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Abstract

In low-level sensory systems, it is still unclear how the noisy information
collected locally by neurons may give rise to a coherent global percept.
This is well demonstrated for the detection of motion in the aperture
problem: as luminance of an elongated line is symmetrical along its axis,
tangential velocity is ambiguous when measured locally. Here, we develop
the hypothesis that motion-based predictive coding is sufficient to infer
global motion. Our implementation is based on a context-dependent diffu-
sion of a probabilistic representation of motion. We observe in simulations
a progressive solution to the aperture problem similar to physiology and
behavior. We demonstrate that this solution is the result of two underlying
mechanisms. First, we demonstrate the formation of a tracking behavior
favoring temporally coherent features independently of their texture. Sec-
ond, we observe that incoherent features are explained away while coherent
information diffuses progressively to the global scale. Most previous mod-
els included ad-hoc mechanisms such as end-stopped cells or a selection
layer to track specific luminance-based features as necessary conditions
to solve the aperture problem. Here, we have proved that motion-based
predictive coding, as it is implemented in this functional model, is sufficient
to solve the aperture problem. This solution may give insights in the role
of prediction underlying a large class of sensory computations.
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1 Introduction

1.1 Problem statement

A central challenge in neuroscience is to explain how local information that is rep-
resented in the activity of single neurons, can be integrated to enable global and
coherent responses at population and behavioral levels. A classical illustration
of this problem is given by the early stages of visual motion processing. Visual
cortical areas, such as the primary visual cortex (V1) or the medio-temporal (MT)
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extra-striate area can extract geometrical structures from luminance changes
that are sensed by large populations of direction- and speed-selective neurons
within topographically organized maps [Hildreth and Koch, 1987]. However,
these cells have only access to the limited portion of the visual space falling
inside their classical receptive fields. By consequence, local information is often
incomplete and ambiguous, as for instance when measuring the motion of a
long line that crosses their receptive field. Because of the symmetry along the
line’s axis, the measure of the tangential component of translation velocity is
completely ambiguous, leading to the aperture problem (see Figure 1-A). As
a consequence, most V1 and MT neurons indicate the slowest element from
the family of vectors compatible with the line’s translation, that is the speed
perpendicular to the line orientation [Albright, 1984]. These neurons are often
called component-selective cells and can signal only orthogonal motions of local
1D edges from more complex moving patterns. Integrated in area MT, such
local preferences introduce biases in the estimated direction and speed of the
translating line. A behavioral consequence is that perceived direction of an
elongated tilted line is initially biased towards the motion direction orthogo-
nal to its orientation [Born et al., 2006, Lorenceau et al., 1993, Masson and
Stone, 2002, Pei et al., 2010, Wallace et al., 2005]. There are however other
MT neurons, called pattern selective cells, that can signal the true translation
vector corresponding to such complex visual patterns and, hence drive correct,
steady-state behaviors [Movshon et al., 1985, Pack and Born, 2001, Rodman
and Albright, 1989]. Ultimately, these neurons provide a solution similar to the
interception-of-constraints (IOC) [Adelson and Movshon, 1982, Fennema and
Thompson, 1979] by combining the information of multiple component cells (for
a recent model, see [Bowns, 2011]).

The classical view is that these pattern selective neurons integrate information
from a large pool of component cells signaling a wide range of directions, spatial
frequencies, speeds and so on [Rust et al., 2006]. However, this two stage,
feed-forward model of motion integration is challenged by several recent studies
that call for more complex computational mechanisms (see [Masson and Ilg,
2010] for reviews). First, there are neurons outside area MT that can solve the
aperture problem. For instance, V1 end-stopped cells are sensitive to particular
features such as line-endings and can therefore signal unambiguous motion at a
much smaller spatial scale providing that the edge falls within their receptive
field [Pack et al., 2004]. These neurons could contribute to pattern selectivity
in area MT [Tsui et al., 2010] but this solution only pushes the problem back
to earlier stages of cortical motion processing since one must now explain the
emergence of end-stopping cells. Second, all neural solutions to the aperture
problem are highly dynamical and build up over dozens of milliseconds after
stimulus onset [Pack and Born, 2001, Pack et al., 2004, 2003, Smith et al., 2010].
This can explain why perceived direction of motion gradually changes over time,
shifting from component to pattern translation [Lorenceau et al., 1993, Masson
and Stone, 2002, Wallace et al., 2005]. Classical feedforward models cannot
account for such temporal dynamics and its dependency upon several properties
of the input such as contrast or bar length [Rust et al., 2006, Tsui et al., 2010].
Third, classical computational solutions ignore the fact that any object moving in
the visual world at natural speeds will travel across many receptive fields within
the retinotopic map. Thus, any single, local receptive field will be stimulated
over a period of time that is much less that the time constants reported above

2



for solving the aperture problem (see [Masson et al., 2010]). Still, single neuron
solutions for ambiguous motion that have been documented so far only with
conditions where the entire stimulus is presented within the receptive field [Pack
et al., 2004] and with the same geometry [Majaj et al., 2007] over dozens of
milliseconds.

Thus, there is an urgent need for more generic computational solutions. We
have recently proposed that diffusion mechanisms within a cortical map can solve
the aperture problem without the need for complex local mechanisms such as
end-stopping or pooling across spatio-temporal frequencies [Tlapale et al., 2011,
2010b]. This approach is consistent with the role of recurrent connectivity in
motion integration [Bayerl and Neumann, 2004] and can simulate the temporal
dynamics of motion integration in many different conditions. Moreover, it
can reverse the perspective that is dominant in feedforward models where
local properties such as end-stopping, pattern selectivity or other types of
extra-classical receptive fields phenomena are implemented by built-in, specific
neuronal detectors. Instead, these properties can be seen as solutions emerging
from the neuronal dynamics of the intricate, recursive contributions of feed-
forward, feedback and lateral interactions. A vast theoretical, and experimental
challenge is therefore to elucidate how diffusion models can be implemented by
realistic populations of neurons dealing with noisy inputs.

