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Fast Relaxation Solvers for

Hyperbolic-Elliptic Phase Transition Problems

Ch. Chalons∗ F. Coquel† P. Engel‡ Ch. Rohde‡

September 21, 2011

Abstract

Phase transition problems in compressible media can be modelled by mixed hyperbolic-
elliptic systems of conservation laws. Within this approach phase boundaries are under-
stood as shock waves that satisfy additional constraints, sometimes called kinetic rela-
tions. In recent years several tracking-type algorithms have been suggested for numerical
approximation. Typically a core piece of these algorithms is the usage of exact Riemann
solvers incorporating the kinetic relation at the location of phase boundaries. However,
exact Riemann solvers are computationally expensive or even not available.
In this paper we present a class of approximate Riemann solvers for hyperbolic-elliptic
models that relies on a generalized relaxation procedure. It preserves in particular the
kinetic relation for phase boundaries exactly and gives for isolated phase transitions the
correct solutions. In combination with a novel sub-iteration procedure the approximate
Riemann solvers are used in the tracking algorithms.
The efficiency of the approach is validated on a barotropic system with linear kinetic
relation where exact Riemann solvers are available. For a nonlinear kinetic relation and a
thermoelastic system we use the new method to gain information on the Riemann prob-
lem. Up to our knowledge an exact solution for arbitrary Riemann data is currently not
available in these cases.

1 Introduction

Mixed hyperbolic-elliptic systems of conservation laws are by now well-accepted models
to describe the inviscid dynamics of phase transitions in compressible media. As an
example let us mention the equations of ideal hydrodynamics with a van-der-Waals type
pressure law to describe the compressible motion of a homogeneous fluid in liquid and
vapor phases [27]. Also the evolution of solid-solid transformations in elastic materials is
a typical instance [1].
In one space dimension these models take the form

Ut + F (U)x = 0 in R× (0,∞). (1.1)
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For an open convex set U ⊂ Rm the function F ∈ C1(U , Rm) is the given flux and m ≥ 1
is the number of components for the unknown U = U(x, t). We assume that the set U is
decomposed into the convex open sets U1, U2 ⊂ U and the open set Ue ⊂ U with pairwise
empty intersection such that

U = U1 ∪ U2 ∪ Ue, U1 ∩ U2 = ∅,

with
DF (U) is diagonalizable in R for U ∈ U1 ∪ U2,

spec(DF (U)) ∩ (C \ R
) 6= ∅ for U ∈ Ue.

(1.2)

That means that (1.1) is hyperbolic in U1 ∪ U2, while it is elliptic in Ue. By the sets U1/2

two different phases are characterized.
We will focus on the initial value problem, i.e., given a function U0 : R → U1 ∪ U2 we
consider

U(·, 0) = U0 in R, (1.3)

and finally search for the unknown U : R× [0,∞) → U1 ∪ U2 avoiding values in Ue.
An important choice of initial datum is the Riemann problem with states in two different
phases, e.g.

U0(x) =

 UL : x < 0

UR : x > 0
(UL ∈ U1, UR ∈ U2). (1.4)

For many cases exact (entropy-consistent) Riemann solutions are known which consist
of standard waves as rarefaction waves or Laxian shock waves satisfying the Rankine-
Hugoniot conditions. Phase boundaries appear as usually non-Laxian shock waves. To
select a unique weak solution of the Riemann problem requires typically to enforce an
additional condition1 on the traces at the phase boundary. Denoting the trace states by
U± with e.g. U− ∈ U1 and U+ ∈ U2 and given some function K : U1×U2 → R the so-called
kinetic relation writes in the form

K(U−, U+) = 0. (1.5)

We refer for a general theory on Riemann solutions to [18] and for specific examples to
[14, 20, 21, 23] without making any attempt to cite the complete literature on the topic.
For the numerical solution of (1.1) with arbitrary initial data in U1 ∪ U2 standard finite-
volume schemes cannot be used as they smear out discontinuities and thus produce spu-
rious values in Ue at the phase boundary. Therefore tracking type algorithms have been
suggested which resolve the phase boundary over one cell boundary [6, 23, 28]. These
methods usually require the exact solution of Riemann problems at the phase boundaries.
In Section 2 we present a sample algorithm of this class. Let us note here that the exact
Riemann solution is also used in multidimensional calculations to compute fluxes in nor-
mal direction of mesh edges [15].
It turns out that the computation of exact solutions dominates the total computational
effort of the schemes. Therefore it is mandatory to develop efficient approximate solu-
tions. We suggest in this paper an approach that relies on a relaxation approximation of
(1.1) of type

Ũλ
t + F̃ (Ũλ)x = λR(Ũλ) in R× (0,∞), (1.6)

with λ some positive relaxation parameter. Here the unknown Ũλ belongs to a phase
space Ũ ⊂ Rn with n > m. The system (1.6) is hyperbolic in Ũ and is constructed in
such a way that its characteristic fields are linearly degenerate in Ũ . Thus the Riemann
problem for (the homogeneous part of) (1.6) can be easily solved. For problems with
simply connected hyperbolic state space relaxation approximations as (1.6) are widely

1We assume the setting, where supplementing one condition suffices.
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used [9, 13, 17]. As we are interested in two-phase solutions we replace at the phase
boundary one of the Rankine-Hugoniot relations for (1.6) by the kinetic relation (1.5).
This new approach is presented and analyzed in detail for the example of a barotropic
material in Section 3. Using the resulting approximate Riemann solver in the tracking
algorithm leads to a robust scheme. However it is computationally not much more efficient
as the version with an exact solver. By efficiency we mean run-time needed to stay below
a prescribed error tolerance. We increase now computational efficiency essentially by
coupling the scheme with sub-iteration procedures. The iteration scheme has its own
interest independently of mixed-type system as it provides an approximation of the exact
Riemann solution for (1.1) by a sequence of relaxation approximations built from (1.6).
The iteration techniques presented are even more general. They can be applied to improve
e.g. the resolution of contact waves in gas dynamics and are not restricted to the field of
non-classical waves.
In Section 4 we address the study of a non-barotropic material. In this case – up to our
knowledge – complete exact Riemann solutions have not been found up to now (cf. [2, 16]
for work in this direction). We apply the method developed in Section 3 to the setting of
thermoelastic materials. In this way one can get highly accurate informations on e.g. the
Riemann problem. We view this part of our work not merely as a numerical contribution
but as a step to understand the dynamics of non-barotropic materials.

