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We provide experimental and numerical evidence of in-blades vortices in the von Kármán swirling flow. We estimate the associated kinematic α-effect tensor and show that it is compatible with recent models of the von Karman Sodium (VKS) dynamo. We further show that depending on the relative frequency of the two impellers, the dominant dynamo mechanism may switch from α 2 to α -Ω dynamo. We discuss some implications of these results for VKS experiments.

The dynamo effect is the conversion from mechanical energy to magnetic energy. It is at the origin of most magnetic fields in the Universe (Earth, stars, galaxies,..) and therefore deserves special attention. The von Kármán sodium experiment (VKS) is at present time one of the three succesfull liquid metal dynamo experiments. In this experiment, the mechanical energy is provided by two iron counter-rotating impellers in a cylindrical vessel, and the spontaneous conversion into magnetic energy is obtained as soon as one of the impellers rotates faster than 16 Hz [1][2][3]. The process of how this conversion occurs is however still a matter of debate. Indeed, a quasi axial axisymmetric mean magnetic dynamo field is observed in VKS experiment, while an equatorial dipole is expected if the dynamo process only involves the time averaged axisymmetric mean flow [4]. Several models have recently been suggested to explain this observation, based upon the now-classical α-effect in mean field theory of dynamo [START_REF] Krause | Mean-Field Magnetohydrodynamics and Dynamo Theory[END_REF][START_REF] Moffat | Magnetic Field Generation in Electrically Conducting Fluids[END_REF]: in the presence of a non-axisymmetric fluctuating velocity field, the mean VKS magnetic field satisfies:

∂ t B = ∇ × u × B + α B -β∇ × B , (1) 
where u i and B i are the velocity and magnetic field, denotes time-azimuthal average and α and β are secondorder tensors depending on u and u ′ = u-< u >. Specifically, it was suggested that vortical coherent structures in between the impeller blades such as pictured in Fig. 1c generate higly-correlated non-axisymmetric velocity-vorticity fluctuations that would result in a nonnegligible α-tensor able to produce an axial dipole [START_REF] Petrelis | [END_REF]8]. Kinematic simulations using a numerical model of such vortices indeed reproduce the growth of an axisymmetric axial field as observed in VKS experiments [9]. Numerical simulations [8,10] using ad-hoc α tensors in the induction equation and different boundary conditions satisfactorily reproduce the large scale structure of the dynamo magnetic field, provided the non dimensional α parameter is of the order of 2 (ferromagnetic boundary conditions, [8]) or 0.02 if variations of the permeability due to soft iron are taken into account [10]. However, no measure-ments of the velocity structure in between the blades has been avalaible so far, preventing check of the plausibility of these estimates, and, thus, the soundness of these α-models. In the present Letter, we first provide some experimental evidence of these in-blades vortical structures and give more quantitative information on their averaged properties using Reynolds Averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) calculations. We then use these results to compute the resulting kinematical α effect. Some implications of these results for VKS experiments are finally discussed. Depending on the relative frequency of the two impellers, the dominant dynamo mechanism may switch from α 2 to α -Ω dynamo, resulting in onset of dynamical regimes.

To observe the vortices potentially responsible for the α-effect, we use a von Kármán water experiment which is a 1/2 scale reproduction of the first sucessful VKS dynamo experiment described in [1]. Its geometry is summarized in Fig. 1: the fluid contained in a Plexiglas cylinder of radius R = 100 mm is stirred by a pair of coaxial impellers that can be rotated independently at rotation frequencies f 1 and f 2 ranging from 1 to 12 Hz. The impellers are flat disks of diameter 2R p = 150 mm fitted with either straight blades or radial blades of constant height h b = 20 mm and curvature radius 92.5 mm. The inner faces of the discs are H = 180 mm apart. Velocity measurements are performed with a LDV and a stereoscopic PIV system provided by DANTEC Dynamics. In the sequel, we use R and T = 1/π(f 1 + f 2 ) as units of length and time.

