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On the Hausdorff property of some Dolbeault cohomology

groups

Christine LAURENT-THIÉBAUT and Mei-Chi SHAW

1 Introduction

Let X be a complex manifold. The study of the closed-ranged property of the Cauchy-
Riemann equations is of fundamental importance both from the sheaf theoretic point of
view and the PDE point of view. In terms of the associated cohomology, it means that the
corresponding cohomology is Hausdorff, hence separated. There are many known results
for the Hausdorff property of such cohomologies in complex manifolds. For instance, it is
well-known that for a bounded pseudoconvex domain D in C

n, the Dolbeault cohomology
Hp,q(D) in the Fréchet space C∞

p,q(D) vanishes for all q > 0. It is also known that the L2

cohomology also vanishes. Much less is known about the cohomologies whose topology
does not have the Hausdorff property, even for domains in C

n.

In this paper, we study duality of the Cauchy-Riemann complex in various function
spaces and the Hausdorff property of the corresponding cohomologies. Such duality is
classical if the complex manifold is compact. For domains in a complex manifold with
boundary, it has been established from the Serre duality between the Fréchet spaces and
the test forms with compact support under the inductive limit topology under the closed-
range assumption for the Cauchy-Riemann equations. When the domain has Lipschitz
boundary, an L2 version of the Serre duality has been formulated in [2]. In this paper
we will formulate the duality for the Cauchy-Riemann complex in various function spaces
and use the duality to study the Hausdorff property of Dolbeault cohomology groups.

The plan of the paper is as follows. In section 2, we first explain various duality spaces
under suitable boundary conditions. In section 3 we use the duality to study the Hausdorff
property of the cohomology groups for domains with connected complement. One of the
main results in this paper is to show that for any such domain D in C

2, the Dolbeault
cohomology H0,1(D) is either zero or non-Hausdorff (see Theorem 3.4). In particular,
if the domain D is not pseudoconvex, then the Dolbeault cohomology is not Hausdorff.
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We also show that if the domain has Lipschitz boundary, then L2 cohomology H0,1
L2 (D)

is either 0 (in this case D is pseudoconvex) or it is not Hausdorff. In other words, the
Cauchy-Riemann equation ∂̄ does not have closed range from L2(D) to L2

0,1(D) unless D
is pseudoconvex. This result does not seem to have been observed in the literature (see
p. 76 in Folland-Kohn [7] for previous known examples and some related results in Laufer
[10]).

In section 4 we study the duality of cohomologies on annulus type domains. When the
domain is the annulus between two pseudoconvex domains with smooth boundaries, it is
known that the L2 cohomologies are Hausdorff. This was proved for the annulus between
two strongly pseudoconvex domains in [7] and between two weakly pseudoconvex domains
in [13] and [14]. But the cohomology groups could be infinite dimensional. When the do-
main is the annulus between concentric balls, the cohomologies can be expressed explicitly
(see Hörmander [8]). However, we will show (see Corollary 4.6) that if the smoothness
assumption is dropped, the cohomologies could be non-Hausdorff , a contrast between the
annulus between smooth pseudoconvex domains and non-smooth pseudoconvex domains.
We also give some results on sufficient conditions for the Hausdorff property of Dolbeault
cohomologies of annulus between domains.

Acknowledgements. The authors would like to thank Dr. Debraj Chakrabarti for his
comments and suggestions on the first version of this paper.

2 Dual complexes

Let X be an n-dimensional complex manifold and D ⊂⊂ X a relatively compact subset
of X. We can define on D several spaces of functions:

• E(D) the space of C∞-smooth functions on D with its classical Fréchet topology,

• C∞(D) the space of the restrictions to D of C∞-smooth functions on X, i.e. the
Whitney space of smooth functions on the closure of D, which can be identified with
the quotient of the space of C∞-smooth functions on X by the ideal of the functions
vanishing with all their derivatives on D, with the quotient topology, which coincides
with the Fréchet topology of uniform convergence on D of the function and of all its
derivatives,

• L2(D) the Hilbert space of the L2-functions on D,

• D(D) the space of smooth functions with compact support in D with the usual
topology of inductive limit of Fréchet spaces,

• DD(X) the subspace of D(X) consisting in the functions with support in D, endowed
with the natural Fréchet topology.