2 Tracking-Type Algorithms

Stable numerical schemes to approximate weak solutions of the initial value problem (1.1),
(1.3) that involve nonclassical shock waves have been developed over the last two decades.
We refer to [4, 6, 10, 11, 7, 12, 19, 22, 23, 25, 28] to mention just a few works. Here we
review shortly a basic version of a typical tracking-type method. As we will see below the
algorithm needs as its core tool an exact Riemann solver for states UL, UR in two different
phases.
Let us assume for the moment that a unique exact (entropy-consistent) Riemann solution
for (1.1), (1.4) is available, which contains a single phase transition connecting states U−
and U+ with speed σ ∈ R such that the Rankine-Hugoniot relations and a given kinetic
relation (1.5) are satisfied.

We consider a bounded initial function U0 : R → U1 ∪ U2 with K ∈ N points of
discontinuity which are supposed to be located at Γ0

k ∈ R for k ∈ K0 := {1, . . . , K} and
constitute a phase boundary. We assume that R is partitioned into cells {Ti}i∈Z with
Ti = [xi−1/2, xi+1/2) such that for any k ∈ K0 there is a unique index j = j(0, k) ∈ Z
with Γ0

k = xj−1/2.
In the initial step we define the cell averages

U0
i =

1
∆xi

∫
Ti

U0(x) dx, ∆xi = xi+1/2 − xi−1/2, (i ∈ Z) .

By construction and convexity of U1,U2 we have U0
i ∈ U1 ∪ U2. Furthermore the discrete

data exhibits phase changes only across edge points xj(0,k)−1/2, k ∈ K0.
The sample algorithm to compute the (n + 1)-th time level tn+1, the phase boundary
locations {Γn+1

k }k∈Kn+1 and the average data {Un+1
i }i∈Z from {Γn

k}k∈Kn and {Un
i }i∈Z at

time tn now reads as follows.

Algorithm 2.1 Let n ∈ N0.

1. Denote for any k ∈ Kn the smallest index j = j(n, k) ∈ Z with |Γn
k − xj−1/2| =

minl∈Z{|Γn
k − xl−1/2|}. For k ∈ Kn compute the exact Riemann solution of (1.1)

with
UL = Un

j−1, UR = Un
j .

Denote the end states of the phase boundary by Un,k
− , Un,k

+ and its speed by σn,k.
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2. Let ∆tn > 0 be chosen such that

∆tn max
{

sup
i∈Z

{λ̄(Un
i )}, σn,1, . . . , σn,K

}
≤ CFL

holds for an appropriate number CFL ∈ (0, 1). Here λ̄(U) denotes the maximal
absolute value of all real eigenvalues of DF (U), U ∈ U1 ∪ U2. In the following
calculations we used the CFL number 0.9.

3. Define for i ∈ Z

Wn+1
i = Un

i −
∆tn

∆xi



(F(Un
i , Un,l

− )− F(Un,k
+ , Un

i )) :

 ∃ k, l ∈ Kn :

i = j(n, k) = j(n, l)− 1

(F(Un
i , Un

i+1)− F(Un,k
+ , Un

i )) : ∃ k ∈ Kn : i = j(n, k)

(F(Un
i , Un,k

− )−F(Un
i−1, U

n
i )) : ∃ k ∈ Kn : i = j(n, k)− 1

(F(Un
i , Un

i+1)−F(Un
i−1, U

n
i )) : otherwise

4. For k ∈ Kn define Γn+1
k = Γn

k + ∆tnσn,k and for i ∈ Z

Un+1
i =



1
2

(
Un,k

+ + Un,l
−
)

:

 ∃ k, l ∈ Kn : i = j(n, k) = j(n, l)− 1

and Γn+1
k > xi or Γn+1

l < xi

Un,k
− : ∃ k ∈ Kn : i = j(n, k) and Γn+1

k > xi

Un,k
+ : ∃ k ∈ Kn : i = j(n, k)− 1 and Γn+1

k < xi

Wn+1
i : otherwise

(2.1)

If the first case in (2.1) applies the corresponding indices in Kn are deleted, which finally
defines Kn+1.

In step 3 of Algorithm 2.1 the function F : (U1 ∪ U2)
2 → Rm stands for an appropriate

numerical flux for F and xi in step 4 is the midpoint 1
2

(
xi− 1

2
+ xi+ 1

2

)
of Ti.

We remark that the first case in steps 3/4 corresponds to the case where a phase is
extinguished (cf. in particular Section 3.4.3), the second and third case correspond to the
advancement of the front by one cell, and finally the fourth case realizes the update in
the pure bulk regions.

Remark 2.2 Note that Algorithm 2.1 is well-posed in the sense that the family {Un
i }i∈Z

never takes values from Ue.

Remark 2.3 Algorithm 2.1 is not conservative, cf. [23] for a discussion on the subject.

From Algorithm 2.1 we define the approximate solution

Uh(x, t) = Un
i (x ∈ Ti, t ∈ [tn, tn+1). (2.2)

In the standard formulation of Algorithm 2.1 the exact solution of the Riemann problem
is used. This requires a complex and time-consuming subroutine. In fact –depending
on the number of phase boundaries and the mesh width– the Riemann solvers dominate
the overall computing time by far. Therefore it is highly desirable to construct a cheap
approximate solver. The construction of exact Riemann solutions and in particular its
coding is quite complicated. Moreover, in many cases an exact Riemann solver is not
available. This is our second motivation for the design of approximate solvers.
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3 Exact and Approximate Riemann Solvers for Baro-

tropic Materials

In this section we introduce the new approximate Riemann solvers using the simple ex-
ample of barotropic materials. In this case exact solvers for certain kinetic relations are
known.

