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Abstract. We consider a Delay/Disruption Tolerant Network under
two-hop routing. Our objective is to estimate and track the degree of
spread of a message/file in the network. Indeed, having such real-time
information is critical for on-line control of routing and energy expen-
diture. It also benefits the multi-casting application. With exponential
inter-meeting times of mobile nodes: (i) for the estimation problem, we
obtain exact expressions for the minimum mean-squared error (MMSE)
estimator, and (ii) for the tracking problem, we first derive the diffusion
approximations for the system dynamics and the measurements and then
apply Kalman filtering. We also apply the solutions of the estimation and
filtering problems to predict the time when a certain pre-defined fraction
of nodes have received a copy of the message/file. Our analytical results
are corroborated with extensive simulation results.

Keywords. delay/disruption tolerant networks; two-hop routing, multi-casting,
estimation and tracking, Kalman filtering, level-crossing

1 Introduction

Sparse Mobile Ad hoc Networks (MANETs) are often referred to as Delay Tol-
erant Networks (DTNs) wherein a source has to rely on the mobility of other
nodes which act as relays, and takes advantage of the transmission opportunities
which occur when the mobile relays come into contact. This forwarding strategy
is known as opportunistic routing. Several methods of spreading multiple copies
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of the same message (or packet or file) have been investigated under opportunis-
tic routing [11], [10], [5]. In epidemic routing [11] data packets are flooded to all
nodes in the network to minimize the delay. In two-hop routing the relays do not
give copies of the message to other relays.

As multiple copies of the same packet are allowed to spread in the network,
it is important to track the number of copies so as to have an on-line adaptive
replication policy. In this paper, we address this problem for the case of two-
hop routing. We assume that an observer node moves around in the network
meeting with relay nodes to count the number of copies of the message. The
nodes it meets inform it of whether they are carrying a copy of the packet. The
problem is to get as accurate an estimation as possible of the number of nodes
with copies using the measurements of the observer. The problem of adaptively
controlling the spreading process will be addressed in the future.

Our Contributions: In this paper, under the assumption of exponential
inter-meeting times, we solve three problems. First, given the observer’s count
at time t, we derive the exact expressions for the instantaneous linear Minimum-
Mean-Squared-Error (MMSE) estimator. Second, we derive a discrete time Kalman
filter based on diffusion approximations for the spreading process and the mea-
surements. Third, we estimate/predict the time at which a certain given fraction
of population has received copies of the file. All analyses are substantiated by
discrete event simulations.

Comparison with Related Work: Mean-field approximations have been
used to estimate the mean number of infected nodes under various spreading
policies [13]. Such approximations are accurate when the number of nodes is
sufficiently large. Our approach of using measurements with MMSE estimator
and Kalman filter allows us to track the discrepancy between the mean-field
approximations and the actual sample path of the process. Furthermore, our
Kalman filter estimation is based on a second-order approximation whereas the
mean-field approximations are only first-order descriptions.

A related estimation problem in wire-line networks has been considered in
[1], where the number of participants to a multicast session is tracked over time
thanks to measurements taken by polling the users. In [1], the authors assume
an infinite population from which arrivals occur and apply the diffusion approx-
imation of the well-known M/M/∞ queueing model. We, however, consider a
realistic finite population from which arrivals occur. In [1], the Kalman filter
is developed to track the fluctuations in the stationary regime of the M/M/∞
queue. We, however, track the fluctuations in the transient phase. Furthermore,
in [1], the delay in measurements (i.e., of the poll messages and the returning
acknowledgments) is ignored. We, however, explicitly characterize the measure-
ment process which complicates the derivation of the measurement equation.

2 Network Model and Objectives

We consider a Delay/Disruption Tolerant Network (DTN) consisting of S0 sources
and N0 relay nodes. We focus on tracking the spread of one given file (or mes-



sage) generated by these S0 sources; tracking of other files generated by the same
or other sources follows the same lines. The inter-meeting times of any specific
(say, the i-th) source and any specific (say, the j-th) relay node are indepen-
dent and exponentially distributed random variables with parameter β. At time
zero, the S0 sources start spreading a file adopting two-hop routing. Each time
a source meets with a relay which does not already have a copy of the file, the
relay gets a copy of the file. Recall that, in two-hop routing, the relays do not
give copies of the file to other relays.