Definition 2.1. A cohomological complex of topological vector spaces is a pair (E•, d),
where E• = (Eq)q∈Z is a sequence of locally convex topological vector spaces and d =
(dq)q∈Z is a sequence of closed linear maps dq from Eq into Eq+1 which satisfy dq+1◦dq = 0.
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A homological complex of topological vector spaces is a pair (E•, d), where E• = (Eq)q∈Z
is a sequence of locally convex topological vector spaces and d = (dq)q∈Z is a sequence of
closed linear maps dq from Eq+1 into Eq which satisfy dq ◦ dq+1 = 0.

To any cohomological complex we associate cohomology groups (Hq(E•))q∈Z defined
by

Hq(E•) = ker dq/ Im dq−1

and endowed with the factor topology and to any homological complex we associate ho-
mology groups (Hq(E•))q∈Z defined by

Hq(E•) = ker dq−1/ Im dq

and endowed with the factor topology.

We will use several cohomological complexes of differential forms associated to the
∂-operator and to the previous functions spaces. For some fixed integer 0 ≤ p ≤ n,

• let us consider the spaces Ep,q(D) of C∞-smooth (p, q)-forms on D, set Eq = 0 and
dq ≡ 0, if q < 0, Eq = Ep,q(D) and dq = ∂, if 0 ≤ q ≤ n.

• let us consider the spaces C∞
p,q(D) of C∞-smooth (p, q)-forms on D, set Eq = 0 and

dq ≡ 0, if q < 0, Eq = C∞
p,q(D) and dq = ∂, if 0 ≤ q ≤ n.

• let us consider the spaces L2
p,q(D) of L2-forms on D, set Eq = 0 and dq ≡ 0, if q < 0,

Eq = L2
p,q(D) and dq = ∂, the weak maximal realization of ∂, i.e. the ∂-operator in

the sense of currents, if 0 ≤ q ≤ n. The domain Dom(∂) of ∂ is the space of forms
in L2

p,q(D) such that ∂f is also in L2
p,q+1(D).

• let us consider the spaces L2
p,q(D) of L2-forms on D, set Eq = 0 and dq ≡ 0, if q < 0,

Eq = L2
p,q(D) and dq = ∂s, the strong L2 closure of ∂. A form f ∈ Dom(∂s) if and

only if there exists a sequence fν ∈ C∞
p,q(X) such that fν → f and ∂fν → ∂f in

L2(D) strongly, if 0 ≤ q ≤ n.

• let us consider the spaces Dp,q(D) of C∞-smooth (p, q)-forms with compact support
in D, set Eq = 0 and dq ≡ 0, if q < 0, Eq = Dp,q(D) and dq = ∂, if 0 ≤ q ≤ n.

• let us consider the spaces Dp,q

D
(X) of C∞-smooth (p, q)-forms on X with support in

D, set Eq = 0 and dq ≡ 0, if q < 0, Eq = Dp,q

D
(X) and dq = ∂, if 0 ≤ q ≤ n.

The associated cohomology groups will be denoted respectively by Hp,q
∞ (D), Hp,q

∞ (D),
Hp,q

L2 (D), Hp,q

∂s,L2
(D), Hp,q

c,∞(D) and Hp,q
c,∞(D).

Definition 2.2. The dual complex of a cohomological complex (E•, d) of topological vector
spaces is the homological complex (E′

•, d
′), where E′

• = (E′
q)q∈Z with E′

q the strong dual
of Eq and d′ = (d′q)q∈Z with d′q the transpose of the map dq.

Next we will be study the dual spaces of the spaces of functions we defined at the
beginning of the section. It is well known that the dual space of D(D) is the space D′(D)
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of distributions on D and the dual space of E(D) is the space E ′(D) of distributions with
compact support in D.

Let us consider the space C∞(D), by definition the restriction map

R : E(X) → C∞(D)

is continuous and surjective, taking the transpose map tR we get an injection from
(C∞(D))′ into E ′(X) the space of distributions with compact support in X. More precisely
the image of (C∞(D))′ by tR is clearly included in E ′

D
(X), the space of distributions on

X with support contained in D.
Assume D(X \ D) is dense in the space of C∞-smooth functions on X with support

contained in X \D, which is fulfilled as soon as the boundary of D is sufficiently regular,
for example Lipschitz, then any current T ∈ E ′

D
(X) defines a linear form on C∞(D) by

setting, for f ∈ C∞(D), < T, f >=< T, f̃ >, where f̃ is a C∞-smooth extension of f to X
(the density hypothesis implies that < T, f > is independent of the choice of the extension
f̃ of f), which is continuous by the open mapping theorem. Consequently, if D has a
Lipschitz boundary, the dual space of C∞(D) is the space E ′

D
(X) of distributions on X

with support contained in D.
Again assume the boundary of D is Lipschitz, then D(D) is a dense subspace in DD(X),

the subspace of D(X) consisting of functions with support in D, endowed with the natural
Fréchet topology then the dual space of DD(X) will be a subspace of D′(D), the space
of distribution on D. Since DD(X) ⊂ D(X) and its topology coincides with the induced
topology by the topology of D(X), any continuous form on DD(X) can be extended as a
distribution on X. The dual of DD(X) is called the space of extendable distribution on
D and denoted by Ď′(D).