In the VKS experiment, dynamo regimes have been observed for a wide variety of rotating frequencies (f 1 , f 2 ) [2]. For simplification, we focus here on the simplest case where the top disk is fixed and the bottom disk is rotating, with the convex face of the blades pushing the fluid forward: (f 1 , f 2 ) = (1/(πT ), 0). In such a case, dynamo action is observed for f 1 > 16 Hz through a nearly axisymmetric dipolar dynamo field, with azimutal component localized at each impeller ( [3,11] and Fig. 1b). Fig. 2a shows the mean time-averaged non-dimensional velocity on a half meridional plane measured by PIV in the experiment. It consists in a fully non-symmetric flow, with the outside radial part rotating as a block almost at the impeller's velocity. Due to the observing angle, this representation does not allow for velocity measurements inside the blades. Additional measurements using a LDV system and impellers with straight blades allow the measurement of the instantaneous azimutal velocity component at one point located inside a blade (Fig. 2b).

In this measurement, one observes a modulation of the azimutal velocity, over a period of 1/8f 1 sec corresponding to one blade crossing. During a period, the azimutal velocity first drops, and then catches again with the velocity of the blade. This drop results in a smaller averaged velocity (black curve) than the impeller velocity (blue curve) and is an experimental evidence of the presence of in-blades vortical movements.

To characterize further these motions, we now perform numerical experiments with the CFD finite-volume solver code FLUENT 6.3. The model that has been used is the stationary realizable k -ǫ RANS model [START_REF]FLUENT 6.3 User's Guide[END_REF]. We ran several different mesh configurations before reaching a satisfactory converged solution. It corresponds to a case where the fluid volume is divided into three parts: one central part with a typical element size of 3 mm and two volumes surrounding the impellers 15 mm and 15 mm apart from the blade tips in resp. the axial and radial direction, with conformal interfaces. The mesh is refined to 1 mm close to the blades. The equations are solved in a Moving Reference Frame in one of these volumes to simulate the impeller's rotation. A grid convergence check has been performed and a stable converged solution with one rotating disk was found, with torques at both impellers equal to those measured in the experimental flow within 10 percent. The result is presented in Fig. 2c for the azimutally averaged flow. One observes a one cell circulation close to the experimental one. To quantify this, we present in Fig. 3 a comparison between the numerical and the experimental velocity radial profiles at three locations: z = ±0.53; z = 0. The agreement is within 5% in most of the flow. The CFD solution enables the description of the in-blades velocity. On Fig. 2c, one observes an intensification of the azimutal velocity at the edge of the rotating impeller, as well as some edge vortices near the top and the bottom edge. In the stationary impeller, the azimutal velocity is slightly negative, so there is a huge differential rotation at the blades shrouds and tips. The streamlines displayed in Fig. 2d enables the clear visualization of in-blades radial trailing vortices, that are located behind the blades. Such vortices can be responsible for a deceleration of the azimutal velocity observed in Fig. 2b.

Using the CFD velocity field, one can compute the (non-dimensional) azimutally averaged helicity tensor

h ij = ǫ ikn u ′ k ∂ j u ′ n , (2) 
where u ′ = u -u is the fluctuating velocity field,

h ii = T r(h) = -u ′ i ω ′
i is minus the helicity of the fluctuations, ω is the vorticity and the symbol denotes azimuthal average. The result is displayed in Fig. 4. One sees that the helicity is mainly concentrated in the impellers, with a maximum absolute non-dimensional value around 1 (corresponding to 100 ms -2 for impeller rotating at 10 Hz). In the rotating impeller, the largest helicity component is h φφ with a value of the order of -0.5. Its value in the stationary impeller is of opposite sign and slightly larger, 1. This difference may be explained by the existence of a very large vertical differential rotation at the stationary impeller, which can generate a large toroidal vorticity. In the rotating impeller, other non-negligible helicity components are found as h φr and h rz . In the stationary impeller, other fairly large helicity components are h rr , h rφ , h rz ,h zφ and h zr (of the order of ±1). We also computed the (non-dimensional) azimutally averaged Reynolds tensor r ij = u ′ i u ′ j (not shown). We observed a similar localization of the tensor in the impellers, with a much smaller value, of the order of 5×10 -2 (corresponding to 0.5 m 2 s -2 for impeller rotating at 10 Hz). The exact dynamo properties of such a velocity field would require solving the full kinematic problem, like in [9]. To get an order of magnitude estimates of the dynamo efficiency, we may however approximate the fluctuations by a short in time field. In such a case, one use the computation of [START_REF] Rädler | [END_REF] equation (29), see also [14] to link the helicity and Reynolds tensor to α and β as:

