

, (A.11)

ξ2(x, ξ, s) = φ−1
2

(

φ2
(

φ−1
3 (φ1(x) + φ2(ξ))

)

− s
)

, (A.12)

x3(x, ξ, s) = φ−1
2

(

φ2
(

φ−1
3 (φ2(x) + φ1(ξ))

)

+ s
)

, (A.13)

ξ3(x, ξ, s) = φ−1
1

(

φ1
(

φ−1
3 (φ2(x) + φ1(ξ))

)

− s
)

, (A.14)

x4(x, ξ, s) = φ−1
2 (φ2(x) − φ2(ξ) + s) , (A.15)

ξ4(x, ξ, s) = φ−1
2 (s), (A.16)

where the argument s that parameterizes xi and ξi belongs to the interval [0, sFi ],
with sFi defined as

sF1 (x, ξ) = φ1(ξ), (A.17)

sF2 (x, ξ) = φ1(x)− φ1
(

φ−1
3 (φ1(x) + φ2(ξ))

)

, (A.18)

sF3 (x, ξ) = φ2(x)− φ2
(

φ−1
3 (φ2(x) + φ1(ξ))

)

, (A.19)

sF4 (x, ξ) = φ2(ξ). (A.20)

The following holds
Lemma A.3. If (x, ξ) ∈ T and s ∈ [0, sFi ], it holds that (xi(x, ξ, s), ξi(x, ξ, s)) ∈ T ,

for i = 1, . . . , 4. Also, under the assumptions of Theorem A.1, xi, ξi, and sFi are
continuous in their domains of definition since they are defined as compositions of
continuous functions. Moreover, the following inequalities are verified

xi(x, ξ, s) ≤ x, i = 1, . . . , 4, (A.21)

ξ1, ξ4(x, ξ, s) ≤ ξ, ξ2, ξ3(x, ξ, s) ≥ ξ. (A.22)
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Using these definitions, (A.1)–(A.4) are integrated to:

F j(x, ξ) = F j (xj(x, ξ, 0), ξj(x, ξ, 0)) +Gj(x, ξ) + Ij [F ](x, ξ), (A.23)

where we have denoted

F =









F 1

F 2

F 3

F 4









, Gj(x, ξ) =

∫ sFj (x,ξ)

0

gj (xj(x, ξ, s), ξj(x, ξ, s)) ds, (A.24)

Ij [F ](x, ξ) =

4
∑

i=1

∫ sFj (x,ξ)

0

Cji (xj(x, ξ, s), ξj(x, ξ, s))F
i (xj(x, ξ, s), ξj(x, ξ, s)) ds,(A.25)

for j = 1, 2, 3, 4. Substituting the boundary conditions (A.5)–(A.7) and expressing
the terms in (A.5) and (A.7) containing F 2(x, 0) and F 3(x, 0) in terms of the solution
(A.25) we get four integral equations which have the following structure:

F j(x, ξ) = Hj(x, ξ) +Gj(x, ξ) + ϕj(x, ξ) +Qj [F ](x, ξ) + Ij [F ](x, ξ), (A.26)

where Hj(x, ξ) = hj(xj(x, ξ, 0)), ϕj(x, ξ) is has the values ϕ2 = ϕ3 = 0 and

ϕ1 = q1(x1(x, ξ, 0))H2(x1(x, ξ, 0), 0) + q2(x1(x, ξ, 0))H3(x1(x, ξ, 0), 0)

+q1(x1(x, ξ, 0))G2(x1(x, ξ, 0), 0) + q2(x1(x, ξ, 0))G3(x1(x, ξ, 0), 0), (A.27)

ϕ4 = q3(x4(x, ξ, 0))H2(x4(x, ξ, 0), 0) + q4(x4(x, ξ, 0))H3(x4(x, ξ, 0), 0)

+q3(x4(x, ξ, 0))G2(x4(x, ξ, 0), 0) + q4(x4(x, ξ, 0))G3(x4(x, ξ, 0), 0). (A.28)

and the values of the Qj [F ](x, ξ) are Q2 = Q3 = 0 and

Q1[F ] = q1(x1(x, ξ, 0))I2[F ](x1(x, ξ, 0), 0) + q2(x1(x, ξ, 0))I3[F ](x1(x, ξ, 0), 0), (A.29)

Q4[F ] = q3(x4(x, ξ, 0))I2[F ](x4(x, ξ, 0), 0) + q4(x4(x, ξ, 0))I3[F ](x4(x, ξ, 0), 0). (A.30)

In this form, the equations are amenable to be solved using the successive ap-
proximation method. This is explained next.