We summarize the above discussion in the following lemma.

Lemma 2.3. Let D be a relatively compact domain in a manifold X. The dual space of
C∞(D) is the space E ′

D
(X) of distributions on X with support contained in D. The dual

space of DD(X) is the space of extendable distribution on D and denoted by Ď′(D).

The space L2(D) being an Hilbert space is self-dual and moreover the weak maximal
realization of a differential operator and its strong minimal realization are dual to each
other (see [2]).

The dual complexes up to a sign of the previous ones are (E′
•, d

′) with:

• E′
q = 0 and d′q ≡ 0, if q < 0, E′

q = E ′n−p,n−q(D), the space of currents with compact

support in D, and d′q = ∂, if 0 ≤ q ≤ n.

• E′
q = 0 and d′q ≡ 0, if q < 0, and if D has a Lipschitz boundary, E′

q = E ′n−p,n−q

D
(X),

the space of currents with compact support in X whose support is contained in D,
and d′q = ∂, if 0 ≤ q ≤ n.

• E′
q = 0 and d′q ≡ 0, if q < 0, E′

q =  L2
n−p,n−q(D), the space of L2-forms on D, and

d′q = ∂c, the strong minimal realization of ∂, if 0 ≤ q ≤ n. A form f ∈ Dom(∂c)
if and only if there exists a sequence fν ∈ Dn−p,n−q(D) such that fν → f and
∂fν → ∂f , in L2 strongly.
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• E′
q = 0 and d′q ≡ 0, if q < 0, and if D has a rectifiable boundary, E′

q =  L2
n−p,n−q(X,D),

the space of L2-forms on X with support in D, and d′q = ∂ c̃, the weak minimal re-

alization of ∂, i.e. the ∂-operator in the sense of currents, if 0 ≤ q ≤ n. The domain
Dom(∂ c̃) of ∂ is the space of forms in L2

n−p,n−q(X) with support in D such that ∂f
is also in L2

n−p,n−q+1(X).

• E′
q = 0 and d′q ≡ 0, if q < 0, E′

q = D′n−p,n−q(D), the space of currents on D, and

d′q = ∂, if 0 ≤ q ≤ n.

• E′
q = 0 and d′q ≡ 0, if q < 0, E′

q = Ďn−p,n−q(X), the space of extendable currents,

and d′q = ∂, if 0 ≤ q ≤ n.

The associated homology groups are denoted respectively by Hn−p,n−q
c,cur (D), Hn−p,n−q

c,cur (D),
Hn−p,n−q

c,L2 (D), Hn−p,n−q

c̃,L2 (D), Hn−p,n−q
cur (D) and Ȟn−p,n−q

cur (D).

Let us notice that, if D is a bounded domain with Lipschitz boundary in a complex
hermitian manifold X of dimension n, it follows from the next lemma that, for 0 ≤ p ≤ n
and 1 ≤ q ≤ n, the cohomology groups Hp,q

c,L2(D) and Hp,q

c̃,L2(D) are isomorphic.

Lemma 2.4. Let D ⊂⊂ X be a relatively compact domain with Lipschitz boundary in
a complex hermitian manifold X. Then a form f ∈ Dom(∂c) if and only if both f0 and
∂(f0) are in L2

∗(X), where f0 denotes the form obtained by extending the form f by 0 on
X \D. We in fact have (∂cf)0 = ∂(f0) in the distribution sense.

Proof. By definition, given f ∈ Dom(∂c), there is a sequence (fν)ν∈N of smooth forms with
compact support in D such that fν → f and ∂fν → ∂cf , both in L2

∗(D). Then clearly
(fν)0 → f0 in L2

∗(X). It is also easy to see that ∂(fν)0 → ∂f0 in the distribution sense in
X. To see that ∂f0 = (∂cf)0, we use integration-by-parts (since ∂D is Lipschitz) to have
that for any ϕ ∈ C1

∗(X)