An observer H monitors the system. The observer may be one of the sources,
but not necessarily so. The inter-meeting times of the observer with any specific
(say, the k-th) relay are independent and exponentially distributed random vari-
ables with parameter µ. At each contact with a relay, the observer gets to know
if the relay has or does not have a copy of the file.

Let X(t) denote the number of relays that have a copy of the file at time
t. Note that X(t) does not include the sources. Let Y (t) denote the number of
copies that the observer has counted up to time t. Henceforth, we shall refer to
{X(t), t ≥ 0} as “the process” and to {Y (t), t ≥ 0} as “the observation” or “the
measurement”. We assume that X(0) = 0 and Y (0) = 0.

Our objectives in this paper are to solve the following problems:

P1 Estimate the (value of the) process at time t, X(t), given the observation at
time t, Y (t).

P2 Estimate the (value of the) process at time t, X(t), given the history of
observation, {Y (u), u ∈ U,U ⊆ [0, t]}.

P3 Estimate the time at which the process crosses a certain level XL.

Problem P3 is motivated by multicast where one would be interested to know
the time when a certain number, XL, of nodes have received a copy of the file.
Problems P1 and P2, as we shall see, can be seen as intermediate steps for solving
Problem P3. But, they are also important problems in their own rights.

Our approach is to use linear estimators because they are simple to imple-
ment and useful in practice. For solving Problem P1, we use the linear Minimum-
Mean-Squared-Error (MMSE) estimator, and for solving Problem P2, we use the
Kalman filter. The Kalman filter is known to be optimal in several important
ways [8], [9]. We solve Problem P3 using the solutions of Problems P1 and P2.

Problem P1: Consider two correlated random variables X and Y , with their
mean vector and covariance matrix given by

(
mx

my

)
and

(
Vxx Vxy

Vyx Vyy

)
, respectively.

We solve the optimal estimation problem P1 by applying Proposition 1.

Proposition 1. The linear estimator of X given Y which minimizes the ex-
pected square estimation error is given by

E[X|Y ] = mx + VxyV
−1
yy (Y −my) . ut

We derive the required means and covariances in Sect. 3.2.

Problem P2: We approximate the process {X(t), t ≥ 0} by a diffusion process
(Sect. 3.3). Sampling the approximate process at regular monitoring intervals



of duration T , we obtain a discrete time linear stochastic difference equation
for the process {X(t), t ≥ 0}. We also derive a discrete time linear stochastic
equation relating the measurements to the process. The linearity of both the
system dynamics and the measurement equations allows us to apply the Kalman
filter to use the previous estimation in order to update the current estimation
optimally. The Kalman filter equations are derived in Sect. 3.4.

Problem P3: A first-order solution to the level-crossing problem is obtained
by using the solution of Problem P1. A more accurate second-order solution
is obtained by using the solution of Problem P2. The level-crossing analysis is
carried out at the end of Sect. 4.

3 Dynamics of the File Spread and Observation

In this section, guided by Proposition 1, we first derive the quantities mx, my,
Vxx, and Vxy as functions of time. Then, we derive diffusion approximations
for the process and the observation, and derive the corresponding discrete time
linear stochastic equations by sampling at regular intervals.

3.1 Characterization of the Process and Observation

Let T i
λ denote the time at which relay i receives a copy of the file. Note that T i

λ

is exponentially distributed with parameter λ = S0β. Then, the probability p(t)
that a relay has a copy of the file at time t is given by

p(t) = P (T i
λ ≤ t) = 1− exp(−λt) . (1)

Let ξi(t) denote the indicator variable that takes the value 1 if relay i, i =
1, . . . , N0, has a copy of the file at time t, and 0 otherwise. Then, we have

X(t) =

N0∑
i=1

ξi(t) . (2)