A.2. Solution of the integral equation via a successive approximation

series. The successive approximation method can be used to solve the integral equa-
tions. Define first the following functional acting on F :

Φj [F ](x, ξ) = Qj [F ](x, ξ) + Ij [F ](x, ξ), (A.31)

and the vectors:

ϕ =









H1 +G1 + ϕ1

H2 +G2 + ϕ2

H3 +G3 + ϕ3

H4 +G4 + ϕ4









, Φ[F ] =









Φ1[F ]
Φ2[F ]
Φ3[F ]
Φ4[F ]









. (A.32)

Define then

F 0(x, ξ) = ϕ(x, ξ), Fn(x, ξ) = Φ[Fn−1](x, ξ). (A.33)
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Finally define for n ≥ 1 the increment ∆Fn = Fn − Fn−1, with ∆F 0 = ϕ by defini-
tion. It is easy to see that, since Φ is a linear functional, the equation ∆Fn(x, ξ) =
Φ[∆Fn−1](x, ξ) holds.

If limn→∞ Fn(x, ξ) exists, then F = limn→∞ Fn(x, ξ) is a solution of the integral
equations (and thus solves the original hyperbolic system). Using the definition of
∆Fn, it follows that if

∑∞

n=0 ∆F
n(x, ξ) converges, then

F (x, ξ) =

∞
∑

n=0

∆Fn(x, ξ). (A.34)

A.3. Proof of convergence of the successive approximation series. First,
define:

φ̄ = max
(x,ξ)∈T

i=1,2,3,4

{|ϕi(x, ξ)|} , C̄ji = max
(x,ξ)∈T

|Cji(x, ξ)| , Kǫ = max
(x,ξ)∈T

{

1

ǫ1(x)
,

1

ǫ2(x)

}

,

q̄i = max
x∈[0,1]

|qi(x)| , C̄ =

(

1 +

4
∑

i=1

q̄i

)





4
∑

j=1

4
∑

i=1

C̄ji



 . (A.35)

Next, we prove the following two lemmas:
Lemma A.4. For i = 1, 2, 3, 4, n ≥ 1, (x, ξ) ∈ T , and sFi (x, ξ), xi(x, ξ, s) defined

as in (A.9)–(A.20), it follows that

∫ sFi (x,ξ)

0

xni (x, ξ, s)ds ≤ Kǫ
xn+1

n+ 1
. (A.36)

Proof. We show the result for i = 1, 2. It follows for i = 3, 4 by switching ǫ1 and
φ1, respectively, for ǫ2 and φ2. For i = 1 we can write:

∫ φ1(ξ)

0

xn1 (x, ξ, s)ds =

∫ φ1(ξ)

0

[

φ−1
1 (φ1(x) − φ1(ξ) + s))

]n
ds. (A.37)

To prove the inequality, change the variable of integration to z = φ−1
1 (φ1(x) − φ1(ξ) + s).

Then, taking into account

dz

ds
=

d

ds

[

φ−1
1 (φ1(x)− φ1(ξ) + s)

]

=
1

φ′1(z)
= ǫ1(z), (A.38)

the integral can be bounded as follows:

∫ φ1(ξ)

0

[

φ−1
1 (φ1(x)− φ1(ξ) + s))

]n
ds

=

∫ x

φ−1

1
(φ1(x)−φ1(ξ))

zn/ǫ1(z)dz ≤ Kǫ

∫ x

0

zndz = Kǫ
xn+1

n+ 1
. (A.39)

For i = 2 the integral can be written as:

∫ φ1(x)−φ1(φ−1

3
(φ1(x)+φ2(ξ)))

0

[

φ−1
1

(

φ1
(

φ−1
3 (φ1(x) + φ2(ξ))

)

+ s
)]n

ds. (A.40)
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As before, change the variable of integration to z = φ−1
1

(

φ1
(

φ−1
3 (φ1(x) + φ2(ξ))

)

+ s
)

.