3.1 The Mathematical Model and Exact Solvers

We consider the system

∂tu + ∂xp(τ) = 0,
∂tτ − ∂xu = 0 (3.1)

with pressure function p(τ) = −Ψ′(τ), where the smooth function Ψ: R → R is the free
energy. The conserved variables U = (u, τ)T are the particle velocity u and the particle
specific volume τ . The eigenvalues λ1 and λ2 of system (3.1) are given by

λ1(U) = −
√
−p′(τ) and λ2(U) =

√
−p′(τ). (3.2)

Consequently system (3.1) is strictly hyperbolic, if and only if p′(τ) < 0 for all τ ∈ R.
The system is of hyperbolic-elliptic type, if we use a non-convex free energy function Ψ.
Our standard example will be

Ψ(τ) =
1
4
τ4 − 1

2
τ2. (3.3)

For this example the system is strictly hyperbolic, if

τ ∈ Z := Z1 ∪ Z2 :=

(
−∞,−

√
1
3

)
∪
(√

1
3
,∞
)

. (3.4)

So we have U1/2 = R × Z1/2. The system (3.1) is equipped with the (mathematical)
entropy s(u, τ) given by

s(u, τ) = Ψ(τ) +
1
2
u2. (3.5)

An entropy solution of (3.1) is a weak solution, which satisfies

s(u, τ)t +
(
p(τ)u

)
x
≤ 0 (3.6)

in the sense of distributions. Assume U0 : R → U is given by

U0(x) =

{
UL = (τL, uL)T for x < 0,
UR = (τR, uR)T for x > 0. (3.7)

If we consider a Riemann problem connecting states UL = (uL, τL)T and UR = (uR, τR)T

in different hyperbolic domains, e.g.

τL ∈ Z1 and τR ∈ Z2, (3.8)

then we assume, that solutions have the self-similar structure shown in Figure 1. The
dashed lines symbolize the non-classical wave (phase boundary), the dotted lines stand
for shock waves or rarefaction waves. σ is the wave speed of the phase boundary. Without
loss of generality we can assume σ ≥ 0 in the following. This is due to the fact, that (3.1)
is frame invariant.
As long as we are searching “only” for entropy solutions of (3.1), the problem is not well-
posed for non-convex free energy functions. It is well known, that one has to supply an
additional algebraic equation, which restricts the admissible non-classical waves. In the
sequel we will call this equation kinetic relation following Abeyaratne&Knowles [1]. We
will write the kinetic relation in the form as in (1.5).
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σ

(
uL

τL

)
(

u−
τ−

) (
u+

τ+

)
(

uR

τR

)

Figure 1: Typical wave structure of a non-classical Riemann solution of
(3.1) with free energy (3.3).

Example 3.1 A simple but widely used kinetic relation associated to the energy (3.3) is
the (piecewise) linear choice

K(U−, U+) = κτ− − sign(τ−)
2κ− 1√

3
+ τ+ with κ ∈

[
1
2
, 1
)

. (3.9)

Then it is known, that the kinetic relation selects an unique entropy-consistent solution of
the Riemann problem for end states in different phases. For details on an exact Riemann
solver see [20, 21].

Example 3.2 We present an example from Abeyaratne&Knowles [3] of a non-linear ki-
netic relation. To define this kinetic relation we first introduce a so-called driving force
f , which is given by

f = f(τ+, τ−) = Ψ(τ+)−Ψ(τ−) +
1
2
(
p(τ+) + p(τ−)

)
(τ+ − τ−) . (3.10)

Using Rankine-Hugoniot conditions, the speed of the phase boundary σ ∈ R, can be ex-
pressed in terms of τ+ and τ− by

σ =

√
−p(τ+)− p(τ−)

τ+ − τ−
.

Then we can write the kinetic relation as

K(U−, U+) = V (f)− σ, (3.11)

where V : R → R is a constitutive function, which defines the wave speed in terms of the
driving force. For the physical background see [3]. As an example for V we will use in
the numerical experiments

V (f) := sign(f)
√
|f |. (3.12)

It can be shown, that any phase boundary, that satisfies (3.11) is an entropy solution in
the sense of (3.6).
In this case it is known, that the kinetic relation does not select an unique solution for
all Riemann problems. There are multiple solutions for Riemann problems of the form
UL, UR ∈ U1 (or UL, UR ∈ U2). This can be resolved by the use of a nucleation criterion,
see [20] and citations therein. In the setting uL ∈ Z1, uR ∈ Z2 (or vice versa) (3.11)
selects a unique solution.
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3.2 The Relaxation Riemann Solver

We propose to approximate the solutions of the PDE model (3.1) with phase boundaries
using a well-suited adaptation of a relaxation procedure introduced in the classical setting
of the purely hyperbolic system, i.e. for Ψ′′ ≥ 0 in (3.1).
Let us briefly recall, that within this simpler framework, the form of the relaxation model
under consideration is

∂tτ
λ − ∂xuλ = 0,

∂tu
λ + ∂xΠλ = 0,

∂tΠλ + a2∂xuλ = λ
(
pλ −Πλ

)
,

(3.13)

where a > 0 is a given real number called the relaxation wave speed and λ > 0 the
relaxation parameter. Observe that in the regime of an infinite relaxation parameter
λ →∞, we formally recover Π = p(τ), so that (3.13) boils down to the (purely hyperbolic)
barotropic system. To prevent the relaxation procedure from instability, it is known, that
the relaxation wave speed a in (3.13) must satisfy the following Whitham-like condition

a2 > max
τ

(−p′(τ)
)
, (3.14)

for all the τ under consideration. We refer the reader to [5, 9, 8, 17, 26].