Clearly, for each i, i = 1, . . . , N0, and for each t ≥ 0, ξi(t) is a Bernoulli
random variable with P (ξi(t) = 1) = p(t) and P (ξi(t) = 0) = 1 − p(t). By
independence of source-relay meeting events, for each t ≥ 0, the random vari-
ables ξi(t), i = 1, . . . , N0, are i.i.d., and we conclude that X(t) has a Binomial
distribution with parameters N0 and p(t), i.e.,

P (X(t) = k) =

(
N0

k

)
p(t)k(1− p(t))N0−k . (3)

Given the process {X(t), t ≥ 0}, the measurement, {Y (t), t ≥ 0}, is a doubly-
stochastic Poisson process [2] with (stochastic) intensity function µX(t). Thus,
the count of the observer, Y (t), has a Poisson distribution with parameter

θy(t) = µ

∫ t

0

X(u)du . (4)

We emphasize that, ∀t ≥ 0, θy(t) is a random variable, since X(t) is stochastic.



3.2 Derivation of the Means and (Co)variances

Lemma 1. (i) X(t) has mean mx(t) and variance Vxx(t) given by

mx(t) = N0p(t) , Vxx(t) = N0p(t)(1− p(t)) = mx(t)(1− p(t)) .

(ii) Y (t) has mean my(t) and variance Vyy(t) given by

my(t) = µmx(t)E[Tx(t)] ,

and

Vyy(t) = my(t) +mx(t)µ
2
(
E[T 2

x (t)]− (E[Tx(t)])
2
)
+ µ2E[T 2

x (t)]Vxx(t) ,

where

E[Tx(t)] =
t

1− exp(−λt)
− 1

λ
, E[T 2

x (t)] =
exp(λt)

λ3

(
λ2t2 − 2λt+ 2

)
− 2

λ3
.

(iii) The covariance between X(t) and Y (t) is given by

Vyx(t) = my(t)(1− p(t)) .

Proof. (i) Follows directly from (3).
(ii) Substituting (2) in (4), and interchanging the order of summation and inte-
gration, we obtain

θy(t) =

N0∑
i=1

µ

∫ t

0

ξi(u)du =

N0∑
i=1

µmax(t− T i
λ, 0) =

X(t)∑
i=1

µT i
x(t) ,

where T i
x(t) are i.i.d. random variables, each distributed like the truncated ran-

dom variable Tx(t) (truncated at t) with the following distribution:

P (Tx(t) > a) = P (t− T i
λ > a|T i

λ ≤ t) =
1− exp(−λ(t− a))

1− exp(−λt)
for 0 ≤ a ≤ t .(5)

E[Tx(t)] and E[T 2
x (t)] as given above follow from (5). Then,

my(t) = E[Y (t)] = EX [EY [Y (t)|X(t)]] = E[θy(t)] = µmx(t)E[Tx(t)] . (6)

Vyy(t) = Var(Y (t)) = EX [VarY (Y (t)|X(t))] + VarX(EY [Y (t)|X(t)])

= E[θy(t)] + Var(θy(t)) , (7)

since the variance of a Poisson random variable is equal to its mean. As before,
E[θy(t)] = my(t) and Var(θy(t)) is obtained as follows:

Var(θy(t)) = E[X(t)]Var(µTx(t)) + E[µ2Tx(t)
2]Var(X(t))

= mx(t)µ
2
(
E[T 2

x (t)]− (E[Tx(t)])
2
)
+ µ2E[T 2

x (t)]Vxx(t) . (8)

(iii) Vyx(t) = Vxy(t) = E[X(t)Y (t)]− E[X(t)]E[Y (t)]

= EX [EY [X(t)Y (t)|X(t)]]−mx(t)my(t)

= E[X(t)θy(t)]−mx(t)my(t) = E[X2(t)]µE[Tx(t)]−mx(t)my(t)

=
(
Vxx(t) + (mx(t))

2
)
µE[Tx(t)]−mx(t)my(t) = my(t)(1− p(t)) (9)

ut



3.3 Fluid and Diffusion Approximations

The process {X(t), t ≥ 0} can be viewed either as a state-dependent queue [7]
or as a density-dependent Markov process [4]. We obtain the fluid and diffusion
approximations for the process {X(t), t ≥ 0} by viewing it as a single-server
Markovian queue with state-dependent arrival rates, zero service rate and infinite
buffer, and then applying the framework of [7]. A brief informal background on
fluid and diffusion approximations has been provided in the Appendix.