Then one has that dz
ds = 1

φ′

1
(z) = ǫ1(z), thus the integral can be bounded as follows:

∫ φ1(x)−φ1(φ−1

3
(φ1(x)+φ2(ξ)))

0

[

φ−1
1

(

φ1
(

φ−1
3 (φ1(x) + φ2(ξ))

)

+ s
)]n

ds

=

∫ x

φ−1

3
(φ1(x)+φ2(ξ))

zn/ǫ1(z)dz ≤ Kǫ

∫ x

0

zndz = Kǫ
xn+1

n+ 1
, (A.41)

which concludes the proof.
Lemma A.5. For i = 1, 2, 3, 4, n ≥ 1 and (x, ξ) ∈ T , assume that

|∆Fn
i (x, ξ)| ≤ φ̄

C̄nKn
ǫ x

n

n!
, (A.42)

then it follows that |Φi(∆F
n)(x, ξ)| ≤ φ̄

C̄n+1Kn+1
ǫ xn+1

(n+1)! .

Proof. We show it for i = 1, 2; the structure of the equations is the same for
i = 3, 4. For i = 2:

|Φ2[∆F
n](x, ξ)| = |I2[∆Fn](x, ξ)| ≤

4
∑

i=1

C̄2i

∫ sF2 (x,ξ)

0

|∆Fn
i (x2(x, ξ, s), ξ2(x, ξ, s)) ds|

≤ φ̄
Kn

ǫ C̄
n

n!

4
∑

i=1

C̄2i

∫ sF2 (x,ξ)

0

xn2 (x, ξ, s)ds ≤ φ̄
Kn+1

ǫ C̄n+1xn+1

(n+ 1)!
, (A.43)

where Lemma A.4 has been applied. Similarly, for i = 1:

Φ1[∆F
n](x, ξ) ≤ |Q1[∆F

n](x, ξ)| + |I1[∆Fn](x, ξ)|

≤ q̄1φ̄
C̄nKn

ǫ

n!

4
∑

i=1

C̄2i

∫ sF2 (x1(x,ξ,0),0)

0

xn2 (x1(x, ξ, 0), 0, s)ds

+q̄2φ̄
C̄nKn

ǫ

n!

4
∑

i=1

C̄3i

∫ sF3 (x1(x,ξ,0),0)

0

xn3 (x1(x, ξ, 0), 0, s)ds

+φ̄
C̄nKn

ǫ

n!

4
∑

i=1

C̄1i

∫ sF1 (x,ξ)

0

xn1 (x, ξ, s)ds

≤ q̄1φ̄
C̄nKn+1

ǫ

n!

4
∑

i=1

C̄2i
x1(x, ξ, 0)

n

n+ 1
+ q̄2φ̄

C̄nKn+1
ǫ

n!

4
∑

i=1

C̄3i
x1(x, ξ, 0)

n

n+ 1

+φ̄
C̄nKn+1

ǫ

n!

4
∑

i=1

C̄1i
xn

n+ 1
≤ φ̄

C̄n+1Kn+1
ǫ xn+1

(n+ 1)!
, (A.44)

since xi(x, ξ, 0) ≤ x. Thus the lemma is proved.
Next we show that (A.34) converges.
Proposition A.6. For ∆Fn

i (x, ξ), i = 1, 2, 3, 4, one has that

∣

∣

∣

∣

∣

∞
∑

n=0

∆Fn
i (x, ξ)

∣

∣

∣

∣

∣

≤ φ̄eC̄Kǫx. (A.45)
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Proof. The result follows if we show that |∆Fn
i (x, ξ)| ≤ φ̄

C̄nKn
ǫ xn

n! . We prove the
bound by induction. For n = 0, the result follows from (A.33). Assume that the
bound is correct for all i in ∆Fn(x, ξ). Then, we get for ∆Fn+1

i (x, ξ) that

∣

∣∆Fn+1
i (x, ξ)

∣

∣ = |Φi[∆F
n](x, ξ)| ≤ φ̄

C̄n+1Kn+1
ǫ xn+1

(n+ 1)!
, (A.46)

where we have used Lemma A.5. Thus the proposition follows.

From Proposition A.6 we conclude that the successive approximation series is
bounded and converges uniformly. Thus, a bounded solution to Equations (A.1)–
(A.7) exists. This proves the existence part of Theorem A.1.