((∂cf)0, ϕ)X = (∂cf, ϕ)D

= lim
ν→∞

(∂fν , ϕ)D

= lim
ν→∞

(fν , ϑϕ)D

= (f0, ϑϕ)X

= (∂f0, ϕ)X

This proves the ”only if ” part of the result. Assume now that both f0 and ∂f0 are in
L2
∗(X). To show that f ∈ Dom(∂c), we need to construct a sequence (fν)ν∈N of smooth

forms with compact support in D which converges in the graph norm corresponding to ∂
to f . By a partition of unity, this is a local problem near each z ∈ ∂D. By assumption
on the boundary, for any point z ∈ ∂D, there is a neighborhood U of z in X, and for
ε ≥ 0, a continuous one parameter family tε of biholomorphic maps from U into X such
that tε(D ∩ U) is compactly contained in D, and tε converges to the identity map on U
as ε → 0. In local coordinates near z, the map tε is simply the translation by an amount
ε in the inward normal direction. Then we can approximate f0 locally by f (ε), where

f (ε) = (t−1
ε )∗f0
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is the pullback of f0 by the inverse t−1
ε of tε. A partition of unity argument now gives a

form f (ε) ∈ L2
∗(X) such that f (ε) is supported inside D and as ε → 0,

f (ε) → f0 in L2(X) ∂f (ε) → ∂f0 in L2(X).

Since ∂D is Lipschitz, we can apply Friedrich’s lemma(see Lemma 4.3.2 in [4]) to the form
f (ε) to construct the sequence (fν)ν∈N ⊂ D(D).

The next proposition is a direct consequence of the Hahn-Banach Theorem

Proposition 2.5. Let (E•, d) and (E′
•, d

′) be two dual complexes, then

Im dq = {g ∈ Eq+1 | < g, f >= 0,∀f ∈ Ker d′q}.

Corollary 2.6. Let (E•, d) and (E′
•, d

′) be two dual complexes. Assume Hq+1(E
′
•) = 0,

then either Hq+1(E•) = 0 or Hq+1(E•) is not Hausdorff.

Proof. Note that

{g ∈ Eq+1 | < g, f >= 0,∀f ∈ Ker d′q} ⊂ Ker dq+1.

and this inclusion becomes an equality when Hq+1(E
′
•) = 0. In that case, it follows from

Proposition 2.5 that if dq has closed range then Hq+1(E•) = 0.

To end this section let us recall some well-known results about duality for complexes
of topological vector spaces proved in [1], and Serre duality proved in [11] and [12].

Theorem 2.7. Let (E•, d) be a complex of Fréchet-Schwarz-spaces or of dual of Fréchet-
Schwarz-spaces and (E′

•, d
′) its dual complex. Then for each q ∈ Z, Hq+1(E•) is Hausdorff

if and only if Hq(E
′
•) is Hausdorff.

Theorem 2.7 will be used in section 4 for the complexes (C∞
p,•(D), ∂) and (Dp,•

D
(X), ∂).

For the complex (Ep,•(D), ∂), Serre duality gives

Theorem 2.8. For all integers p,q with 0 ≤ p ≤ n, 1 ≤ q ≤ n, Hp,q(D) is Hausdorff if
and only if Hn−p,n−q+1

c (D) is Hausdorff.

3 Hausdorff property for domains with connected comple-

ment

Throughout this section X denotes a non-compact n-dimensional complex manifold and
D ⊂⊂ X a relatively compact subset of X such that X \D is connected.

Lemma 3.1. Assume X satisfies Hn,1
c (X) = 0, then for each current T ∈ E ′n,1(X)

with support contained in D there exists a (n, 0)-current S with compact support in X,
whose support is contained in D, such that ∂S = T . Moreover if T ∈ (L2

loc)
n,1(X) (resp.

T ∈ En,1(X)), the solution S is also in L2
loc(X) (resp. E(X)), hence Hn,1

c̃,L2(D) = 0 (resp.

Hn,1
c,∞(D) = 0) and if the support of T is contained in D, the support of S is also contained

in D, i.e. Hn,1
c (D) = 0.
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Proof. Let T ∈ E ′n,1(X) be a current with support contained in D. Since Hn,1
c (X) = 0,

there exists a (n, 0)-current S with compact support in X such that ∂S = T . Since the
support of T is contained in D, the current S is an holomorphic (n, 0)-form on X \ D,
moreover S has compact support in X and hence vanishes on an open subset of X \D. By
the analytic continuation theorem, the connectedness of X \D implies that the support
of S is contained in D and if moreover the support of T is contained in D, the support of
S is also contained in D. Assume T ∈ (L2

loc)
n,1(X) (resp. En,1(X)), then the ∂-equation

has a solution in L2
loc(X) (resp.E(X)) and as we are in bidegree (n, 1), two solutions differ

by a holomorphic (n, 0)-form hence the solution S is in L2
loc(X) (resp. E(X)).