Consider the sequence M
(n)
X /M

(n)
X /1/∞/n, n = 1, 2, . . . , of state-dependent

Markovian queueing systems, where the index n denotes the size of the popula-
tion from which the arrivals are drawn and X(n)(t) denotes the queue length at
time t of the n-th system. The analogy with our DTN is as follows. The quanti-
ties n and X(n)(t) of the queueing system correspond to the quantities N0 and
X(t), respectively, in our DTN. In analogy with our DTN, we let the arrival and
departure rates for the n-th queueing system at state X(n) to be

λ(n)(X(n)) = λ(n−X(n)) , and µ(n)(X(n)) = 0 , (10)

respectively. Note that, as the number of relays with a copy, X(n), increases,
the rate of increase, λ(n), (of X(n)) decreases because the number of relays not
having a copy, n−X(n), decreases. Also, the rate of decrease, µ(n), (of X(n)) is
zero because X(n) never decreases.

Consider the sequence of processes {Y (n)(t), t ≥ 0}, n = 1, 2, . . . , where, for
each n, {Y (n)(t), t ≥ 0} is a doubly stochastic Poisson process with stochastic
intensity function µX(n)(t), i.e., we have

Y (n)(t) = P
(
µ

∫ t

0

X(n)(u)du

)
, (11)

where {P(t), t ≥ 0} denotes a Poisson process of unit intensity. Clearly, for each
n, Y (n)(t) denotes the observer count at time t corresponding to the n-th system.
First, we obtain the fluid limits of the process and the measurement.

Lemma 2. (i) Let x(n)(t) := X(n)(t)/n. The fluid limit {x(t), t ≥ 0} associated
with the sequence {X(n)(t), t ≥ 0}, n = 1, 2, . . . , i.e., the limit of the sequence
{x(n)(t), t ≥ 0}, n = 1, 2, . . . , as n ↑ ∞, is given by

x(t) = 1− exp(−λt), where λ = S0β . (12)

(ii) Let y(n)(t) := Y (n)(t)/n. The fluid limit {y(t), t ≥ 0} associated with the
sequence {Y (n)(t), t ≥ 0}, n = 1, 2, . . . , i.e., the limit of the sequence {y(n)(t), t ≥
0}, n = 1, 2, . . . , as n ↑ ∞, is given by

y(t) = µ

∫ t

0

x(u)du . (13)

Proof. (i) Applying Theorem 4.1 of [7] (or, Theorem 3.1 of [4]), the fluid limit
{x(t), t ≥ 0} associated with the sequence {X(n)(t), t ≥ 0}, n = 1, 2, . . . , is given



by the unique solution to the Ordinary Differential Equation (ODE) dx(t)
dt =

λ(1− x(t)), with initial condition x(0) = 0, where λ = S0β, whereby the result.

(ii) Consider the mappings φ1,n(t) =
P(nt)−nt

n , and φ2,n(t) =
µ
n

∫ t

0
X(n)(u)du =

µ
∫ t

0
x(n)(u)du. It is easy to see that y(n)(t) = (φ1,n◦φ2,n)(t)+φ2,n(t), where (f ◦

g)(x) is the composition f(g(x)). As n ↑ ∞, we have φ1,n(t) → 0 and φ2,n(t) →
µ
∫ t

0
x(u)du, almost surely. Applying the Continuous Mapping Theorem (CMT)

(see Theorem 13.2.1 of [12]), we obtain the fluid limit {y(t), t ≥ 0}. ut

Next, we obtain the diffusion limits of the process and the measurement.

Theorem 1. (i) Let v
(n)
x (t) :=

√
n(x(n)(t)−x(t)). The diffusion limit {vx(t), t ≥

0} associated with the sequence {X(n)(t), t ≥ 0}, n = 1, 2, . . . , i.e., the limit of

the sequence {v(n)x (t), t ≥ 0}, n = 1, 2, . . . , as n ↑ ∞, is given by

vx(t) =
√
λ

∫ t

0

e−λ(t−u/2)dB1(u) , (14)

where B1(t) is a standard Brownian motion.