To prove uniqueness, let us denote by F (x, ξ) and F ′(x, ξ) two different solutions
to (A.1)–(A.7). Defining F̃ (x, ξ) = F (x, ξ) − F ′(x, ξ). By linearity of (A.1)–(A.7),
F̃ (x, ξ) also verifies (A.1)–(A.7), with hi = 0 for all i. Then φ̄ = 0 for F̃ (x, ξ), and
Proposition A.6 we conclude F̃ (x, ξ) = 0, which implies that F (x, ξ) = F ′(x, ξ).

To prove that the solution is continuous, note that since (A.34) converges uni-
formly, one only needs to prove continuity of each term. First, ∆F0 = ϕi ∈ C(T )
since the ϕi are defined as a sum of compositions of continuous functions. Similarly,
since ∆Fn is defined as the integral (with continuous limits) of continuous functions
times the previous ∆Fn−1 composed with continuous functions, by induction it can
be shown that ∆Fn ∈ C(T ). Thus F ∈ C(T ) and Theorem A.1 is proved.

A.4. Smoothness of solutions. Next we sketch the proof of Theorem A.2.
We only consider N = 1; for N ≥ 1 the result can be proven by induction. Denote
Gi = ∂Fi

∂x (x, ξ) and Hi = ∂Fi

∂ξ (x, ξ). By differentiating with respect to x and ξ in
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(A.1)–(A.4), we find two uncoupled 4× 4 hyperbolic systems (for Gi and for Hi)

ǫ1(x)G
1
x + ǫ1(ξ)G

1
ξ = −ǫ′1(x)F 1 +

∂g1
∂x

(x, ξ) +
4
∑

i=1

∂C1i

∂x
(x, ξ)F i(x, ξ)

+
4
∑

i=1

C1i(x, ξ)G
i(x, ξ), (A.47)

ǫ1(x)G
2
x − ǫ2(ξ)G

2
ξ = −ǫ′1(x)F 2 +

∂g2
∂x

(x, ξ) +
4
∑

i=1

∂C2i

∂x
(x, ξ)F i(x, ξ)

+
4
∑

i=1

C2i(x, ξ)G
i(x, ξ), (A.48)

ǫ2(x)G
3
x − ǫ1(ξ)G

3
ξ = −ǫ′2(x)F 3 +

∂g3
∂x

(x, ξ) +
4
∑

i=1

∂C3i

∂x
(x, ξ)F i(x, ξ)

+
4
∑

i=1

C3i(x, ξ)G
i(x, ξ), (A.49)

ǫ2(x)G
4
x + ǫ2(ξ)G

4
ξ = −ǫ′2(x)F 4 +

∂g4
∂x

(x, ξ) +
4
∑

i=1

∂C4i

∂x
(x, ξ)F i(x, ξ)

+
4
∑

i=1

C4i(x, ξ)G
i(x, ξ), (A.50)

ǫ1(x)H
1
x + ǫ1(ξ)H

1
ξ = −ǫ′1(ξ)F 1 +

∂g1
∂ξ

(x, ξ) +
4
∑

i=1

∂C1i

∂ξ
(x, ξ)F i(x, ξ)

+
4
∑

i=1

C1i(x, ξ)H
i(x, ξ), (A.51)

ǫ1(x)H
2
x − ǫ2(ξ)H

2
ξ = −ǫ′1(ξ)F 2 +

∂g2
∂ξ

(x, ξ) +
4
∑

i=1

∂C2i

∂ξ
(x, ξ)F i(x, ξ)

+
4
∑

i=1

C2i(x, ξ)H
i(x, ξ), (A.52)

ǫ2(x)H
3
x − ǫ1(ξ)H

3
ξ = −ǫ′2(ξ)F 3 +

∂g3
∂ξ

(x, ξ) +
4
∑

i=1

∂C3i

∂ξ
(x, ξ)F i(x, ξ)

+
4
∑

i=1

C3i(x, ξ)H
i(x, ξ), (A.53)

ǫ2(x)H
4
x + ǫ2(ξ)H

4
ξ = −ǫ′2(ξ)F 4 +

∂g4
∂ξ

(x, ξ) +

4
∑

i=1

∂C4i

∂ξ
(x, ξ)F i(x, ξ)

+

4
∑

i=1

C4i(x, ξ)H
i(x, ξ). (A.54)
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Now, differentiating the boundary conditions in (A.6) it is found that:

G2(x, x) +H2(x, x) = h′2(x), G3(x, x) +H3(x, x) = h′3(x), (A.55)

and setting x = ξ in (A.2)–(A.3)

ǫ1(x)G
2(x, x) − ǫ2(x)H

2(x, x) = g2(x, x) +

4
∑

i=1

C2i(x, x)F
i(x, x), (A.56)

ǫ2(x)G
3(x, x) − ǫ1(ξ)H

3(x, x) = g3(x, x) +

4
∑

i=1

C3i(x, x)F
i(x, x), (A.57)

we can find a set of boundary conditions for Gj and Hj, j = 2, 3, at the boundary
x = ξ:

G2(x, x) =
ǫ2(x)h

′
2(x) + g2(x, x) +

∑4
i=1 C2i(x, x)F

i(x, x)

ǫ2(x) + ǫ1(x)
, (A.58)

G3(x, x) =
ǫ1(x)h

′
3(x) + g3(x, x) +

∑4
i=1 C3i(x, x)F

i(x, x)

ǫ2(x) + ǫ1(x)
, (A.59)

H2(x, x) =
ǫ1(x)h

′
2(x)− g2(x, x) −

∑4
i=1 C2i(x, x)F

i(x, x)

ǫ2(x) + ǫ1(x)
, (A.60)

H3(x, x) =
ǫ2(x)h

′
3(x)− g3(x, x) −

∑4
i=1 C3i(x, x)F

i(x, x)

ǫ2(x) + ǫ1(x)
, (A.61)

Similarly, differentiating boundary conditions (A.5) and (A.7) we find boundary
conditions for G1 and G4 at ξ = 0:

G1(x, 0) = h′1(x) + q′1(x)F
2(x, 0) + q′2(x)F

3(x, 0) + q1(x)G
2(x, 0)

+q2(x)G
3(x, 0), (A.62)

G4(x, 0) = h′4(x) + q′3(x)F
2(x, 0) + q′4(x)F

3(x, 0) + q3(x)G
2(x, 0)

+q4(x)G
3(x, 0), (A.63)

and setting ξ = 0 in (A.1)–(A.4) we can also find two sets of boundary conditions for
Hj , j = 1, 4, at the boundary ξ = 0:

H1(x, 0) =
g1(x, 0) +

∑4
i=1 C1i(x, 0)F

i(x, 0)

ǫ1(0)
− ǫ1(x)

ǫ1(0)

(

h′1(x) + q′1(x)F
2(x, 0)

+q′2(x)F
3(x, 0) +

q1(x)

ǫ1(x)

(

ǫ2(0)H
2(x, 0) + g2(x, 0) +

4
∑

i=1

C2i(x, 0)F
i(x, 0)

)

+
q2(x)

ǫ2(x)

(

ǫ1(0)H
3(x, 0) + g3(x, 0) +

4
∑

i=1

C3i(x, 0)F
i(x, 0)

))

, (A.64)

H4(x, 0) =
g4(x, 0) +

∑4
i=1 C4i(x, 0)F

i(x, 0)

ǫ2(0)
− ǫ2(x)

ǫ2(0)

(

h′4(x) + q′3(x)F
2(x, 0)

+q′4(x)F
3(x, 0) +

q3(x)

ǫ1(x)

(

ǫ2(0)H
2(x, 0) + g2(x, 0) +

4
∑

i=1

C2i(x, 0)F
i(x, 0)

)

+
q4(x)

ǫ2(x)

(

ǫ1(0)H
3(x, 0) + g3(x, 0) +

4
∑

i=1

C3i(x, 0)F
i(x, 0)

))

. (A.65)
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Thus, both the Gi’s and Hi’s verify equations formally equivalent to (A.1)–(A.7),
with derivatives of the old equations’ coefficients as new coefficients, and the F i’s as
additional terms. If these equations have solutions, then the solutions must be the
partial derivatives of the F i functions.

Now, under the assumptions of Theorem A.2, by Theorem A.1 there is a (at
least) continuous solution F i(x, ξ). Plugging that solution into the equations we just
derived for the Gi’s and Hi’s, one obtains equations whose coefficients and boundary
conditions are (at least) continuous. Hence Theorem A.1 can be applied implying
that the Gi’s and Hi’s are continuous. Thus F i(x, ξ) ∈ C1 (T ), proving the result.

Appendix B. Technical results.