−a

0

+a

 uL

τL

ΠL



 u∗L
τ∗L
Π∗

L


 u∗R

τ∗R
Π∗

R


 uR

τR

ΠR


Figure 2: Typical wave structure of the Riemann solution for (3.15).

Let us also recall, that the solution of the proposed model relies on solving the Riemann
problem for the homogeneous equations

∂tτ − ∂xu = 0,
∂tu + ∂xΠ = 0,
∂tΠ + a2∂xu = 0,

(3.15)

with initial data at equilibrium:

Ũ0(x) = (τ0, u0, Π0) (x) =

 ŨL =
(
τL, uL, ΠL = p(τL)

)T for x < 0,

ŨR =
(
τR, uR, ΠR = p(τR)

)T for x > 0.
(3.16)
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The classical Godunov method is then applied. A typical wave pattern of the Riemann
solution is depicted in Figure 2 with intermediate states given by

u∗ = u∗R = u∗L = 1
2 (uR + uL)− 1

2a (ΠR −ΠL) ,

Π∗ = Π∗R = Π∗L = 1
2 (ΠR + ΠL)− a

2 (uR − uL) ,

τ∗L = τL − 1
a (uL − u∗) ,

τ∗R = τR + 1
a (uR − u∗) .

(3.17)

We refer for example to [5, 9] for the details.
The extension of the relaxation procedure to barotropic equations with phase boundaries
is strongly motivated by the exact wave pattern depicted in Figure 1, namely with exactly
one additional (transition) wave occurring in between the two extreme waves. To take into
account this additional wave we propose to solve Riemann problems of the homogeneous
equations (3.15), but with a singular perturbation:

∂tτ − ∂xu = 0,
∂tu + ∂xΠ = 0,
∂tΠ + a2∂xu = M(UL, UR)δx−σ(UL,UR)t,

(3.18)

resulting from some Dirac-measure concentrated on the (approximate transition) wave
propagating with speed σ(UL, UR). In this paragraph we propose to predict σ(UL, UR)
according to

σ(UL, UR) = −uR − uL

τR − τL
(3.19)

and the corresponding mass M(UL, UR) according to the kinetic relation

K(U∗−, U∗+) = 0,

referring to the expected wave pattern with phase boundary depicted in Figure 3 (cf.
Proposition 3.3 below).
Consider the special case of initial data (3.7) with

K(UL, UR) = 0, − s2(uR − uL) + pR − pL = 0 and s2(τR − τL) + uR − uL = 0.
(3.20)

Then the speed σ(UL, UR) and the mass M(UL, UR) will be prescribed, such that any
given isolated phase boundary transition in the exact Riemann problem for (3.1) with a
data U0 satisfying (3.7) and (3.20) is exactly preserved by the PDE model (3.18) with
corresponding data given in (3.16) built from U0. Let us highlight, that the extended
model (3.18) accounting for possible phase boundary transitions is solely addressed, when
phase boundaries are likely to occur in the exact self similar solution, that is for data
U0(x) involving two phases. We will more precisely focus on (3.8), the other cases being
treated following similar steps. With such choice, we show

Proposition 3.3 Consider a kinetic relation K(U−, U+) = τ+ − ϕ(τ−) with strictly de-
creasing smooth function ϕ : Z1 → Z2. Let the initial datum Ũ0 be given as in (3.16)
satisfying the phase boundary assumption (3.8) and σ 6= 0 with σ defined in (3.19). As-
sume that the relaxation wave speed a is chosen large enough.
Then there are states U∗#, U∗− ∈ U1 and U∗+ ∈ U2, such that the self-similar function Ũ
defined by the wave pattern in Figure 3 provides a distributional solution of (3.18) with σ
from (3.19) and

M(UL, UR) = −σ(a2 − σ2)
(
ϕ(τ∗−)− τ∗−

)
.

Furthermore Ũ is unique in the set of functions of this wave pattern. Ũ assumes the initial
data from (3.16) in the weak sense.
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−a

0 σ > 0

+a

 uL

τL

ΠL



 u∗#
τ∗#
Π∗

#



 u∗−
τ∗−
Π∗−

  u∗+
τ∗+
Π∗

+


 uR

τR

ΠR


(a) σ > 0

−a

0σ < 0

+a

 uL

τL

ΠL



 u∗#
τ∗#
Π∗

#



 u∗+
τ∗+
Π∗

+

 u∗−
τ∗−
Π∗−


 uR

τR

ΠR


(b) σ < 0

Figure 3: Typical wave pattern of Riemann solutions for (3.18).

Proof. Assume for the proof σ > 0, the case σ < 0 is done in the same way. The proof is
done in two steps. First we follow the weak solution structure given in Figure 3 and set
up a system of 8 linear and one non-linear equations for the unknown states displayed in
Figure 3. Then we show, that the system we found is uniquely solvable.
By construction (3.18) has only solutions of the form given in Figure 3. Considering the
Rankine-Hugoniot conditions for the different waves we find for the waves travelling with
speed −a and +a

ΠL + auL = Π∗# + au∗#,
ΠL + a2τL = Π∗# + a2τ∗#,
ΠR − auR = Π∗+ − au∗+,
ΠR + a2τR = Π∗+ + a2τ∗+.