α ij = τ h ij , β ij = τ r ij , ( 3 
)
where τ is the correlation time of the non-axisymmetric velocity perturbations. The CFD simulation provides a time-independent solution and cannot be used to compute this correlation time. However, we can use the LDV measurements in water (see Fig. 2) to estimate that this time is at most of the order of 1/8f 1 . Therefore, in non-dimensional units, τ ≤ π/8. This estimate leads to maximal non-dimensional α tensors of the order of ±0.4 (resp. -0.2) in the stationary (resp. rotating) impeller, and maximal non-dimensional β tensors of the order of 2 × 10 -2 . Our estimate of α using CFD simu- lations and experiments can be compared with existing models of the VKS dynamo. First, we observe that the largest component of the tensor in the rotating impeller is α φφ , as assumed in [8,10]. It is negative, as required for instability [8]. However, its maximal value is an order of magnitude smaller than the value |α c | = 2.1 needed to obtain dynamo action with ferromagnetic boundary conditions at magnetic Reynolds number reached in the VKS experiment [8]. On the other hand, it is one order of magnitudes larger than the value needed to obtain a dynamo action in VKS according to the model with localized permeability distribution [10]. Given the uncertainty in evaluation of the correlation time, we may say that our findings clearly validates the hypothese of model of [10], but not rule those of the model of [8]. Dynamo action may be impeded by a large enough turbulent resistivity, parametrized by β. This effect has been discarded in the numerical models so far [8,10]. Our estimate shows that this approximation is marginally legitimate in VKS, where the critical magnetic Reynolds number Rm c ∼ 50 in our time and length units, resulting in a non-dimensional molecular magnetic diffusivity of the order of 1/Rm c ∼ 0.02, i.e. of the order of the maximal value for the turbulent magnetic diffusivity, resulting in a 100 percent increase of the total magnetic diffusivity at Rm = 50. Our finding is in agreement with a recent estimate of [15] who observed a 50 percent increase of magnetic diffusivity at Rm = 30, in a nonstationary turbulent flow of liquid sodium, generated in a closed toroidal channel.

The present computation shows that the in-blade velocity is the VKS impellers is able to generate sufficient α-effect to produce a dynamo mechanism, provided ad-equate boundary conditions [8] or localized permeability distributions [10] are taken into account. The special localization of this α-effect found in the present study how calls for further discussion about a qualitative picture of the VKS one disk dynamo. Indeed, using Eq. 1, one can show that the poloidal field (r, z component) is generated from the toroidal field (φcomponent) through the α-effect. In contrast, there are two possibilities (possibly concomitant) to generate toroidal field from poloidal field: either through the mean differential rotation Ω ′ = (1/r)d u φ /dz (Ω-effect) -possibly reinforced by the jump of permeability or conductivity at the impellers [17] and/or through α effect. The first case corresponds to a α -Ω dynamo, while the second corresponds to an α 2 dynamo. Since the α tensor varies over a region of size h b , the crossover in between the two mechanism lies at the critical value R p Ω ′ ∼ α rr /h b . This induces a dissymetry in between the two impellers: at the rotating one, the differential rotation is almost zero Ω ′ ∼ 0 while at the stationary one, the differential rotation occurs over the height of the blades, so that in non-dimensional shape R p Ω ′ ∼ R p /h b ∼ 4, i.e. is of the order of α rr R/h b ∼ 4. Therefore, the dynamo generation is α 2 at the rotating impeller, while it can be a combination of an α 2 and an α -Ω at the stationary one (an α 2 -Ω) dynamo). Such a dissymetry may explain generically the field dissymetry observed in the VKS configuration with one rotating disk, where the field is much more intense near the rotating impeller, than near the stationary impeller cf Fig. 1.