(ii) Let v
(n)
y (t) :=

√
n(y(n)(t)−y(t)). The diffusion limit {vy(t), t ≥ 0} associated

with the sequence {Y (n)(t), t ≥ 0}, n = 1, 2, . . . , i.e., the limit of the sequence

{v(n)y (t), t ≥ 0}, n = 1, 2, . . . , as n ↑ ∞, is given by

vy(t) =

∫ t

0

√
µx(u)dB2(u) +

µ√
λ

∫ t

0

e−λu/2dB1(u)−
µ

λ
vx(t) , (15)

where B2(t) is a standard Brownian motion independent of B1(t).

Proof. (i) Applying Theorem 4.2 of [7], the diffusion limit {vx(t), t ≥ 0} asso-
ciated with the sequence {X(n)(t), t ≥ 0}, n = 1, 2, . . . , is given by the unique
(strong) solution to the linear Stochastic Differential Equation (SDE)

dvx(t) = −λvx(t)dt+
√
λ(1− x(t))dB1(t) , (16)

with initial condition vx(0) ∼ N (0, 0), where B1(t) denotes a standard Brownian
motion. Solving (16) (see page 354 of [3]), we obtain the result for all 0 ≤ t < ∞.

(ii) Defining the mapping φ3,n(t) =
P(nt)−nt√

n
, it is easy to see that

v(n)y (t) = (φ3,n ◦ φ2,n)(t) + µ

∫ t

0

v(n)x (u)du .

Noting that the diffusion limit associated with φ3,n(t) is a standard Brownian
motion B2(t) (which is independent of B1(t) on which vx(t) depends), and apply-
ing CMT (see Theorem 13.2.1 of [12]), we obtain the diffusion limit {vy(t), t ≥ 0}
associated with the sequence {Y (n)(t), t ≥ 0}, n = 1, 2, . . . , as

vy(t) = B2

(
µ

∫ t

0

x(u)du

)
+ µ

∫ t

0

vx(u)du .

The result is obtained by simplifying the above equation. ut



3.4 The Kalman Filter

Defining vx,k := vx(kT ), where T (> 0) is some periodic interval at which we want
to track the process X(t), we obtain from (14) the system dynamic equation as:

vx,k+1 = αvx,k + wk, k = 0, 1, 2, . . . , (17)

where α = e−λT , and

wk =
√
λ

∫ (k+1)T

kT

e−λ((k+1)T−u/2)dB1(u) .

Defining vy,k := vy(kT ), we obtain from (15) the measurement equation as:

vy,k = γvx,k + zk, k = 0, 1, 2, . . . , (18)

where γ = −µ

λ
, and zk = rk + sk, where

rk =
µ√
λ

∫ kT

0

e−λu/2dB1(u) , and sk =

∫ kT

0

√
µx(u)dB2(u) .

Defining, nk := n1,k + n2,k, where

n1,k =
µ√
λ

∫ (k+1)T

kT

e−λu/2dB1(u) , and n2,k =

∫ (k+1)T

kT

√
µx(u)dB2(u) ,

we obtain, rk+1 = rk + n1,k, sk+1 = sk + n2,k and zk+1 = zk + nk.
Notice that, the process noise w is white, but the measurement noise z is

colored. We whiten the measurement noise by defining v′y,k := vy,k+1 − vy,k, and
derive the modified measurement equation as:

v′y,k = vy,k+1 − vy,k = γvx,k+1 + zk+1 − γvx,k − zk (19)

= γ(αvx,k + wk) + zk+1 − γvx,k − zk = γ′vx,k + z′k , (20)

where γ′ = γ(α − 1) and z′k = γwk + nk. Notice that the modified measure-
ment noise z′ is white. The modified measurement noise z′ and the original
(unmodified) measurement noise z are both correlated with the process noise w.
However, the modified measurement noise at (the discrete) time k, z′k, is uncor-
related with the process noise up to time k − 1, {wj}, j = 0, 1, . . . , k − 1. Thus,
Mk := E[wk−1z

′
k] = 0, and we can apply a standard Kalman filter (see page 187

of [9]) with the system dynamics and (modified) measurement equations

vx,k = αvx,k−1 + wk−1 , (21)

v′y,k = γ′vx,k + z′k , (22)

where {wk, k = 0, 1, . . . } and {z′k, k = 0, 1, . . . } are white noise sequences with

wk ∼ N (0, Qk) , Qk := E[w2
k] , and z′k ∼ N (0, Rk) , Rk := E[(z′k)

2] .