Next we give some technical lemmas used throughout the paper. The first lemma
follows from the fact that the control direct and inverse kernels are C2(T ) functions.

Lemma B.1.

|K[γ]| ≤ C1 (|γ|+ ‖γ‖L1) , (B.1)

|L[γ]| ≤ C2 (|γ|+ ‖γ‖L1) , (B.2)

|K1[γ]| ≤ C3 (|γ|+ ‖γ‖L1) , (B.3)

|K2[γ]| ≤ C4 (|γ|+ ‖γ‖L1) , (B.4)

|L1[γ]| ≤ C5 (|γ|+ ‖γ‖L1) , (B.5)

|L11[γ]| ≤ C6 (|γ|+ ‖γ‖L1) . (B.6)

The next lemma is based on the fact that, since ΛNL(u, x) is twice differentiable with
respect to u and x, and since we have ΛNL(0, x) = 0, it follows that there exists a δΛ
and K1, K2, K3 such that if |u| ≤ δΛ, then, for any v, w ∈ R

2, it holds that

|ΛNL(u, x)|+
∣

∣

∣

∣

∂ΛNL(u, x)

∂x

∣

∣

∣

∣

≤ K1|u|, (B.7)

∣

∣

∣

∣

∂ΛNL

∂u
(u, x)v

∣

∣

∣

∣

+

∣

∣

∣

∣

∂ΛNL(u, x)

∂u∂x
v

∣

∣

∣

∣

≤ K2|v|, (B.8)

∣

∣

∣

∣

∂2ΛNL

∂u2
(u, x)vw

∣

∣

∣

∣

≤ K3|v||w|. (B.9)

Similarly, since fNL(u, x) is twice differentiable with respect to u and once with respect
to x, and fNL(0, x) =

∂fNL

∂u (0, x) = 0, there exists a δf and K4, K5, K6 such that if
|u| ≤ δf , then for any v ∈ R

2,

|fNL(u, x)|+
∣

∣

∣

∣

∂fNL

∂x
(u, x)

∣

∣

∣

∣

≤ K4|u|2, (B.10)

∣

∣

∣

∣

∂fNL

∂u
(u, x)

∣

∣

∣

∣

≤ K5|u|, (B.11)

∣

∣

∣

∣

∂2fNL

∂u2
(u, x)v

∣

∣

∣

∣

≤ K4|v|. (B.12)

Then, the following lemma holds.
Lemma B.2. For ‖γ‖∞ < min{δΛ, δf},

|F1| ≤ C5 (|γ|+ ‖γ‖L1) , (B.13)

|F2| ≤ C6

(

|γ|2 + ‖γ‖2L1

)

, (B.14)

|F3| ≤ C7 (‖γ‖L2‖+ |γ|) (‖γx‖L2 + |γx(x)) , (B.15)

|F4| ≤ C8

(

|γ|2 + ‖γ‖2L2

)

. (B.16)
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The next lemma follows from the previous ones.
Lemma B.3. For ‖γ‖∞ < min{δΛ, δf},

|F11| ≤ C9 (|η|+ ‖η‖L1) , (B.17)

|F12| ≤ C10 (|γx|+ |γ|+ ‖γ‖L1) , (B.18)

|F21| ≤ C11 (|γ|+ ‖γ‖L1) (|η|+ ‖η‖L1) , (B.19)

|F5| ≤ C12 (|η|+ ‖η‖L2) (|γ|+ ‖γ‖L2) + C14 (|η|+ ‖η‖L2) (|γx|+ ‖γx‖L2)

+C15|γ(0)||η(0)|, (B.20)

|F6| ≤ C16 (|η|+ ‖η‖L2) (|γ|+ ‖γ‖L2) . (B.21)

The next lemma follows immediately from the previous lemmas and the corre-
sponding definitions.