(3.21)

The conditions for the stationary wave are

u∗# = u∗− and Π∗# = Π∗−. (3.22)

From the wave given by the Dirac measure we get the restrictions

σ
(
τ∗+ − τ∗−

)
= − (u∗+ − u∗−

)
,

σ
(
u∗+ − u∗−

)
= Π∗+ −Π∗−,

σ
(
Π∗+ −Π∗−

)
= a2

(
u∗+ − u∗−

)−M(UL, UR).
(3.23)
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The last equation of (3.23) is equivalent to

τ∗+ = ϕ
(
τ∗−
)

by using the definition of M(UL, UR) and the first two equations in (3.23). If ϕ is linear
for instance take (3.9), then the whole set of equations becomes linear with determinant
given by

a3

(
2κa2 − (1 + κ)

(
aσ + σ2

))
> 0

(
1
2
≤ κ ≤ 1

)
, (3.24)

provided a is sufficient large. We thus have existence and uniqueness in the class of
functions with wave pattern displayed in Figure 3.
In the non-linear case we can solve the linear part and reduce the problem to a scalar
equation for the remaining unknown τ∗− in the form

ϕ(τ∗−) = C(a)τ∗− + D(a). (3.25)

Here C(a) and D(a) are given by

C(a) = − σ2 + σa

2a2 − σa− σ2
and D(a) =

p(τR)− p(τL) + a(uR − uL) + 2a2τR

2a2 − σa− σ2
.

For a →∞ we get

C(a) < 0, C(a) → 0 and D(a) → τR. (3.26)

With these properties and ϕ′ < 0 we conclude, that the function given by

τ 7→ ϕ−1
(
C(a)τ + D(a)

)
is a contraction for a large enough and thus has a unique fixed point. In other words we
get a unique solution of the equations (3.21), (3.22) and (3.23). �

The following consistency result for isolated phase boundaries is a direct consequence of
Proposition 3.3.

Corollary 3.4 Let Ũ0 be given as described in (3.16) satisfying (3.20), so that the ex-
act Riemann solution for (3.1) is made of a single phase boundary travelling with speed
σ(UL, UR). Assume further, that the chosen kinetic relation selects a unique solution.
Then the Relaxation Riemann (RR) solution of (3.18) given in Proposition 3.3 reads

Ũ

(
x

t

)
=

{
ŨL : x < σ(UL, UR)t,
ŨR : x > σ(UL, UR)t.

Therefore, the first two components of Ũ coincide with the exact Riemann solution of
(3.1).

It remains to study the behavior of the Relaxation Riemann (RR) solver at σ = 0. Let
us understand the RR solver from Proposition 3.3 as a mapping

P ′ : (uL, τL, uR, τR) 7→ (u∗−, τ∗−, u∗+, τ∗+).

This definition of the RR solver is not continuous at σ = 0, since we have in the limit
ϕ
(
τ∗−
)

= τ∗+ for a sequence of initial data satisfying σ > 0, but ϕ
(
τ∗+
)

= τ∗− for σ < 0.
The reason for the discontinuity is the wave pattern. We assumed for σ > 0 in total 4
waves, but at σ = 0 they degenerate to 3 waves. A solver of the form (for σ > 0)

P ′′ : (uL, τL, uR, τR) 7→
{

(u∗#, τ∗#, u∗+, τ∗+) for σ > 0,

(u∗−, τ∗−, u∗#, τ∗#) for σ < 0

10



would be much more accurate for σ → 0 and continuous at σ = 0.
The numerical experiments in the rest of the paper rely on the following defintion of a
relaxation Riemann solver:

Definition 3.5 Let δ : R → [0, 1] be a continuous function with limσ→±∞ δ(σ) = 0 and
δ(0) = 1. The mapping

P : (uL, τL, uR, τR) 7→ (1− δ(σ))P ′(uL, τL, uR, τR) + δ(σ)P ′′(uL, τL, uR, τR), (3.27)

is called Relaxation Riemann (RR) solver. In the following numerical experiments we
will use

δ(σ) =
1

e− 1

(
exp

(
1

1 + 100σ2

)
− 1

)
.

3.2.1 A Numerical Experiment: Basic Performance

We test the RR solver plugged into Algorithm 2.1 from Section 2. Instead of the trace
values of the exact Riemann solver, namely U− and U+, we now use the values U∗− and U∗+,
which are calculated by the relaxation Riemann solver from Definition (3.5). In Figure 4
we plotted the L1((0, 0.1); L1(−1, 1)) and L1((0, 0.1); L2(−1, 1))-errors for four Riemann
problems (named RP1, RP2, RP3 and RP4). The four Riemann problems are

 0.001

 0.01

 0.1

 1

 20  40  80  160  320  640

RP1
RP2
RP3
RP4

(a) L1(L1)-Error.

 0.01

 0.1

 1

 10

 20  40  80  160  320  640

RP1
RP2
RP3
RP4

(b) L1(L2)-Error.

Figure 4: Error for different Riemann problems solved with the RR
solver on uniform meshes with 20 to 640 cells.

RP1: UL =

(
0
−1

)
, UR =

(
0
2

)
RP2: UL =

(
0
−3

)
, UR =

(
−7
√

12
3

)

RP3: UL =

(
0
−4

)
, UR =

(
−7
√

12
3

)
RP4: UL =

(
0

−1.2

)
, UR =

(
0.5
1.2

)
.

We use the linear kinetic relation from Example 3.1 with κ = 3
4 . All different wave types

appear in the set of Riemann problems: RP3 is an isolated phase boundary, RP1 contains
a rarefaction wave, a phase boundary and a shock wave. One can clearly see, that the
tracking-type algorithm converges. The experimental order of accuracy is approximately
0.8 for the L1(L1)-norm and 0.45 for the L1(L2)-norm.
The RR solver based scheme seems to converge. But in terms of efficiency we will see in
Section 3.4.2, that the RR solver is not preferable in contrast to an exact Riemann solver
known for this simple model. By efficiency, we again mean the run-time required to stay
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below a prescribed error threshold. In the following subsections we suggest therefore two
iterative procedures, which use the RR solution given by (3.21), (3.22) and (3.23) and
(3.19) and produce a more accurate solution. We will see in Section 3.4.2, that from an
efficiency point of view, these approaches should be favored.