The aperture problem in vision must be seen as an instance of the more
generic problem of information integration in sensory systems. The aperture
problem, as well as the correspondence problem, can be seen as a class of under-
constrained inverse problems faced by many different sensory and cognitive
systems. Interestingly, recent experimental evidence have pointed out strong
similarities in the dynamics of the neural solution for spatio-temporal integration
of information in space. For instance, there is a tactile counterpart of the visual
aperture problem and neurons in the monkey somatosensory cortex exhibit similar
temporal dynamics to that of area MT neurons [Pei et al., 2008, 2010, 2011].
These recent results urge the need to build a theoretical framework that can
unify these generic mechanisms such as robust detection and context-dependent
integration and to propose a solution that would apply to different sensory
systems. An obvious candidate is to build association fields that would gather
neighboring information such as to enhance constraints on the response. This
is the goal of our study to provide a theoretical framework using probabilistic
inference.

Herein, we explore the hypothesis that the aperture problem can be solved
thanks to predictive coding. We introduce a generic probabilistic framework for
motion-based prediction as a specific dynamical spatio-temporal diffusion process
on motion representation, as originally proposed by Burgi et al. [2000]. However,
we do not perform an approximation of the dynamics of probabilistic distributions
using a neural network implementation, as they did. Instead, we develop a method
to simulate precise predictions in topographic maps. We test our model against
behavioral and neuronal results that are signatures of the key properties of
primate visual motion detection and integration. Furthermore, we demonstrate
that several properties of low-level motion processing (i.e. feature motion tracking,
texture-independent motion, context-dependent motion integration) naturally
emerge from predictive coding within a retinotopic map. Lastly, we discuss the
putative role of prediction in generic neural computations.
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1.2 Probabilistic detection of motion

First, we define a generic probabilistic framework for studying the aperture
problem and its solution. Translation of an object in the planar visual space at a
given time is fully given by the probability distribution of its position and velocity,
that is, as a distribution of our value of belief among a set of possible velocities.
It is usual to define motion probability at any given location. If one particular
velocity is certain, its probability becomes 1 while other probabilities are 0. The
more the measurement is uncertain (for instance when increasing noise), the
more the distribution of probabilities will be spread around this peak. This type
of representation can be successfully used to solve a large range of problems
related to visual motion detection. These problems belong in all generality to
optimal detection problems of a signal perturbed by different sources of noise
and ambiguity. In particular, the aperture problem is explicitly described by an
elongated probability distribution function (PDF) along the constraint defined
by the orientation of the line (see Figure 1-A, inset). This constitutes an ill-posed
inverse problem as different possible velocities may correspond to the physical
motion of the line.

Figure 1 (following page): (A) The estimation of the motion of an elongated,
slanted segment (here moving horizontally to the right) on a limited area (such as
the dotted circle) leads to ambiguous velocity measurements compared to physical
motion: it’s the aperture problem. We represent as arrows the velocity vectors
that are most likely detected by a motion energy model; hue indicates direction
angle. Due to the limited size of receptive fields in sensory cortical areas (such
as shown by the dotted white circle), such problem is faced by local populations
of neurons that visually estimate the motion of objects. (A-inset) On a polar
representation of possible velocity vectors (the cross in the center corresponds
to the null velocity, the outer circle corresponding to twice the amplitude of
physical speed), we plot the empirical histogram of detected velocity vectors.
This representation gives a quantification of the aperture problem in the velocity
domain: At the onset of motion detection, information is concentrated along
an elongated constraint line (white=high probability, black=zero probability).
(B) We use the prior knowledge that in natural scenes, motion as defined by
its position and velocity is following smooth trajectories. Quantitatively, it
means that velocity is approximately conserved and that position is transported
according to the known velocity. We show here such a transition on position
and velocity (respectively ~xt and ~Vt) from time t to t+ dt with the perturbation
modeling the smoothness of prediction in position and velocity (respectively Nx
and NV ). (C) Applying such a prior on a dynamical system detecting motion,
we show that motion converges to the physical motion after approximately one
spatial period (the line moved by twice its height). (C-Inset) The read-out
of the system converged to the physical motion: Motion-based prediction is
sufficient to resolve the aperture problem. (D) As observed at the perceptual
level [Castet et al., 1993, Pei et al., 2010], size and duration of the tracking
angle bias decreased with respect to the height of the line. Height was measured
relative to a spatial period (respectively 60%, 40% and 20%). Here we show the
average tracking angle red-out from the probabilistic representation as a function
of time, averaged over 20 trials (error bars show one standard deviation).
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In such a framework, Bayesian models make explicit the optimal integration
of sensory information with prior information. These models may be decomposed
in three stages. First, one defines likelihoods as a measure of belief knowing the
sensory data. This likelihood is based on the definition of a generative model.
Second, any prior distribution, that is, any information on the data that is
known before observing it, may be combined to the likelihood distribution to
compute a posterior probability using Bayes’ rule. The prior defines generic
knowledge on the generative model over a set of inputs, such as regularities
observed in the statistics of natural images or behaviorally relevant motions.
Finally, a decision can be made by optimizing a behavioral cost dependent on
this posterior probability. An often used choice is to choose the belief that
corresponds to the maximum a posteriori probability. The advantage of Bayesian
inference compared to other heuristics is that it explicitly states qualitatively
and quantitatively all hypotheses (generative models of observation noise and of
the prior) that lead to a solution.