As a direct consequence of Corollary 2.6 and Lemma 3.1, we get

Theorem 3.2. Let X be an n-dimensional complex manifold and D ⊂⊂ X a relatively
compact subset of X such that X \D is connected. Assume X satisfies Hn,1

c (X) = 0, then
(i) Either H0,n−1(D) = 0 or H0,n−1(D) is not Hausdorff;
(ii) If D has a Lipschitz boundary, either H0,n−1

∞ (D) = 0 or H0,n−1
∞ (D) is not Haus-

dorff;
(iii) If D has a Lipschitz boundary, either H0,n−1

L2 (D) = 0 or H0,n−1
L2 (D) is not Haus-

dorff;
(iv) If D has a rectifiable boundary, either H0,n−1

∂s,L2
(D) = 0 or H0,n−1

∂s,L2
(D) is not Haus-

dorff;
(v) If D has a Lipschitz boundary, either Ȟ0,n−1(D) = 0 or Ȟ0,n−1(D) is not Haus-

dorff.

Corollary 3.3. Let D be a relatively compact open subset of C
2 such that C

2 \ D is
connected, then either D is pseudoconvex or H0,1(D) is not Hausdorff. If moreover the
boundary of D is Lipschitz, then either D is pseudoconvex or H0,1

L2 (D) is not Hausdorff.

Proof. The space C
n satisfies Hn,1

c (Cn) = 0 when n ≥ 2. From the characterization of
pseudoconvexity for open subset of Cn in terms of vanishing of the Dolbeault cohomology,
an open subset D of Cn is pseudoconvex if and only if H0,q(D) = 0 for all 1 ≤ q ≤ n− 1.
Thus the first part of the theorem is a consequence of Theorem 3.2.

On the other hand, if D ⊂⊂ C
n is bounded pseudoconvex, then H0,q

L2 (D) = 0 for all
1 ≤ q ≤ n−1 by Hörmander L2-theory. The converse is also true provided D has Lipschitz
boundary or more generally, D satisfies interior(D) = D (see e.g. the remark at the end
of the paper in [5]).

Theorem 3.4. Let D be a relatively compact open subset of C
2 such that C

2 \ D is
connected. Suppose D is not pseudoconvex. Then ∂̄ : C∞(D) → C∞

0,1(D) does not have

closed range. If moreover the boundary of D is Lipschitz, then ∂̄ : L2(D) → L2
0,1(D) does

not have closed range either.

Next we will compare the cohomologies with smooth data up to the boundary. For
pseudoconvex open subsets of C2 with Lipschitz boundary, Theorem 3.2 implies that we
have either H0,1

∞ (D) = 0 or H0,1
∞ (D) is not separated. By the classical Kohn’s theorem

([9]) for the ∂-problem on pseudoconvex domains with C∞-smooth boundary, we have
that H0,1

∞ (D) = 0, when moreover D has C∞-smooth boundary and by Dufresnoy’s result
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([6]) on the ∂-problem for differentiable forms in the sense of Whitney, we have that
H0,1

∞ (D) = 0, when moreover D admits a sufficiently nice Stein neighborhood basis.
Next we will show that there exists an example of pseudoconvex domain D in C

2 such
that the cohomology group H0,1

∞ (D) is infinite dimensional. Let T be the Hartogs triangle
in C

2

T = {(z, w) ∈ C
2 | |z| < |w| < 1}

which is pseudoconvex, hence H0,1
∞ (T ) = 0.

It follows from a paper by J. Chaumat and A.-M. Chollet [3] that for any ζ in the bidisc
P = ∆ × ∆ and ζ ∈ P \ T , their exists a C∞-smooth, ∂-closed (0, 1)-form αζ defined in
C
2\{ζ} such that there does not exist any C∞-smooth function β on T such that ∂β = αζ .

In particular the ∂-equation ∂u = αζ cannot be solved in the C∞-smooth category in any
neighborhood of T . We can conclude

Proposition 3.5. The cohomology group H0,1
∞ (T ) is infinite dimensional.

As the boundary of T is not Lipschitz we cannot apply Theorem 3.2 and we do not know
if this group is Hausdorff or not. But if we consider the strong L2(D)-cohomology then
either H0,1

∂s,L2
(T ) = 0 or H0,1

∂s,L2
(T ) is not Hausdorff since the boundary of T is rectifiable.