3.3 Enhancing the Relaxation Riemann Solver by Sub-Iteration

Algorithm 2.1 requires values for traces at phase boundaries as they appear in solutions
of Riemann problems. In the previous Section 3.2 we introduced the approximative RR
solver and used traces from the RR solution at the phase boundary in Algorithm 2.1. In
this section we will propose a sub-iteration technique to improve the quality of the RR
approximation. It turns out that these enhanced approximations finally lead to the most
efficient variants of Algorithm 2.1.
The sub-iteration follows the subsequent general concept. Consider the Riemann problem
(3.1), (3.7) and the corresponding RR solution with trace values U∗± depending on UL, UR.
For the sub-iteration procedure we will introduce mappings Q : U1 × U2 → U1 × U2. A
sequence of approximate trace values {(U∗,l− , U∗,l+ )}l∈N0 is then obtained by the formula(

U∗,l+1
−

U∗,l+1
+

)
= Q

(
U∗,l−
U∗,l+

)
,

(
U∗,0−
U∗,0+

)
=

(
UL

UR

)
. (3.28)

In the sequel we suggest two choices for mappings Q which lead to two different iterative
procedures. It is interesting to note that one of the constructed sequences {(U∗,l− , U∗,l+ )}l∈N0

seems to converge even towards the exact traces (U−, U+) as the number of sub-iterations
increases (cf. Example 3.9 in Section 3.3.2).
In what follows it is convenient to use the functional notations

U∗± = P±(UL, UR),

for the approximate phase boundary traces computed by the RR solver P from (3.27)
together with and as before

σ = σ(UL, UR) = −uR − uL

τR − τL
. (3.29)

For all numerical experiments using (3.28) the iteration is stopped if either the difference
from last iteration is smaller than some tolerance ε > 0 or the iteration count is less than
a given integer N .

3.3.1 Sub-Iteration with Numerical Fluxes

Let us denote the flux in (3.1) by F (U) = (p(τ),−u)T . For some r ∈ R let Fr : (U1 ×
U1) ∪ (U2 × U2) → Rm be a numerical flux function consistent with the shifted flux
Fr(U) := F (U) − rU . In the present work, a Lax-Friedrichs type of numerical flux
function is chosen :

Fr(V, W ) =
1
2
(Fr(V ) + Fr(W )

)
+

1
2γ

(V −W ) , V, W ∈ (U1 × U1) ∪ (U2 × U2).

Here we used γ = 1
2

(
max

{
λ2(V ), λ2(W )

}
+ |r|

)−1

. Now, for given number α > 0,
iterates are computed by applying (3.28) with the mapping

Q

(
U1

U2

)
=

 U1 + α
(
Fσ(U1, U1)−Fσ

(
U1, P−(U1, U2)

))
U2 + α

(
Fσ

(
P+(U1, U2), U2

)−Fσ(U2, U2)
)
 , (3.30)
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with σ given in (3.29). If (3.20) holds, the pair (UL, UR) is a fixed point for (3.28), (3.30).
The mapping Q mimics a finite-volume scheme on a ”two-cell micro-scale mesh”. The
free constant α > 0 is used to trigger a stable sequence similar to stabilizing an explicit
finite-volume scheme by Courant-Friedrichs-Levy conditions.
In the following we will call this approach Relaxation Riemann solver with sub-iterations
using a Finite Volume approach, short RR-sub-FV.

Remark 3.6 The RR-sub-FV solver does not use particular properties of the barotropic
system (3.1). Therefore it can be applied in connection with an appropriate approximate
Riemann solver to initial value problems for arbitrary systems (1.1). We refer to Section 4
for an application in the framework of non-barotropic materials.

3.3.2 Sub-Iteration in State Space

For this approach we rely on wave curves emerging from the states UL, UR in the two-
dimensional state space U . It uses some structural properties of the barotropic system
(3.1) which we review in short. It is well-known [18], that the forward 1-rarefaction curve
starting in UL ∈ U1 can be parameterized using the specific volume τ for τ ≥ τL. It is
expressed by

u′(τ) = −
√
−p′(τ) and u(τL) = uL.

The forward Rankine-Hugoniot locus for 1-shock waves satisfies

u(τ) = uL +
1

s(τL, τ)
(
p(τ) − p(τL)

)
, s(τL, τ) = −

√
−p(τ)− p(τL)

τ − τL
, τ ≤ τL.

The description of the forward 1-waves –regardless whether rarefaction or shock wave
but including entropy admissibility– can then be rewritten in the compact form using
generalized eigenvectors:

U ′1(τ) = g1(τL, τ) :=

 1
2

(
p′(τ)

s1(τL,τ) − s1(τL, τ)
)

1

 , U(τL) = UL. (3.31)

Here s1 is given by

s1 = s1(τL, τ) =

 −√−p′(τ) for τ ≥ τL,

−
√
− p(τ)−p(τL)

τ−τL
for τ < τL.

In case of backward 2-curves emanating from UR a similar compact form for the param-
eterization can be obtained:

U ′2(τ) = g2(τ, τR) =

 1
2

(
p′(τ)

s2(τ,τR) − s2(τ, τR)
)

1

 , U(τR) = UR, (3.32)

with

s2 = s2(τ, τR) =


√−p′(τ) for τ ≥ τR,√
− p(τR)−p(τ)

τR−τ for τ < τR.

To introduce the sub-iteration let us now consider for ξ ≥ 0 the ordinary initial value
problem(

U ′1(ξ)

U ′2(ξ)

)
=

( (
τ∗−(ξ)− τ1(ξ)

)
g1

(
τL, τ1(ξ)

)(
τ∗+(ξ)− τ2(ξ)

)
g2

(
τ2(ξ), τR

) ) ,

(
U1(0)

U2(0)

)
=

(
UL

UR

)
, (3.33)
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with unknowns U1(ξ) =
(
u1(ξ), τ1(ξ)

)T and U2(ξ) =
(
u2(ξ), τ2(ξ)

)T . Note that τ∗−(ξ) and
τ∗+(ξ) are the τ -components of P±

(
U1(ξ), U2(ξ)

)
given by the RR solver.