1.3 Luminance-based detection of motion

Such a Bayesian scheme can be applied to motion detection using a generative
model of the luminance profile in the image. This is first based on the luminance
conservation equation. Knowing the velocity ~V , we can assume that luminance
is approximately conserved along this direction, that is, that after a small lapse
dt:

It+dt(~x+ ~V · dt) = It(~x) +NI (1)

where we define luminance at time t by It(~x) as a function of position ~x and
NI is the observation noise. Using the Laplacian approximation, one can derive
the likelihood probability distribution p(It(~x)|~V ) as a Gaussian distribution.
In such a representation, precision is finer for a lower variance. Indeed, it is
easy to show that the logarithm of p(It(~x)|~V ) is proportional to the output
of a correlation-based elementary motion sensors or equivalently to a motion-
energy detector [Adelson and Bergen, 1985]. Second, Weiss et al. [2002] showed

that using a prior distribution p(~V ) that favors slow speeds, one could explain
why the initial perceived direction in the aperture problem is perpendicular
to the line. Interestingly, lower contrast motion results in wider distributions
of likelihood and thus posterior p(~V |It(~x)). Therefore, contrast dynamics for
a wide variety of simple motion stimuli is determined by the shape of the
probability distribution (i.e. Gaussian-like distributions) and the ratio between
variances of likelihood and prior distributions as was validated experimentally on
behavioral data [Barthélemy et al., 2008]. With ambiguous inputs, this scheme
gives a measure consistent with our formulation of the aperture problem, where
probability is distributed along a constraint line defined by the orientation of
the line (see Figure 1-A, inset).

The generative model explicitly assumes a translational motion ~V over the
observation aperture, such as the receptive field of a motion-sensitive cell. Usually,
a distributed set ~Vt(~x) of motion estimations at time t over fixed positions ~x
in the visual field gives a fair approximation of a generic, complex motion that
can be represented in a retinotopic map such as V1/MT areas. This provides

a field of probabilistic motion measures p(It(~x)|~Vt(~x))). To generate a global
read-out from these local informations, we may integrate these local probabilities
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over the whole visual field. Assuming independence of the local information
as in Weiss et al. [2002], spatio-temporal integration is modeled at time T by

Equation (1) and p(~V |I0:T ) ∝
∏
~x,0≤t≤T p(It(~x)|~V (~x))p(~V ), where we write as

I0:t the information on luminance from time 0 to t. Such models of spatio-
temporal integration can account for several nonlinear properties of motion
integration such as monotonic spatial summation and contrast gain control and
are successful in explaining a wide range of neurophysiological and behavioral
data. In particular, it is sufficient to explain the dynamics of the solution to the
aperture problem if we assume that information from lines and line-endings was a
priori segmented [Barthélemy et al., 2008]. This type of model provides a solution
similar to the vector average and we have previously shown that the hypothesis
of an independent sampling cannot account for some non-linear aspects of motion
integration such as super-saturation of the spatial summation functions, unless
some ad hoc mechanisms such as surround inhibition is added [Perrinet and
Masson, 2007]. In the particular case of our definition of the aperture problem
(see Figure 1-A), the information from such Bayesian measurement at every time
step will always give the same probability distribution function (described by its

mean ~Vm and variance Σ), where ~Vm shows a bias toward the perpendicular of
the line (see Figure 1-A, inset). The independent integration of such information
will therefore necessary lead to a finer precision (the variance becomes Σ/T ) but
with always the same mean: The aperture problem is not solved.

1.4 Motion-based predictive coding

Failure of the feedforward models in accounting for the dynamics of global
motion integration originates from the underlying hypothesis of independence of
motion signals in neighboring parts of visual space. The independence hypothesis
set above formally states that the local measurement of global motion is the
same everywhere, independently of the position of different motion parts. In
fact, the independence hypothesis assumes that if local motion signals would
be randomly shuffled in position, they would still yield the same global motion
output (e.g. [Movshon et al., 1985]). As shown by Watamaniuk et al. [1995], this
hypothesis is particularly at stake for motions along coherent trajectories: motion
as a whole is more than the sum of its parts. A solution used in previous models
solving the aperture problem is to add some additional heuristics, such as a
selection process [Nowlan and Sejnowski, 1995, Weiss et al., 2002] or a constraint
that motion is relatively smooth away from luminance discontinuities [Tlapale
et al., 2010b]. A first assumption is that the retinotopic position of motion is
an essential piece of information to be represented. In particular, in order to
achieve fine-grained predictions, it is essential to consider that spatial position of
motion ~x, instead of being a given parameter (classically, a value on a grid), is an

additional random variable for representing motion along with ~V . Compared to
the representation p(~V (~x)|I) used in previous studies [Burgi et al., 2000, Weiss

et al., 2002], the probability distribution p(~x, ~V |I) more completely describes
motion by explicitly representing its spatial position jointly with its velocity.
Indeed, it is more generic as it is possible to represent any distribution p(~V (~x)|I)

with a distribution p(~x, ~V |I), while the reverse is not true without knowing the
spatial distribution of the position of motion p(~x|I). This introduces an explicit
representation of the segmentation of motion in visual space which will be an
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essential ingredient in motion-based predictive coding.
Here, we explore the hypothesis that we may take into account most de-

pendence of local motion signals between neighboring times and positions by
implementing a predictive dependence of successive measurements of motion
along a smooth trajectory. In fact, we know a priori that natural scenes are
predictable due to both rigidity and inertia of physical objects. Due to the
projection of their motion in visual space, visual objects preferentially follow
smooth trajectories (see Figure 1-B). We may implement this constraint into a
generative model by using the transport equation on motion itself. This assumes
that at time t, during the small lapse dt, motion was translated proportionally
to its velocity :

~xt+dt = ~xt + ~Vt · dt+N~x (2)

~Vt+dt = ~Vt +N~V (3)

where N~x and N~V are respectively position and velocity unbiased noises on the
motion’s trajectory. In the noiseless case, on the limit when dt tends to zero, this
is the auto-advection term in the Navier-Stokes equations and thus implements a
“fluid” prior in the inference of local motion. In fact, it is important to properly
tune N~x and N~V since the variance of these distributions explicitly quantify the
precision of the prediction (see Figure 1-B).