4 Cohomology in an annulus

Let X be a non-compact n-dimensional complex manifold and D ⊂⊂ X be a relatively
compact subset of X such that X \ D is connected. We will first study the relations
between the Dolbeault cohomology groups of D and some other Dolbeault cohomology
groups of X \D.

Proposition 4.1. Let X be a non-compact complex manifold of complex dimension n ≥
2 and D be a relatively compact domain in X such that X \ D is connected. Assume
Hn,1

c (X) = 0 and H0,n−1(X) = 0. Then if H0,n
c (X \D) is Hausdorff, for any neighborhood

UD of D such that X \ UD is connected, there exists a neighborhood VD of D such that
VD ⊂⊂ UD and for each f ∈ E0,n−1(UD) such that ∂f = 0, there exists u ∈ E0,n−2(VD)
such that ∂u = f on VD.

Proof. Let WD ⊂⊂ UD be a neighborhood of D and χ be a C∞-smooth function on X
with compact support in UD and constant equal to 1 on WD and f ∈ E0,n−1(UD) such
that ∂f = 0. Set g = ∂(χf). The form g is a ∂-closed (0, n)-form with compact support
in X \D.

First we want to prove that g belongs to the closure of the image by ∂ of the C∞-
smooth (0, n − 1)-forms with compact support in X \D. By Proposition 2.5 and by the
regularity of the ∂-operator in complex manifolds, it suffices to prove that

∫
X\D g ∧ θ = 0

for all holomorphic (n, 0)-forms θ ∈ En,0(X \ D). Since X \ D is connected and the
assumption Hn,1

c (X) = 0, by the Hartogs extension phenomenon, the holomorphic (n, 0)-
form θ extends to X in a holomorphic (n, 0)-form θ̃ and

∫

X\D
g ∧ θ =

∫

X\D
∂(χf) ∧ θ̃ =

∫

X

χf ∧ ∂θ̃ = 0.
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Then it follows from the Hausdorff property of the cohomological group H0,n
c (X \D)

that their exists a (0, n− 1)-form v of class C∞ with compact support in X \D such that
∂v = g. Note that it is proved in [11] that the support of v depends only of the support
of g which in the present setting is only related to the choice of the function χ. Consider
now the (0, n−1)-form χf−v. After extension of v by 0 in D it is defined on the whole X,
moreover ∂(χf − v) = 0 on X \D by definition of v and ∂(χf − v) = 0 on a neighborhood
of D since supp v ⊂ X \D and ∂(χf) = ∂f = 0 on WD. Using that H0,n−1(X) = 0, we
get a C∞-smooth (0, n−2)-form h on X such that χf − v = ∂h in X, in particular f = ∂h
on VD = WD ∩ (X \ supp v).

Let us study the converse of Proposition 4.1.

Proposition 4.2. Let X be a complex manifold of complex dimension n such that H0,n
c (X)

is Hausdorff and D be a relatively compact domain in X. If for any neighborhood UD of
D there exists a neighborhood VD of D such that VD ⊂⊂ UD and for each f ∈ E0,n−1(UD)

such that ∂f = 0, there exists u ∈ E0,n−2(VD) such that ∂u = f on VD, then H0,n
c (X \D)

is Hausdorff.

Proof. By Theorem 2.7 in [11] it is sufficient to prove that for each compact set K ⊂ X \D
the space D0,n

K (X \D) ∩ ∂D0,n−1(X \D) is topologically closed in the space D0,n(X \D),

where D0,n
K (X \D) denotes the space of C∞-smooth (0, n)-forms on X \D with support

in K. Let K be a fixed compact subset of X \D.
First we will prove that

D0,n
K (X \D) ∩ ∂D0,n−1(X \D) = D0,n

K (X \D) ∩ ∂D0,n−1(X).

It is clear that

D0,n
K (X \D) ∩ ∂D0,n−1(X \D) ⊂ D0,n

K (X \D) ∩ ∂D0,n−1(X).

For the converse inclusion let f ∈ D0,n
K (X \ D) ∩ ∂D0,n−1(X), then f = ∂g with g ∈

D0,n−1(X). Since supp f ⊂ K, the form g is ∂-closed on some neighborhood UD of D.
From the hypothesis we get that there exists a neighborhood VD of D such that VD ⊂⊂ UD

and a form h ∈ E0,n−2(VD) such that ∂h = g on VD. Choose χ a C∞-smooth function
on X with compact support in VD and such that χ = 1 on a neighborhood of D, then
f = ∂(g − ∂(χh)) and supp(g − ∂(χh)) is a compact subset of X \D.