It can be shown that

E[w2
k] = (1− α)αk+1 , and E[(z′k)

2] = γ2E[w2
k] + 2γE[wknk] + E[n2

k] , where

E[wknk] = µTαk+1 , and E[n2
k] = µT − γ (1− γ) (1− α)αk .

Let v̂−x,k and v̂+x,k denote the estimates for vx,k before and after taking into

account the measurement, respectively, at time k. Let P−
k and P+

k denote the
covariances of the corresponding estimation errors. Let v̂′y,k = v̂y,k+1 − v̂y,k,

where v̂y,k =
√
N0((Ŷ (kT )/N0) − y(kT )), and Ŷ (kT ) and y(kT ) denote the

actual measurement (i.e., observer count) and the value of y(t), respectively, at
time t = kT . Starting with v̂+x,0 = 0 and P+

0 = 0, we apply the following Kalman
filter equations (see Equations 5.17-5.19 of [9]) repeatedly at all time k:

v̂−x,k = αv̂+x,k−1 , (23)

P−
k = α2P+

k−1 +Qk−1 , (24)

P+
k =

(
(P−

k )−1 + (γ′)2/Rk

)−1
, (25)

Kk = γ′P+
k /Rk , (26)

v̂+x,k = v̂−x,k +Kk(v̂
′
y,k − γ′v̂−x,k) , (27)

where Kk denotes the Kalman filter gain at time k. We obtain the estimates
for the process as X̂(kT ) = N0x(kT ) +

√
N0v̂

+
x,k, where

√
N0v̂

+
x,k provides an

estimate of the fluctuation of the process about its mean, at time t = kT .

4 Performance of Analytical Prediction and
Estimation based on Measurements

In this section, we evaluate: (i) the quality of estimation provided by the MMSE
estimator and the Kalman filter, and (ii) the accuracy of the predictions about
the level-crossing times based on the estimation. We also comment on the pre-
diction effectiveness of the fluid model of the process. We simulate a DTN as
described in Sect. 2 for the following scenarios:

Scenario 1: N0 = 50 , β = 0.02 , T = 1.0 , µ = β .
Scenario 2: N0 = 50 , β = 0.02 , T = 0.1 , µ = 10β .
Scenario 3: N0 = 50 , β = 0.02 , T = 0.01 , µ = 100β .
Scenario 4: N0 = 200 , β = 0.02 , T = 1.0 , µ = β .
Scenario 5: N0 = 1000 , β = 0.02 , T = 1.0 , µ = β .

In Fig. 1 we depict the performance of the MMSE estimator and the Kalman
filter for Scenario 1. We note that the estimations by both the MMSE estimator
and the Kalman filter are very close to each other and indeed close to the fluid
approximation N0x(t) of X(t). In Fig. 2, we show the estimations of the fluctu-
ations about the fluid limit for Scenario 1, and notice that neither the MMSE
estimator nor the Kalman filter is able to successfully track the fluctuations in
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Fig. 1. Performance of MMSE estimation
and Kalman filter estimation of the process
for Scenario 1.
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Fig. 2. MMSE estimation and Kalman fil-
ter estimation of the process fluctuations
for Scenario 1.
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Fig. 3. Performance of MMSE estimation
and Kalman filter estimation of the process
for Scenario 2.
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Fig. 4. MMSE estimation and Kalman fil-
ter estimation of the process fluctuations
for Scenario 2.

this scenario. We suspect that the inability to track the fluctuations in Scenario
1 is primarily due to the insufficiency of measurement data.