We may now use this generative model to integrate motion information.
Assuming for simplicity that sensory representation is acquired at discrete,
regularly spaced times, let’s define integration using a Markov random chain on
joint random variables zt = ~xt, ~Vt:

p(zt|I0:t−dt) =

∫
dzt−dt

p(zt|zt−dt) · p(zt−dt|I0:t−dt) (4)

p(zt|I0:t) = p(It|zt) · p(zt|I0:t−dt)/p(It|I0:t−dt) (5)

To implement this recursion, we first compute p(It|zt) from the observation
model (Equation (1)). The predictive prior probability p(zt|zt−dt), that is,

p(~xt, ~Vt|~xt−dt, ~Vt−dt) is defined by the generative model defined in Equation (2)
and (3). Note that prediction (Equation (4)) always increases the variance by
“diffusing” information. On the other hand, during estimation (Equation (5)),
coherent data increases precision of the estimation while incoherent data increases
the variance. This balance between diffusion and reaction will be the most
important factor for the convergence of the dynamical system. Overall, these
master equations, along with the definition of the prior transition p(zt|zt−dt),
define our model as a dynamical system with a simple global architecture but
yet with complex recurrent loops (see Figure 2).

Unfortunately, the dimensionality of the probabilistic representation makes
impossible the implementation of realistic simulations of the full dynamical system
on classical computer hardware. In fact, even with a moderate quantization of
the relevant representation spaces, computing integrals over hidden variables in
the filtering and prediction equations (respectively Equations (4) and (5)) leads
to a combinatorial explosion of parameters that is intractable with the limited
memory of current sequential computers. Alternatively, if we assume that all
probability distribution are Gaussian, this formulation is equivalent to Kalman
filtering on joint variables. Such type of an implementation may be achieved
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estimation prediction

p(It|xt,Vt) p(xt,Vt|I0:t)

p(xt,Vt|I0:t-dt)

Figure 2: Architecture of the model. The model is constituted by a classical
measurement stage and of a predictive coding layer. The measurement stage
consists of (A) inferring from two consecutive frames of the input flow, (B) a
likelihood distribution of motion. This layer interacts with the predictive layer
which consists of (C) a prediction stage that infers from the current estimate
and the transition prior the upcoming state estimate and (D) an estimation
stage that merges the current prediction of motion with the likelihood measured
at the same instant in the previous layer (B).
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using for instance a neuromorphic approximation of the above equations [Burgi
et al., 2000]. Indeed, one may assume that master equations are implemented by a
finely tuned network of lateral and feed-back interactions. One advantage of this
recursive definition in the master equations is that it gives a simple framework
for the implementation of association fields. However, this implementation has
the consequence of blurring predictions. We explore another route using the
Condensation algorithm [Isard and Blake, 1998] which surpasses the above
approximation. More, it allows us to explore the role of prediction in solving the
aperture problem on a more generic level.

2 Model & methods

2.1 Particle filtering

Master equations can be approximated using Sequential Monte Carlo (SMC).
This method (also known as “particle filters”) is a special version of importance
sampling, in which PDFs are represented by weighted samples. Here, we represent
joint variables of motion as a set of 4-dimensional vectors merging position ~x =
(x, y) and velocity ~V = (u, v). Using sampling, any distribution p(~x, ~V |I) may be
approximated by a set of weighted samples, or “particles” π1:N = {πi}i∈1:N =
{(xi, yi, ui, vi)}i∈1:N along with weights w1:N = {wi}i∈1:N . Weights are positive

(∀i, wi ≥ 0) and normalized (
∑N
i=1 w

i = 1). By definition, p(~x, ~V |I) ≈ p̂(~x, ~V |I)
with

p̂(~x, ~V |I) =
∑
i∈1:N

wi · δ(~x− (xi, yi), ~V − (ui, vi)) (6)

where δ is the Dirac measure. There are many different sampling solutions to
one given PDF. Prototypical solutions are either a uniform sampling of position
and velocity spaces with weights proportional to p(~x, ~V |I) or the sampling
corresponding to uniform weights with a density of samples proportional to the
PDF. Compared to other approximations, such as the Laplacian approximation
of the PDF by a Gaussian, this representation has the advantage to allow
the representation of arbitrary distributions, such as the sparse or multimodal
distributions that are often encountered with natural scenes.

This weighted sample representation makes the implementation of Equa-
tions (4)-(5) tractable on a sequential computer. To initialize the algorithm, we
set particles π1:N

t=0 to random values with uniform weights. Then, the following
two steps are repeated in order to recursively compute particles π1:N

t . This

set represents p̂(~xt, ~Vt|I0:t) while particles π1:N
t−dt represent p̂(~xt−dt, ~Vt−dt|I0:t−dt).

First, the prediction equation implemented by Equation (4) and that uses the
prior predictive knowledge on the smoothness of the trajectory may be imple-
mented to each particle by a deterministic shift followed by a diffusion such as
defined in the generative model (Equations (2)-(3)). The noise Nπ = (N~x,N~V )
is here described as a 4-dimensional centered and de-correlated Gaussian. This
intermediate set of particles represents an approximation of p(~xt, ~Vt|I0:t−dt).