The Hausdorff property of the cohomological group H0,n
c (X) implies that for each

compact set K ⊂ X the space D0,n
K (X) ∩ ∂D0,n−1(X) is topologically closed in the space

D0,n(X). Since K ⊂ X \D we get that D0,n
K (X \D) ∩ ∂D0,n−1(X) is topologically closed

in the space D0,n(X \D), which ends the proof of the proposition.

Note that under the hypothesis of Proposition 4.2, we get that if D admits a Stein
neighborhood basis then H0,n

c (X \D) is Hausdorff (A slightly stronger result is proved in
section 4 of [11]).

Corollary 4.3. Let X be a Stein manifold of complex dimension n ≥ 2 and D be a
relatively compact domain in X such that X \ D is connected. Then Hn,1(X \ D) is
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Hausdorff if and only if for any neighborhood UD of D such that X \ UD is connected,
there exists a neighborhood VD of D such that VD ⊂⊂ UD and for each f ∈ E0,n−1(UD)
such that ∂f = 0, there exists u ∈ E0,n−2(VD) such that ∂u = f

Proof. If X is a Stein manifold of complex dimension n ≥ 2 and D be a relatively com-
pact domain in X such that X \D is connected, the hypotheses of Proposition 4.1 and
Proposition 4.2 are fulfilled and moreover, by the Serre duality in X \D, H0,n

c (X \D) is
Hausdorff if and only if Hn,1(X \D) is Hausdorff.

In the same setting, we are going to consider now the case of the cohomology of closed
subsets.

Proposition 4.4. Let X be a non compact complex manifold of complex dimension n ≥ 2
and D be a relatively compact domain in X with Lipschitz boundary and such that X \D
is connected. Assume Hn,1

c (X) = 0, H0,n−1(X) = 0 and H0,n
c (X) are Hausdorff, then

H0,n
c (X \D) is Hausdorff if and only if H0,n−1

∞ (D) = 0.

Proof. Assume H0,n
c (X \D) is Hausdorff. Let f ∈ C∞

0,n−1(D) be a ∂-closed form, then if f̃

is a C∞-smooth extension with compact support of f to X, the (0, n)-form ∂f̃ has compact
support in X \D and satisfies < T, ∂f̃ >= 0 for all T ∈ Ď′n,0(X \D) with ∂T = 0, in fact
T is a holomorphic (n, 0)-form on X \D which extends to X in a holomorphic (n, 0)-form
θ by the Hartogs extension phenomenon since X \D is connected and Hn,1

c (X) = 0, hence

< T, ∂f̃ >=

∫

X

θ ∧ ∂f̃ =

∫

X

∂θ ∧ f̃ = 0.

By the Hausdorff property of the group H0,n
c (X \D), there exists a (0, n − 1)-form g

with compact support in X \ D such that ∂f̃ = ∂g. Consequently the form f̃ − g is a
∂-closed (0, n− 1)-form on X whose restriction to D is equal to f . As H0,n−1(X) = 0, we
get f̃ − g = ∂h for some C∞-smooth form h on X and hence f = ∂h on D, which proves
that H0,n−1

∞ (D) = 0.
Let us prove the converse. Let f ∈ C∞

0,n(X) be a form with compact support in X \D

orthogonal to the C∞-smooth (n, 0)-forms on X \ D, which are holomorphic on X \ D.
Then, f is orthogonal to the holomorphic (n, 0)-forms in X and the Hausdorff property
of H0,n

c (X) implies that there exists a C∞-smooth (0, n− 1)-form g with compact support
in X such that f = ∂g. The support property of f implies that g restricted to D is a
∂-closed C∞-smooth (0, n − 1)-form on D. Since H0,n−1

∞ (D) = 0, we get g = ∂h for some
C∞-smooth (0, n− 2)-form on D. Let h̃ be a C∞-smooth extension with compact support
of h to X, then g − ∂h̃ has compact support in X \D and satisfies ∂(g − ∂h̃) = f , which
implies that H0,n

c (X \D) is Hausdorff.

Note that Proposition 4.4 also holds for extendable currents and the proof follows the
same lines as the previous one. Using duality on X \D and Theorem 3.2 we get

Corollary 4.5. Let X be a Stein manifold of complex dimension n ≥ 2 and D be a
relatively compact domain in X with Lipschitz boundary and such that X \D is connected,
then

(i) Ȟn,1(X \D) is Hausdorff if and only if H0,n−1
∞ (D) is Hausdorff;

(ii) Hn,1
∞ (X \D) is Hausdorff if and only if Ȟ0,n−1(D) is Hausdorff.