To verify if the inability to track the fluctuations in Scenario 1 is indeed due
to the insufficiency of measurement data, we examine Scenario 2 (Figs. 3 and
4) and Scenario 3 (Figs. 5 and 6). In Scenario 2 (resp. Scenario 3), we increase
the rate µ at which measurements are taken by the observer by a factor 10
(resp. 100). To make better use of faster measurements and avoid smoothing of
measurement data over longer time intervals, we also decrease the monitoring
interval T by the same factor. We observe that the performance of the Kalman
filter is much improved in Scenario 2 with faster measurements during the later
phase of spreading (compare Fig. 4 with Fig. 2). Comparing Fig. 6 with Figs. 4
and 2, we observe that tracking of the fluctuations by the Kalman filter is ex-
tremely accurate in Scenario 3. This accurate tracking of the fluctuations results
in extremely accurate tracking of the process itself (see Fig. 5).



0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Time t

Actual process at t = kT
MMSE estimate at t = kT
Kalman estimate at t = kT

Fig. 5. Performance of MMSE estimation
and Kalman filter estimation of the process
for Scenario 3.
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Fig. 6. MMSE estimation and Kalman fil-
ter estimation of the process fluctuations
for Scenario 3.
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Fig. 8. Vyy(t) as a function of time.

In Figs. 3-6, we observe that the MMSE estimator fails to make use of faster
measurements. In fact, it stays very close to the fluid approximation. This can be
explained as follows. The MMSE estimation differs from the fluid approximation
N0x(t) (which is equal to mx(t)) by the term Vxy(t)Vyy(t)

−1(Y (t)−my(t)). From
the expressions for Vxy(t) and Vyy(t) in Sect. 3.2, it can be seen that Vxy(t)
initially increases sub-linearly, but then quickly decreases exponentially with t
(see Fig. 7), and Vyy(t) increases super-linearly with t (see Fig. 8). Thus, except
for an initial phase, the effect of the measurement (Y (t)−my(t)) is diminished
by the factor Vxy(t)Vyy(t)

−1. Increasing µ by a factor K increases Vxy(t) by
a factor K, but also increases Vyy(t) by a factor K2. Thus, increasing µ by a
factor K results in an overall attenuation of the measurement (Y (t)−my(t)) by
a factor K (see Sect. 3.2). Furthermore, the difference between the measurement
Y (t) and its mean my(t) also decreases with t. In summary, we can expect the
performance of the MMSE estimator to get worse with time.

Next, we examine the situations in which the fluid approximation itself can
be used as a good predictor. Suppose that we increase the area of the network
by a factor K keeping the density of nodes constant. Then, we increase both S0
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Fig. 9. Performance of MMSE estimation
and Kalman filter estimation of the process
with Scenario 4.
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Fig. 10. Performance of MMSE estimation
and Kalman filter estimation of the process
with Scenario 5.

and N0 by K, but decrease the source-relay meeting rate β by K. Then, the net
rate at which meetings occur in the network increases from S0N0β = λN0 to
KS0N0β = λ(KN0). This scaling is equivalent to increasing only N0 by a factor
K keeping S0 and β constant as in (10). Thus, if the area of the network is large
so thatN0 is large, then the fluid model can be a good predictor. We demonstrate
this by Figs. 9 and 10 which correspond to Scenarios 4 and 5, respectively. Note
that Scenarios 4 and 5 are derived from Scenario 1 by scaling as above with a
scaling factor K = 4 and K = 20, respectively. Comparing Figs. 1, 9 and 10, we
observe that the process becomes smoother and closer to the fluid approximation
with increase in the number of nodes N0.

Level-Crossing Times: Next, we compare the accuracy of the MMSE and the
Kalman estimators in estimating the level-crossing times by computing the per-
centage error w.r.t. the level-crossing times of the actual process and averaging
over 100 runs. Fixing the threshold levels atXL = 0.15N0, 0.25N0, 0.50N0, 0.75N0,
and 0.90N0, we obtained average percentage errors for estimates of level-crossing
times by the MMSE and the Kalman estimators for Scenario 3. We summarize
the results as follows:

XL = 0.15N0 , e(MMSE) = 25.32% , e(Kalman) = 23.72% .
XL = 0.25N0 , e(MMSE) = 22.63% , e(Kalman) = 16.07% .
XL = 0.50N0 , e(MMSE) = 14.98% , e(Kalman) = 8.32% .
XL = 0.75N0 , e(MMSE) = 12.71% , e(Kalman) = 7.33% .
XL = 0.90N0 , e(MMSE) = 14.80% , e(Kalman) = 9.94% .