Second, we update measures as recorded by the observation likelihood dis-
tribution p̂(It|~xt, ~Vt) that is computed from the input sensory flow. As in the
SMC algorithm, we apply Equation (5) using the sampling approximation by
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updating the weights of the particles: ∀i,

wit = 1/Z · wit−dt · p(It|πit) (7)

where the scalar Z ensures normalization of the weights (
∑N
i=1 w

i
t = 1). Likeli-

hood p(It|πit) is computed using Equation (1) thanks to a standard method that
we describe below. Last, a usual numerical problem with SMC is the presence of
particles with small weights due to sample impoverishment. We use a classical
resampling method: This procedure results in eliminating particles that assign
little weights (as detected by a threshold relative to the average weight), and
duplicating particles that assign largest weights. In analogy with an homeostatic
transform, it has the property of distributing resources while not changing the
representation [Perrinet, 2010]. In summary, this whole formulation is similar to
the processing steps in the Condensation algorithm which was used in another
context for the tracking of moving shapes [Isard and Blake, 1998] and we apply
it here to motion-based prediction as defined in Equations (2)-(3). Note that
though our probabilistic approach is exactly similar to that of [Burgi et al.,
2000] at the computational and algorithmic levels, the actual implementation
is completely different. The approach of Burgi et al. [2000] seeks to achieve an
implementation close to neural networks. We will see that the particle filtering
approach, though a priori less neuromorphic, allows to achieve a higher precision
in motion-based prediction which is essential in observing the emergence of
complex behaviors characteristics of neural computations.

An advantage of importance sampling it that it allows to easily compute
moments of the distribution. This is particularly useful to define different read-
out mechanisms in order to compare the output of our model with biological
data. For instance, we can compute the read-out for tracking eye movements as
the best estimator (that is the conditional mean) using the approximation of

p(~x, ~V |I):

< ~V |I >=

∫
p(~x, ~V |I) · ~V · d~V · d~x ≈

(∑N
i=1 w

i · ui∑N
i=1 w

i · vi

)
(8)

Furthermore, by restricting the integration to a sub-population of neurons, we
can also compare model output with single neuron selectivity and thus test how
neuronal properties such as contrast gain control or center-surround interactions
could emerge from such predictive coding.

2.2 Numerical simulations

The SMC algorithm itself is controlled by only two parameters. The first one
is the number of particles N which tunes the algorithmic complexity of the
representation. In general, N should be big enough and an order of magnitude
of N ≈ 210 was always sufficient in our simulations. In the experimental settings
that we have defined here (moving dots or lines), the complexity of the scene is
controlled and low. Control experiments have tested the behavior for different
number of particles (from 25 to 216) and have shown, except for N smaller than
100, that results were always similar. However, we kept N to this quite high
value to keep the generality of the results for further extensions of the model.
The other parameter is the threshold for which particles are resampled. We
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found that this parameter had little qualitative influence providing that its value
is large enough to avoid staying in a local minima. Typically, a resampling
threshold of 20% was sufficient.

Once the parameters of the SMC were fixed, the only free parameters of the
system were the variances used to define the likelihood and the noise model Nπ.
Likelihood of sensory motion was computed using Equation (1) using the same
method as Weiss et al. [2002]. We defined space and time as the regular grid on
the toroidal space to avoid border effects. Next, visual inputs were 128× 128
grayscale images on 256 frames. All dimensions were set in arbitrary units and
we defined speed such that V = 1 corresponds in toroidal space to the velocity
of one spatial period within one temporal period that we defined arbitrarily to
100 ms biological time. Raw images were preprocessed (whitening, normalization)
and we computed at each processing step the likelihood locally at each point
of the particle set. This computation was dependent only upon image contrast
and the width of the receptive field over which likelihood was integrated. We
tested different parameters values that resulted in different motion direction
or spatio-temporal resolution selectivities. For instance, a larger receptive field
size gave a better estimate of velocity but a poorer precision for position, and
reciprocally. Therefore, we set the receptive fields size to a value yielding to a
good trade-off between precision and locality (that is 5% of the image’s width in
our simulations). Similarly, likelihood’s contrast was tuned to match average
noise value in the set of images. We also controlled that using a prior favoring
slow speeds had little qualitative influence on our results and we used a flat prior
on speeds throughout this manuscript. Once fixed, these two values were kept
constant across all simulations. Note that the individual measurements of the
likelihood may represent multi-modal densities if the corresponding individual
motions are further than an order of the receptive field’s size (as when tracking
multiple dots). However, such measurements may be perturbed if individual
motions are superimposed on a receptive field. Such a generative model of the
input may be accounted for by using a Gaussian mixture model [Isard and
Blake, 1998]. The types of stimuli we are considering are always well described
by an unimodal distribution and we will here restrict ourselves to this simple
formulation.

All simulations were performed using python with modules numpy [Oliphant,
2007] and scipy (respectively version 2.6, 1.5.1 and 0.8.0) on a cluster of linux
nodes. Visualisation was performed using matplotlib [Hunter, 2007]. All scripts
are available upon request from the corresponding author.

3 Results

3.1 Prediction is sufficient to solve the aperture problem

Similarly to classical studies on the biological solution to the aperture problem,
we first used as input the image of a horizontally moving diagonal bar. The initial
representation shows a bias towards the perpendicular of the line, as previously
found with neuronal [Pack and Born, 2001, Pei et al., 2010], behavioral and
perceptual responses [Born et al., 2006, Lorenceau et al., 1993, Masson and Stone,
2002] (see Figure 1-A). Moreover, the global motion estimation represented by
the probability density function converges quickly to the physical motion, both in
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terms of retinotopic position and velocity (see Figure 1-C). Changing the length
of the line did not qualitatively change the dynamics but rather proportionally
scaled the time it takes to the system for converging to the physical solution [Born
et al., 2006, Castet et al., 1993] (see Figure 1-D). This result demonstrates that
motion-based prediction is sufficient to resolve the aperture problem.