Lemma B.4. For ‖γ‖∞ < min{δΛ, δf},

|F13| ≤ C17

(

|η|2 + ‖η‖2L1

)

+ C18 (|θ|+ ‖θ‖L1) , (B.22)

|F14| ≤ C19 (|η|+ ‖η‖L1) (1 + |γx|+ |γ|+ ‖γ‖L1) + C20 (|ηx|+ |η|+ ‖η‖L1) , (B.23)

|F22| ≤ C21 (|γ|+ ‖γ‖L1) (|θ|+ ‖θ‖L1) + C22

(

|η|2 + ‖η‖2L1

)

, (B.24)

|F7| ≤ C23

(

|η|2 + ‖η‖2L2

)

(1 + ‖γ‖∞ + ‖γx‖∞) + C24 (|η|+ ‖η‖L2) (|ηx|+ ‖η‖L2)

+C25 (|γ|+ ‖γ‖L2 + ‖γx‖∞) (|θ|+ ‖θ‖L2) + C26

(

|η(0)|2 + |γ(0)||θ(0)|
)

,(B.25)

|F8| ≤ C27

(

|η|2 + ‖η‖2L2

)

(1 + ‖γ‖∞) + C28 (|γ|+ ‖γ‖L2) (|θ|+ ‖θ‖L2) . (B.26)

Finally, the following result is crucial in establishing Theorem 4.1.
Proposition B.5. There exists δ such that, if ‖γ‖∞ + ‖η‖∞ < δ, then the

following inequalities hold

‖θ‖∞ ≤ c1 (‖γxx‖∞ + ‖γx‖∞ + ‖γ‖∞) , (B.27)

‖θ‖L2 ≤ c2 (‖γxx‖L2 + ‖γx‖L2 + ‖γ‖L2) , (B.28)

‖γxx‖∞ ≤ c3 (‖θ‖∞ + ‖η‖∞ + ‖γ‖∞) , (B.29)

‖γxx‖L2 ≤ c4 (‖θ‖L2 + ‖η‖L2 + ‖γ‖L2) , (B.30)

where c1, c2, c3, c4 are positive constants.
The proposition is proven using a series three lemmas.
The first lemma gives a relation between the L2 and infinity norms of η and γx,

under the assumption that ‖γ‖∞ is small enough.
Lemma B.6. There exists δ2 such that, if ‖γ‖∞ < δ2, then the following inequal-

ities hold

‖η‖∞ ≤ c1 (‖γx‖∞ + ‖γ‖∞) , (B.31)

‖η‖L2 ≤ c2 (‖γx‖L2 + ‖γ‖L2) , (B.32)

‖γx‖∞ ≤ c3 (‖η‖∞ + ‖γ‖∞) , (B.33)

‖γx‖L2 ≤ c4 (‖η‖L2 + ‖γ‖L2) , (B.34)

where c1, c2, c3, c4 are positive constants.
Proof. First, from (5.15) we see that

η − Σ(x)γx + F3[γ, γx](x) + F4[γ](x) = 0. (B.35)



28 J.-M. CORON, R. VAZQUEZ, M. KRSTIC AND G. BASTIN

Therefore, calling δ1 the value of δ in Lemma B.2 and assuming ‖γ‖∞ < δ1, we can
compute a bound on ‖η‖∞ as follows:

‖η‖∞ ≤ K1‖γx‖∞ + ‖F3[γ, γx]‖∞ + ‖F4[γ]‖∞
≤ K2

(

‖γx‖∞ + ‖γx‖∞‖γ‖∞ + ‖γ‖2∞
)

≤ K3 (‖γx‖∞ + ‖γ‖∞) . (B.36)

Proceeding similarly with the L2 norm,

‖η‖L2 ≤ K1‖γx‖L2 + ‖F3[γ, γx]‖L2 + ‖F4[γ]‖L2

≤ K2 (‖γx‖L2 + ‖γx‖L2‖γ‖∞ + ‖γ‖∞‖γ‖L2) ≤ K3 (‖γx‖L2 + ‖γ‖L2) .(B.37)

For the last two inequalities, we solve for γx:

γx = Σ−1(x) (η + F3[γ, γx](x) + F4[γ](x)) . (B.38)

Remembering the definition of Σ(x), ǭ = maxx∈[0,1]

{

1
ǫ1(x)

, 1
ǫ2(x)

}

> 0, and assuming

that ‖γ‖∞ < δ1 we obtain

‖γx‖∞ ≤ ǭ
(

‖η‖∞ +K1‖γx‖∞‖γ‖∞ +K2‖γ‖2∞
)

. (B.39)

Therefore if we choose ‖γ‖∞ < min
{

δ1,
1

2K1ǭ

}

, we reach the third inequality. Pro-

ceeding similarly with the L2 norm:

‖γx‖L2 ≤ ǭ (‖η‖L2 +K3‖γx‖L2‖γ‖∞ +K4‖γ‖L2‖γ‖∞) , (B.40)

so choosing ‖γ‖∞ < min
{

δ1,
1

2K3ǭ

}

, we reach the fourth inequality. Therefore, choos-

ing δ = min
{

δ1,
1

2K1ǭ
, 1
2K3ǭ

}

, all inequalities are verified and the lemma is proven.