On the Hausdorff property 11

Let us consider the special example where X = B ⊂ C
2, a ball of radius R ≥ 2

in C
2, then B is a Stein manifold of dimension 2 and D = ∆ × ∆ is the bidisc, then

H0,1
∞ (∆ × ∆) = 0, hence Ȟ2,1(B \ (∆ × ∆)) is Hausdorff. Similarly, we also have from

Corollary 4.3 that H2,1(B \ ∆ × ∆) is Hausdorff.
On the other hand, if we consider the Hartogs triangle T ⊂⊂ X = B ⊂ C

2, then using
the result of [3] (see the end of section 3 in this paper) and Proposition 4.1, we get

Corollary 4.6. Let B ⊂ C
2 be a ball of radius R ≥ 2 in C

2 and T the Hartogs triangle,
then both cohomological groups H0,2

c (B \ T ) and H2,1(B \ T ) are not Hausdorff.

We remark that the fact that H2,1(B \ T ) is not Hausdorff follows from the Serre
duality.

Now we will extend partially Proposition 4.4 to the L2 setting. Let W 1(D) be the
Sobolev space and denote by Hp,q

W 1(D) the associated cohomology groups.

Proposition 4.7. Let X be a Stein manifold of complex dimension n ≥ 2 and D be a
relatively compact domain in X with Lipschitz boundary and such that X \D is connected.
Then H0,n

c,L2(X \D) is Hausdorff if and only if H0,n−1
W 1 (D) = 0.

Proof. Let f ∈ W 1
0,n−1(D) be a ∂-closed form on D, and let f̃ be a W 1 extension with

compact support of f to X. This is possible since the boundary of D is Lipschitz. The
(0, n)-form ∂f̃ has L2 coefficients and compact support in X \D. Furthermore, it satisfies

∫

X\D
θ ∧ ∂f̃ = 0

for all holomorphic (n, 0)-form on X \D. In fact, since X \D is connected, by the Hartogs
extension phenomenon, θ extends to X in a holomorphic (n, 0)-form θ̃ and

∫

X\D
θ ∧ ∂f̃ =

∫

X

θ̃ ∧ ∂f̃ =

∫

X

∂θ̃ ∧ f̃ = 0.

By the Hausdorff property of the group H0,n
c,L2(X \D) = H0,n

c̃,L2(X \D), there exists a

form g ∈ L2
(0,n−1)(X) with compact support in X \D such that ∂f̃ = ∂g. Consequently

the form f̃ − g is a ∂-closed (0, n− 1)-form on X whose restriction to D is equal to f . As
X is Stein, H0,n−1

L2

loc

(X) = 0. Thus we get f̃ − g = ∂h for some L2
loc form h on X. It follows

from the interior regularity for ∂, we can have h ∈ W 1(D) and hence f = ∂h on D, which
proves that H0,n−1

W 1 (D) = 0.

Conversely let f ∈ L2
0,n(X) with compact support in X \D, orthogonal to the ∂-closed

(n, 0)-forms L2 in X \ D and in particular to the holomorphic (n, 0)-forms in X. The
Hausdorff property of H0,n

c,L2(X) implies that there exists a (0, n − 1)-form g ∈ L2
0,n−1(X)

with compact support in X such that f = ∂g. Using the interior regularity, we have g
has W 1 coefficients on D. Since the support of f is contained in X \D, g is ∂-closed in D
and as H0,n−1

W 1 (D) = 0, we get g = ∂h for some (0, n − 2)-form h in W 1
0,n−2(D). Let h̃ be

a W 1 extension of h with compact support in X, then g − ∂h̃ vanishes on D and satisfies
∂(g − ∂h̃) = f . This shows that H0,n

c,L2(X \D) is Hausdorff.



12 C. Laurent-Thiébaut and M.C. Shaw

Using the L2-duality between ∂ and ∂c, we get

Corollary 4.8. Let X be a bounded pseudoconvex domain in C
n, n ≥ 2 and D be a

relatively compact domain in X with Lipschitz boundary and such that X \D is connected,
then either H0,n−1

W 1 (D) = 0 or Hn,1
L2 (X \D) is not Hausdorff.

We remark that when D is a pseudoconvex domain with C2 boundary, we can fur-
ther obtain the duality between L2 cohomologies Hn,n−1

L2 (X \D) and the Bergman space

H0,0
L2 (D) (see [8], [13], [14]). However, not much is known when D has only Lipschitz

boundary.
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