Interestingly, results show that line endings are preferentially tracked (as
will be described in Section 3.3). In fact, the system responds optimally to
predictable features and thus, it can correctly detect line endings motion with
a probability that is higher than observed for any points located at, say, the
middle of the line segment. Moreover, it was shown behaviorally that when
blurring the stimulus’ line endings, motion representation still converges towards
the physical motion albeit with a slower dynamics [Wallace et al., 2005]. This is
another key signature that we successfully replicated in our model. This shows
that end-stopped cells (or more generally local 2D motion detectors [Wilson
et al., 1992]) are not necessary to solve the aperture problem. On the contrary,
a reliable 2D tracking motion system appears to be rather no more than the
consequence of cells tuned to predictive trajectories.

This result has some generic consequences that were not described in previous
models such as [Bayerl and Neumann, 2007, Burgi et al., 2000]. First the
emergence of line-ending detectors is caused by the fact that the model filters
coherent motion trajectories. This property emerges as line-endings follow a
coherent trajectory, but this property is therefore not limited to line-endings.
As a consequence, the most salient difference is that “interesting” features are
defined not by a property of the luminance profile but rather by the coherence
of their motion’s trajectory. Such a distinction is important with regard to
biological experiments. Indeed, at the behavioral level, Watamaniuk et al. [1995]
have shown that the sequential detection of line-endings is not sufficient to
explain at the global level the change of behavior when an object moves on a
coherent trajectory. Second, at the physiological level, Pack et al. [2003] have
shown in the macaque monkey different phases in the dynamics of MT neurons
tuned for line-endings.This suggests that the selective response to line-endings is
a consequence of the presentation of a coherent trajectory.

3.2 Emergence of texture-independent motion trackers

To further understand these mechanisms, we tested the response of the dynamical
system to a coherently moving dot. This was defined as a Gaussian blob of
luminance. Its center moved with a constant translational velocity. For a wide
range of parameters, we found that the particles representing the distribution of
motion quickly concentrate on the dot’s centre while their velocity converged
to the true physical velocity. Thanks to the additional information given by
the predictive information, this convergence is much quicker than what would
be obtained by simply integrating temporally the raw inputs. Moreover, the
response of the system is qualitatively different from what is expected in absence
of prediction. In fact, if the dot’s motion is coherent with the predictive generative
model, information is either amplified or reduced, resulting in a progressively more
and more binary response as time progresses. This behavior is the consequence of
the auto-referential formulation of our motion detection scheme. Indeed, precision
of motion estimation is modulated by a prediction that is itself estimated using
motion. We therefore see the emergence of a basic tracking behavior where the
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Figure 3: To explore the state-space of the dynamical system, we simulated
motion-based prediction for a simple small dot (size 2.5% of a spatial period)
moving horizontally from the left to the right of the screen. We tested different
levels of sensory noise with respect to different levels of internal noise, that
is, to different values of the strength of prediction. (Right) Results show the
emergence of different states for different prediction precisions: a regime when
prediction is weak and which shows high tracking error and variability (No
Tracking - NT), a phase for intermediate values of prediction strength (as in
Figure 1) exhibiting a low tracking error and low variability in the tracking phase
(True Tracking - TT) and finally a phase corresponding to higher precisions with
relatively efficient mean detection but high variability (False Tracking - FT).
We give 3 representative examples of the emerging states at one contrast level
(C = 0.1) with starting (red) and ending (blue) points and respectively NT,
TT and FT by showing inferred trajectories for each trial. (Left) We define
tracking error as the ratio between detected speed and target speed and we plot
it with respect to the stimulus contrast as given by the inverse of sensory noise.
Error bars give the variability in tracking error as averaged over 20 trials. As
prediction strength increases, there is a transition from smooth contrast response
function (NT) to more binary responses (TT and FT).
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dot’s trajectory is “captured” by the system.
We explored the effects of some key parameters on the tracking behavior of

the model. First, when progressively adding uniform Gaussian white noise to the
stimulus, we found that convergence time to veridical tracking increased with
respect to the level of noise. Then, at a certain level of noise, error bias in the
prediction becomes larger than required for the balance in tracking amplification
and therefore dots are rapidly lost. This can define a “tracking sensitivity
threshold” that can be characterized by plotting the contrast response function
of our system (see Figure 3). Second, we varied the precision of prediction.
It is quantitatively defined by the inverse variance of the noise present in the
generative model (Equation 2-3). We observed that convergence speed of tracking
grew proportionally with this parameter. For very low precision values, the
tracking behavior is lost. Moreover, we observed that increasing this prediction’s
precision above a certain threshold leads to the detection of false positives: An
initial movement may be predicted in a false trajectory but is not discarded by
sensory data. In fact, this is due to the high positive feedback generated by the
high precision assigned to the prediction. In summary, varying both parameters,
that is, external and internal variability, we can identify three distinct regimes
in this state-space: an area of correct tracking (see Figure 3-TT), an area where
there is no tracking due to low precision or high noise (see Figure 3-NT), and an
area of false tracking (see Figure 3-FT). These three regimes fully characterize
the emergence of the tracking behavior of the dynamical system implementing
motion-based prediction.