If the α-effect computed in the present case is not strongly modified when the two impellers are rotating, we may draw interesting implications about the VKS dynamo in more general rotating regimes. Indeed, the location of the azimuthal velocity shear layer strongly depends on the relative velocity of the two impellers θ = (f 1 -f 2 )/(f 1 + f 2 ) [16]: as long as |θ| ≤ θ c , the azimuthal velocity shear layer is in-between the two impellers, and there is a constant shear at the two impellers, of the order of Ω ′ ≈ π(f 1 -f 2 )/H. Once |θ| ≥ θ c , the shear layer is at the slowest impeller, like in the one rotating disk case explored in the present paper: the differential rotation is almost zero at the fastest impeller, and very strong at the slowest one[21]. This peculiar property however offers possible very different generic dynamo behavior under and above θ c . For |θ| < θ c , the Ω-effect is of the order O(1/H), so that it is too weak to superseed the α effect, of the order 1/h b (since h b /H ≪ 1). In such case, the dominant dynamo mecanisl is α 2 at each impellers. For |θ| > θ c , the differential rotation switches to O(1/h b ) at the slowest impeller, and the Ω effect becomes comparable to the α effect. There is therefore the possibility of an α 2 -Ω mechanism at the slowliest impeller, with an α 2 dynamo mechanism at the fastest impeller. This natural switch, induced by the behavior of the shear layer, opens interesting perspectives in terms of possible dynamical regimes in the VKS experiments. Indeed, an homogeneous α 2 dynamo is generically steady, with dynamo threshold Rm c = O(k/α), while an homegeneous α -Ω dynamo is generically oscillatory with dynamo threshold Rm c = O(k 2 (2/αkR p Ω ′ )), with a rotating frequency bifurcating from a finite value at the dynamo onset ω osc = (αkR p Ω ′ /2) [18]. (Meridional circulation and/or parity properties with respect to the equator of α can steady α -Ω dynamos.) In our setting, this translates in Rm c = O(R/h b ) for α 2 dynamos, and Rm c = O(R/h b )/ θ c /θ and ω osc = O(R/h b ) θ c /θ for the α -Ω dynamo. Due to inhomogeneities and possible non-linear coupling in between the two dynamo mecanism at each impeller [3], it is not garanteed that these generic features will persist. However, we observe that for θ < θ c , dynamos observed in VKS are indeed steady, while both steady and dynamical regimes with oscillations appear for θ ≥ θ c [19], with oscillation frequency bifurcating from finite value [2]. The scale separation in the VKS experiment, with α and Ω-effect occuring in region of size h b << R is in any case a very interesting result, since it validates the main hypotheses underlining the α-effect and opens the way to homogenization techniques [20]. It would also be interesting in the VKS experiment to vary the blade's height to see how it affects both the threshold and the oscillation frequencies and check their potential R/h b scaling.
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 1 FIG.1: a) Geometry of the experiment. The shaded blue zone denote the rotating fluid volume used in the numerical simulation. b) Reconstruction of the dynamo magnetic field in a meridional plane in a VKS experiment with rotating bottom disk and stationary upper disk (after[3]). The poloidal (resp. toroidal) component is coded with arrows (resp. color). Measuring probes are in white. c) Putative in-blades vortice creating the α-effect.

  FIG. 2: a) Non-dimensional experimental mean velocity in a meridional plane. b) non-dimensional azimuthal velocity in the blades synchronized on the blade crossing vs non dimensional time. Green: LDV measurements; red: running average; black: time average; blue: blade velocity. c) Nondimensional numerical mean velocity. d) Radial vortices as observed with streamlines in the CFD simulation.

FIG. 3 :

 3 FIG. 3: Comparison between numerical (line) and experimental (symbols) profiles at z = -0.53 (red), z = 0 (green) and z = 0.53 (blue). Errors bars are of the order of the size of the symbols.
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 4 FIG. 4: Components of the (non-dimensional) azimutally averaged helicity tensor hij in numerics. The figure in between parenthesis is the volume averaged value.
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