Using Corollary 3.4 it is obvious that any pair of states (U−, U+) that satisfies the kinetic
relation (1.5) is a rest point of (3.33). Since both g1 and g2 never vanish the set of rest
points is given exactly by the set of states that solve (1.5). It is hard to see that the flow
of (3.33) is (globally) attractive but at least we can present a consistency result.

Proposition 3.7 For (UL, UR) ∈ U1 ×U2 assume that (3.1), (3.7) has a unique solution
with phase boundary traces U− and U+ that satisfy a kinetic relation (1.5)(see Figure 1).
Furthermore let there be a global solution (U1, U2) : [0,∞) → U1×U2 of (3.33) and a pair
(W−, W+) ∈ U1 × U2 such that(

W−
W+

)
= lim

ξ→∞

(
U1(ξ)
U2(ξ)

)
(3.34)

holds.
Then we have W± = U±.

Proof. By construction the state UL is connected by a forward 1-wave to U1(ξ) for all
ξ > 0, thus by (3.34) also to W−. In the same way a backward 2-wave connects UR with
W+. The proof is now a direct consequence of Corollary 3.4. �

Finally we can define iteration mappings Q as needed in (3.28) by discretizing the initial
value problem (3.33). In the numerical experiments a fourth order Runge-Kutta method is
used. In the following the step size is denoted by ∆ξ. We will call the method Relaxation
Riemann solver with sub-iterations using Generalized Eigenvectors, or for short RR-sub-
GE.

Remark 3.8 Instead of generalized eigenvectors we can also use eigenvectors in (3.33).
In this case one cannot expect to converge to the correct solution as analyzed above in
Proposition 3.7. However embedding this approach into Algorithm 2.1 leads to good
results, see numerical experiments in Section 3.4.1. This method is called Relaxation
Riemann solver with sub-iterations using Eigenvectors, or for short RR-sub-E.

Table 1: Mean and maximum errors comparing the RR-sub-GE ap-
proach to trace values of the exact Riemann solution for different pa-
rameter sets.

∆ξ ε N av. N mean u max u mean τ max τ

0.4 10−2 25 11.8 0.175147 3.300120 0.021796 0.201660
0.2 10−3 50 36.9 0.015614 0.301569 0.007902 0.078560
0.1 10−4 200 117. 0.005125 0.021660 0.005244 0.057971

Example 3.9 In Table 1 we study the convergence properties of the RR-sub-GE solver
what concerns the trace values at the phase boundaries. The dependence on the iteration
parameters ∆ξ, ε and N is illustrated.

We use the linear kinetic relation (3.9) with κ = 3
4 . Without loss of generality we

choose uL = 0. The other variables are chosen from uR ∈ [−1, 1], τL ∈ [−2,−0.7] and
τR ∈ [0.7, 2] in an equidistant way to get J := 1331 different Riemann problems. Due to
the fact, that τL and τR lie in different phases, we always deal with Riemann solutions
with phase boundary. Finally we calculate the mean and the maximum error over this set,
which are defined by

max τ := max
1≤j≤J

∣∣∣τ∗−(j)
− τ−(j)

∣∣∣+ ∣∣∣τ∗+(j)
− τ+(j)

∣∣∣
14



and
mean τ :=

1
J

∑
1≤j≤J

∣∣∣τ∗−(j)
− τ−(j)

∣∣∣+ ∣∣∣τ∗+(j)
− τ+(j)

∣∣∣ .
The index j ∈ J parameterizes the different examples. Analogous definitions are used for
max u and mean u. The column “av. N” gives the average number of iterations needed
to satisfy one of the stopping criteria.
This numerical result and Proposition 3.7 are strong arguments, that the RR-sub-GE
solver leads to convergence to the trace values of the exact Riemann solution!

3.4 Numerical Experiments

In this section we test the approximate Riemann solvers RR, RR-sub-FV, RR-sub-GE and
RR-sub-E with respect to accuracy and computational efficiency when used in Algorithm
(2.1) to solve arbitrary initial value problems. The first experiment is an exception as it is
devoted to the comparison of the approximation quality for phase boundary trace values.

3.4.1 Approximate Riemann Solvers and Traces at the Phase Bound-
ary

Table 2: Mean and maximum errors for different parameter sets.
(a) In this experiment we used ∆ξ = 0.2, ε = 10−3 and N = 50.

mean u max u mean τ max τ

RR 1.482390 7.224300 1.809490 10.000000
RR-sub-FV 1.125550 9.652720 0.297517 1.257820
RR-sub-GE 0.015614 0.301569 0.007902 0.078560
RR-sub-E 0.015718 0.301569 0.007614 0.078560

(b) In this experiment we used ∆ξ = 0.1, ε = 10−3 and N = 200.

mean u max u mean τ max τ

RR 1.482390 7.224300 1.809490 10.000000
RR-sub-FV 1.082170 9.651910 0.298076 1.258090
RR-sub-GE 0.005125 0.021660 0.005244 0.057971
RR-sub-E 0.005296 0.021660 0.004954 0.057971

We compare the trace values at phase boundaries given by the different approximate
Riemann solvers proposed in the last sections. To this end we build the exact Riemann
solution along with the self-similar functions coming out of the proposed approximate
Riemann solvers and then compare point-wisely the resulting traces. The experimental
set-up and notations are identical to the ones in Example 3.9.
Note that what is expected is an improvement of the accuracy when using the iterative
procedure, but not at all a convergence of the approximate trace values to the traces of
the phase boundary of the exact Riemann problem solution for all approaches.
From Table 2 (and Example 3.9) it seems to be clear, that we should prefer to use the
RR-sub-GE method in Algorithm 2.1. But in the following we will see, that RR-sub-FV
approach can be applied in more general settings and gives indeed comparable results.
We conclude with a minor comment on the results displayed in Table 2: If the 1-wave
and the 2-wave are rarefaction waves, the methods RR-sub-GE and RR-sub-E coincide.
In Table 2(a) the maximal error of the two methods (both using the same fourth order
Runge-Kutta method) matches perfectly. Probably the Riemann data corresponding to
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the computations with the maximal error leads to a solution containing two rarefaction
waves.