The next lemma gives the relation between ηx and γxx, both in the infinity norm
and the L2 norm, for small ‖γ‖∞:

Lemma B.7. There exists δ such that, if ‖γ‖∞ < δ, then the following inequalities
hold

‖γxx‖∞ ≤ c1 (‖ηx‖∞ + ‖η‖∞ + ‖γ‖∞) , (B.41)

‖γxx‖L2 ≤ c2 (‖ηx‖L2 + ‖η‖L2 + ‖γ‖L2) , (B.42)

‖ηx‖∞ ≤ c3 (‖γxx‖∞ + ‖η‖∞ + ‖γ‖∞) , (B.43)

‖ηx‖L2 ≤ c4 (‖γxx‖L2 + ‖η‖L2 + ‖γ‖L2) , (B.44)

where c1, c2, c3, c4 are positive constants.
Proof. Taking an x-derivative in (5.15):

ηx − Σ′(x)γx − Σ(x)γxx + F1[γ]γxx + F32[γ, γx] + F42[γ, γx] = 0, (B.45)

where F32 and F42 are defined as:

F32 = K2 [F1[γ]γx] + F12[γ, γx]γx, (B.46)

F42 = K2 [F1[γ]L1 [γ] + F2[γ]] + F12[γ, γx]L1 [γ]

+F1[γ]L11 [γ] + F1[γ]L(x, x)γx + F23[γ, γx]γx, (B.47)
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where

F23[γ, γx] =
∂fNL

∂x
(L[γ], x) + ∂fNL

∂γ
(L[γ], x) (γx + L1[γ]) . (B.48)

These functionals verify the following bound, similar to the bounds developed in
Lemma B.2, if ‖γ‖∞ < min{δΛ, δf}:

|F32| ≤ C1 (‖γ‖L2 + |γ|) (‖γx‖L2 + |γx|) + C2|γx|2, (B.49)

|F42| ≤ C4 (‖γ‖L2 + |γ|) (‖γx‖L2 + |γx|) . (B.50)

Therefore, using Lemma B.6, and inequality (B.13), and making ‖γ‖∞ small enough,
we can compute the bounds as in the proof of Lemma B.6.

Finally, the next lemma relates ηx and θ, both in the infinity norm and the L2

norm, for small ‖γ‖∞ and ‖η‖∞:
Lemma B.8. There exists δ such that, if ‖γ‖∞ + ‖η‖∞ < δ, then the following

inequalities hold

‖θ‖∞ ≤ c1 (‖ηx‖∞ + ‖η‖∞ + ‖γ‖∞) , (B.51)

‖θ‖L2 ≤ c2 (‖ηx‖L2 + ‖η‖L2 + ‖γ‖L2) , (B.52)

‖ηx‖∞ ≤ c3 (‖θ‖∞ + ‖η‖∞ + ‖γ‖∞) , (B.53)

‖ηx‖L2 ≤ c4 (‖θ‖L2 + ‖η‖L2 + ‖γ‖L2) , (B.54)

where c1, c2, c3, c4 are positive constants.
Proof. We can write (5.29) analogously to (5.15):

ηt − Σ(x)ηx + F31[γ, γx, η, ηx](x) + F6[γ, η](x) = 0, (B.55)

where F31 is defined as:

F31 = K [F1[γ]ηx + F11[η]γx] . (B.56)

The functional F31 verifies the following bound, similar to the bounds developed in
Lemma B.2, if ‖γ‖∞ < min{δΛ, δf}:

|F31| ≤ C1 (‖γ‖L2 + |γ|) (‖ηx‖L2 + |ηx|) + C2 (‖γx‖L2 + |γx|) (‖η‖L2 + |η|) . (B.57)

Therefore, using Lemma B.3, Lemma B.6, and inequality (B.13), and making ‖γ‖∞+
‖η‖∞ small enough, we can compute the bounds as in the proof of Lemma B.6.

Combining the three lemmas, the proposition immediately follows.
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