We conducted similar experiments (not reported here due to lack of space)
with different parameter settings and observed similar trends. The Kalman filter
shows a slightly better performance than MMSE during the initial phase of
spreading when the threshold level is small (say, XL ≤ 0.15N0). However, the
Kalman filter outperforms the MMSE estimator for higher threshold levels (say,
XL ≥ 0.25N0) because it takes into account all previous sample measures.



5 Conclusion

In this paper, we tackled the problem of estimating file-spread in DTNs with
two-hop routing. Apart from providing solid analytical basis to our estimation
framework, we also provided insightful conclusions validated with simulations.
Some of the important insights are: (i) the deterministic fluid model can indeed
be a good predictor with a large number of nodes, (ii) the Kalman filter can track
the spreading process quite accurately provided that measurements as well as
updates are taken sufficiently fast, (iii) during the initial phase of spreading when
the amount of sample measures is still low, the MMSE estimator can be used for
estimating the level-crossing times of sufficiently low threshold levels, and (iv)
as time progresses, the MMSE estimator becomes less useful, but the Kalman
filter would be available at later phases to provide accurate estimates. Applying
the real-time estimations for on-line adaptive control of the spreading process is
a topic of our ongoing research.

Appendix

In this appendix, we provide a brief informal background on fluid and diffusion
limits and approximations. Please refer to [6], [7] and [12] for more details.

Intuitively speaking, the fluid approximation provides the first-order deter-
ministic approximation to a stochastic process and represents its average be-
havior. The diffusion approximation provides the second-order approximation
to a stochastic process representing its average behavior added with random
fluctuations about the average (usually, in terms of a Brownian motion).

Consider a sequence {Z(n)(t), t ≥ 0}, n = 1, 2, . . . , of stochastic processes.
Index n represents some quantity which is scaled up to infinity in order to study
the sequence of processes at the limit, as n ↑ ∞. For queueing systems, n might
represent “the number of servers” (as in infinite server approximations) or “a
multiplying factor of one or more transition rates” (as in heavy-traffic approxi-
mations) or some other quantity w.r.t. which the scaling is performed.

Consider the Strong Law of Large Numbers (SLLN) type rescaling z(n)(t) :=
Z(n)(t)/n. Under certain conditions, as n ↑ ∞, the sequence of rescaled processes
{z(n)(t), t ≥ 0}, n = 1, 2, . . . , converges almost surely to a deterministic process
{z(t), t ≥ 0} (see, for example, Theorem 4.1 of [7]). Then, the limit {z(t), t ≥ 0} is
called the fluid limit associated with the sequence {Z(n)(t), t ≥ 0}, n = 1, 2, . . . ,
and the approximation

Z(n)(t) ≈ nz(t) , ∀t ≥ 0 , (28)

is called the fluid approximation for the n-th system.

Consider now the Central Limit Theorem (CLT) type rescaling v
(n)
z (t) =√

n(z(n)(t)−z(t)), which amplifies the deviation of the rescaled process {z(n)(t), t ≥
0} from the fluid limit {z(t), t ≥ 0}. Under certain conditions, as n ↑ ∞, the se-

quence of rescaled processes {v(n)z (t), t ≥ 0}, n = 1, 2, . . . , converges weakly to a



diffusion process (or a continuous-time Markov process with continuous sample
paths) {vz(t), t ≥ 0} (see, for example, Theorem 4.2 of [7]). Then, vz(t) is called
the diffusion limit associated with the sequence {Z(n)(t), t ≥ 0}, n = 1, 2, . . . ,
and the approximation

Z(n)(t)
d≈ nz(t) +

√
nvz(t) , ∀t ≥ 0 , (29)

is called the diffusion approximation for the n-th system, where
d
≈ means “ap-

proximately distributed as”. In particular, if vz(0) is a Gaussian random variable,
then {vz(t), t ≥ 0} is a Gaussian process and it is completely characterized by
its mean and auto-covariance functions.
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