We then studied how such a tracking behavior is independent from the
luminance profile of the object being tracked. To achieve that, we tested our
system with the same dot but whose envelope was multiplied by a random
white noise texture. When this texture consists of a static grating, we obtain
one instance of second-order motion (see [Lu and Sperling, 2001] for a review).
Although the convergence was longer and more variable, tracking was still
observed in a robust fashion and the envelope’s motion was ultimately retrieved.
This property is due to the fact that, in the generative model, we define the
prediction as based on both motion’s position and trajectory, independently of
the local geometry of image features. This is different from motion detection
models which rather try to track a particular luminance feature [Lu and Sperling,
2001, Wilson et al., 1992]. As a consequence, this dynamical system will have a
preference for objects conserving their motion along a trajectory, independently
of their texture. Such invariance is usually obtained by introducing, and tuning,
a well-known static non-linear computation such as divisive normalization [Rust
et al., 2006, Simoncelli and Heeger, 1998]

3.3 Role of context for solving the aperture problem

In order to better understand how the different parts of the line interact in
time, we finally investigated modulation of neighboring motions in the aperture
problem. In fact, this also corresponds to the case of the diagonal line: At
the initial time step, motion position information is spread preferentially along
the edge of the line and represents motion ambiguity with a speed probability
distributed along the constraint line (see Figure 1-A, Inset). In particular,
trajectories are inferred on different trajectories preferentially on the points of
the line but with directions which are initially ambiguous due to the aperture
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problem. These different trajectories evolve independently but are ultimately
in competition. To understand the underlying mechanism, we first focus on a
single step of the algorithm at three independent key positions of the stimulus:
the two edges and the center. Compared with the case without prediction,
we show that prediction induces a contextual modulation of the response to
different trajectories, such as explaining away trajectories that fall off the line (see
Figure 4-Top). This modulation acts on a large scale as a gain-control mechanism
which is reminiscent to what is observed in center-surround stimulation.

We can then analyze in greater details the dynamics of motion distributions for
the aperture problem. From the initial step, unambiguous line-ending information
spreads progressively towards the rest of the line, progressively explaining away
motion signals that are inconsistent with the target speed (see Figure 4-Bottom).
In fact, from the formulation of prediction in the master equation, probability
at a given point reflects the accumulated evidence of each trajectory leading to
that point as it is computed by the predictive prior. Combined with likelihood
measurements, incoherent trajectories will be progressively explained away as
they fall off the line. Such gradual diffusion of information between nearby
locations explains the role of line length already documented in Figure 1-D, as
well as why information takes time to diffuse at the global scale of the stimulus, as
is reported at the physiological level, Pack et al. [2003]. In summary, contrary to
other models consisting of a selection stage, the system selects coherent features
in an autonomous and progressive manner based on the coherence of all their
possible trajectories. This ultimately explains why in the aperture problem,
information diffuses in the system from line endings to the rest of the segment
to ultimately resolve the correct physical motion.

A counter-intuitive result is that the leading bottom line-ending is less
informative that the trailing upper line-ending. This was already evident from
the asymmetry revealed in Figure 4-Top which explicits that motion-based
prediction will have a different effect on both line-endings. Indeed, in the
leading line-ending, most information is diffused to the rest of the line and is not
explained away. On the contrary, for the trailing line-ending, the diffusion of
information is more constrained as any motion hypothesized to be going upwards
would soon be explained away from motion-based prediction as it would fall
off the line. This asymmetry is clearly observable in Figure 4-Bottom as the
ambiguous information (coded here by a blueish hue) is progressively resolved
by the diffusion of the information originating from the trailing line-ending.
Unfortunately, the experiments using blurring of the line performed by Wallace
et al. [2005] were preformed symmetrically, that is, similarly for both edges. We
thus predict that blurring the trailing line-ending only should lead to a greater
bias angle as blurring the leading line-ending only.

4 Discussion

Our computational model shows that motion-based prediction is sufficient to
solve the aperture problem as well as other motion integration phenomena.
The aperture problem instantiated with slanted lines in visual space helps to
capture several generic computations which are often considered as essential
features of any sensory areas. We have shown that predictive coding through
diffusion is sufficient to explain the emergence of local 2D motion detectors

16



but also texture-independent motion grabbers. It can also implement context-
dependent competition between local motion signals. All these computations
are emerging properties from the dynamics of the system. This view is opposite
to the classical assumptions that these mechanisms are implemented by specific,
separated mechanisms (e.g. [Grossberg et al., 2001, Lu and Sperling, 2001, Tsui
et al., 2010, Wilson et al., 1992]). Instead, we demonstrate herein that all
these properties must be seen as the mere consequence of a simple, unifying
computational principle. By implementing a predictive field, motion information
is anisotropically propagated as modulated by sensory, local estimations such
that motion representation dynamically diffuses from a local to a global scale.
This model offers a simplification of our original model proposed earlier [Tlapale
et al., 2010b].

4.1 Relation to other models

In fact, we can take advantage of the work from Tlapale et al. [2010a] to compare
our model with [Tlapale et al., 2010b] and a large range of models in the
community. This study compared the results obtained from different modeling
approaches on the same aperture problem and used their model as a reference
point. Taking this study as a reference, there are two main difference with our
model. First, it does not try to make a neuromorphic approach except the fact
that (to respect the definition of the aperture problem) information is grabbed
locally and propagated on a neighborhood. Moreover, in our model, information
is represented explicitly by probabilities and we make no assumption on how it is
represented in the neural activity as this would introduce unnecessary hypothesis
regarding our objective. Second, motion-based prediction defines an anisotropic,

Figure 4 (following page): (Top) Prediction implements a competition between
different trajectories. Here, we focus on one step of the algorithm by testing
different trajectories at three key positions of the segment stimulus: the two
edges and the center (dashed circles). Compared to the pure sensory velocity
likelihood (left insets in grayscale), prediction modulates response as shown by
the velocity vectors (direction coded as hue as in Figure 1) and by the ratio
of velocity probabilities (log ratio in bits, right insets). There is no change for
the middle of the segment (yellow tone), but trajectories that are predicted out
of the line are “explained away” (navy tone) while others may be amplified
(orange tone). Notice the asymmetry between both edges, the upper edge
carrying a suppressive predictive information while the bottom edge diffuses
coherent motion. (Bottom) Finally, the aperture problem is solved due to the
repeated application of this spatio-temporal contextual information modulation.
To highlight the anisotropic diffusion of information over the rest of the line, we
plot as a function of time (horizontal axis) the histogram of the detected motion
marginalized over horizontal positions (vertical axis), while detected direction
of velocity is given by the distribution of hues. Blueish colors correspond to
the direction perpendicular to the diagonal while a green color represents a
disambiguated motion to the right (as in Figure 1). The plot shows that motion
is disambiguated by progressively explaining away incoherent motion. Note the
asymmetry in the propagation of coherent information.
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context-dependent direction of propagation while most previous models were
using an isotropic diffusion dependent on some feature characteristics (like gating
the diffusion by luminance). However, our model uses explicitly the selectivity
brought by the anisotropic diffusion. As a consequence it needs less tuning of
the parameters of the diffusion mechanisms, which is a common problem in
the latter type of models. A further advantage of our approach is that it does
not contradict previous models. Rather, motion-based prediction seem to be a
promising approach to be implemented in neuromorphic models.

In particular, several parts of our model are similar to previous models
of motion detection but its whole implementation is radically novel. First, it
inherits from properties of functional models such as the probabilistic formulation
of Weiss et al. [2002] but with more simple hypotheses. For instance, we do not
need a prior distribution favoring slow speeds or some selective process that are
needed to pre-process the data [Barthélemy et al., 2008, Weiss et al., 2002]. Our
model uses a simple Markov Chain formulation which has been used for spatial
luminance-based prediction or shape tracking with SMC in the Condensation
algorithm [Isard and Blake, 1998], but this was to our knowledge not applied to
an explicit definition of motion-based prediction. Note that the model presented
in [Bayerl and Neumann, 2007] includes an anisotropic diffusion based on motion-
based prediction but that this study was using a neural approximation of the
kind of [Burgi et al., 2000]. However, they did not study in particular the
role of prediction in the progressive resolution of the aperture problem and its
characteristic signature compared to biological data. The application of their fast
implementation to our model appears to be a promising perspective. Ultimately,
our model also gives a more formal description of the dynamical Bayesian model
that we have originally suggested to implement dynamical inference solution for
motion integration [Bogadhi et al., 2011, Montagnini et al., 2007].

Moreover, when compared to other models designed for understanding visual
motion detection [Bayerl and Neumann, 2004, Grossberg et al., 2001, Wilson et al.,
1992], our approach is more parsimonious as we don’t need to explicitly model
specialized edge detectors. On the contrary, we show that these local feature
detectors must be rather seen as emerging properties from a subset of coherent-
motion detectors. Nevertheless, this emergence needs a fine scale prediction
as we have shown that these properties depend on prediction’s precision. Our
computational implementation using SMC could reach higher precision levels
compared to the earlier predictive model proposed by Burgi et al. [2000]. We
could therefore explore a range of parameters and stimuli (such as the aperture
problem) that is radically different from the original study. Moreover, some
non-linear behaviors observed in our model are similar to other signatures of
linear/non-linear models such as the cascade model from Rust et al. [2006] or
mesoscopic models [Bayerl and Neumann, 2004, 2007, Tlapale et al., 2010b].
However, these last models are specifically tuned by assembling complex and
precise knowledge from the dynamical behavior of neurons and their interactions
to fit the results that were obtained neurophysiologically. In our model, though,
these properties emerge from the interactions in the probabilistic model.

4.2 Toward a neural implementation

More generally, this probabilistic and dynamical approach unveils how complex
neural mechanisms observed at population levels (or from their read-outs) may
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be explained by the interactions between local dynamical rules. As mentioned
above, both visual [Pack and Born, 2001, Pack et al., 2004, 2003, Smith et al.,
2010] and somatosensory [Pei et al., 2010] systems exhibit similar neuronal
dynamics when solving the aperture problem or other sensory integration tasks
in space and time. This suggests that different sensory cortices might use similar
computational principles for integrating sensory inflow into a coherent, non-
ambiguous representation of objects motion. By avoiding specific mechanisms
such as neuronal selectivities for some specific local features, our approach offers
a more generic framework. It also allows to seek for simple, low-level mechanisms
underlying complex visual behavior and their dynamics as observed, for instance
with reflexive tracking eye movements (see [Masson and Perrinet, 2012] for a
review). Lastly, we propose that distributions of neural activity on cortical maps
act as probabilistic representations of motion over the whole sensory space. This
suggests that, for instance in cortical areas V1 and MT, all probable solutions
are initially superposed. This is coherent with the dynamics of the population
of MT neurons when solving the aperture problem or computing plaid pattern
motion [Pack and Born, 2001, Pack et al., 2004, Smith et al., 2010]. Simple
decision rules can be applied to these maps to trigger different behaviors such as
saccadic and smooth pursuit eye movements as well as perceptual judgements
of motion such as direction and speed. Then, the temporal dynamics of these
behavioral responses can be explained by the dynamics of predictive coding at
sensory stage [Bogadhi et al., 2011].

This work provides new insights for neuroscience but also for novel com-
putational paradigms. In fact, biological vision still outperforms any artificial
system for simple tasks such as motion segmentation. Our simple model is
validated based on neurophysiological and behavioral data and gives several
perspectives for its application to image processing. In the future, our model will
provide interesting perspectives for exploring novel probabilistic and contextual
interactions thanks to the use of neuromorphic implementations. Indeed, it is im-
possible in practice to implement today the full system on classical von-Neumann
architectures due to the size of the memory that is required to implement such
complex association fields. However, as we saw above, the probabilistic repre-
sentation of motion has a natural representation in a neural architecture, where
many simple processors are densely connected. Thus, this model is structurally
compatible with generic neural architectures and it is a candidate functional
implementation on wafer-like hardware. Such recent innovative computing ar-
chitectures enable to construct specialized neuromorphic systems, allowing new
possibilities thanks to their massive parallelism [Brüderle et al., 2011]. In return,
this approach will allow us to implement models simulating complex association
fields. Studying novel computational paradigms in such systems will help extend
our understanding of neural computations.
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