3.4.2 Tracking Algorithm 2.1 with Approximate Riemann Solvers for
Two-Phase Initial Datum

In this section we want to test Algorithm 2.1 together with the approximate Riemann
solvers, we have constructed. As a test problem we consider again a Riemann problem on
the computational domain (−1, 1) with

UL =

(
0.0

−1.2

)
and UR =

(
−0.5

1.0

)
, (3.35)

and a linear kinetic relation (3.9) with κ = 3
4 .

In Figure 5 one can clearly see the differences between the RR solver and the enhanced
methods. The RR solver produces a “non-monotonic” solution, but all other methods do
not have over- or under-shoots at the 1- and 2-waves. Between the enhanced methods
there is no eye-catching difference.

Energy/Entropy Stability: For the same experiment we also measured the time
evolution of the total energy/entropy in the system, which is given by

Eh(t) =
∫ 1

−1

s(uh(x, t), τh(x, t)) dx + p(τh(1, t))uh(1, t)− p(τh(−1, t))uh(−1, t), (3.36)

with Uh = (uh, τh)T defined as in (2.2). Figure 6 shows the result – a monotonic decaying
function in time.
Two additional points deserve attention. For the RR solver initially there is a short time
span, which the algorithm needs to get close to the correct solution. After that time span
the error lines for all the proposed methods stay parallel. They arise at times when the
algorithm pushes the phase boundary one cell further.
Run-Time Comparison: In Figure 7 we compare the run-time of the overall method

for the different Riemann solvers. The relaxation Riemann solver (RR) is only for coarse
grids a good choice. For fine grids all other Riemann solvers are clearly superior. The
enhanced approximate Riemann solvers produce approximately the same errors, but differ
in runtime. This difference gets smaller with finer grids, since the work needed for the
finite-volume scheme in the bulk phases increases faster, than work on the Riemann
problem. The RR-sub-FV solver seems to be the fastest one.

3.4.3 Tracking Algorithm 2.1 with Approximate Riemann Solvers for
Phase-Distincting Initial Datum

Let us interpret (3.1) as a model for an elastic bar, i.e. τ stands for strain and −p for
the stress function. Although Algorithm 2.1 is not capable of phase nucleation, phase
distinction is possible. In our experiment with the RR solver we assume an elastic bar to
be fixed at the top and a weight to be is installed at the bottom. In Figure 8 we can see
the length of the elastic bar evolving in time. The colors indicate the different phases. We
compare different linear kinetic relations and different weights. We use linear kinetic re-
lations of the form K(UL, UR) = κτL + τR or κ ∈ { 1

2 , 9
10

}
. Initially u = 0 and τ ∈ {−1, 1}

with in total 4 phase boundaries. At the upper boundary we use the conditions u = 0
and τ ′ = 0. At the lower boundary we use u′ = 0 and p(τ) = p0, where p0 = 0.32 for the
low weight and p0 = 0.5 for the heavy weight.
The experiment shows that phase distinction can be simulated by our approach. It de-
pends sensitively on the choice of kinetic relation.
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Figure 5: Comparing different Riemann solvers. Parameters are chosen
as ∆ξ = 0.2, ε = 10−3 and N = 50. The numerical solution is plotted
in red, the exact in green (dashed line). We skipped the τ -plot for RR-
sub-GE and RR-sub-E solvers, since there is no visible difference to the
RR-sub-FV solver. We used a mesh with 320 cells.
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Figure 6: Decay of total energy Eh for overall scheme with RR (red),
RR-sub-GE (green) and RR-sub-FV (blue) solvers.

3.4.4 Tracking Algorithm 2.1 with Approximate Riemann Solvers Us-
ing a Non-linear Kinetic Relation

We demonstrate, how the new Riemann solver works with non-linear kinetic relations.
We consider the kinetic relation (3.12) given in Example 3.2 from Section 3.1.
Figure 9 displays the results for a Riemann problem. The initial conditions are chosen as

in (3.35). If we compare the results with those displayed in Figure 5, then we can observe
a similar behavior. We indeed have a “non-monotonic” behavior for the approximate
Riemann solver and a “monotonic” one for the others. Note that for this nonlinear
kinetic relation an exact Riemann solver is not available.

4 Relaxation Riemann Solvers for Thermoelastic Ma-

terials

4.1 The Mathematical Model

We extend the barotropic system (3.1) to the thermoelastic situation with the special free
energy

Ψ = Ψ(τ, θ) =
1
4
τ4 − 1

2
bτ2(θ − θ0)− cθ log

(
θ

θ0

)
, (4.1)

where θ > 0 is the temperature. Next to the constants c,−b > 0 we denote by θ0 > 0
the critical temperature. We consider the subcritical situation θ < θ0 such that the free
energy Ψ(·, θ) has double-well structure, being convex for

τ ∈ Z := Z1 ∪ Z2 :=

(
−∞,−

√
b(θ − θ0)

3

)
∪
(√

b(θ − θ0)
3

,∞
)

. (4.2)

With (4.1) the specific entropy η = η(τ, θ) and the pressure p = p(τ, θ) are given through

η(τ, θ) = −Ψθ(τ, θ),
p(τ, θ) = −Ψτ (τ, θ).
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Figure 7: Runtime-error comparison for overall scheme with RR (green),
RR-sub-GE (blue), RR-sub-FV (pink)solvers and an exact Riemann
solver (red).

With the internal energy e = Ψ + ηθ and the total energy E = e + u2/2 a thermoelastic
process for unknown U = (u, τ, E)T is governed by the equations

∂tu + ∂xp(τ, θ) = 0,
∂tτ − ∂xu = 0,
∂tE + ∂x(p(τ, θ)u) = 0.

(4.3)

It is easy to verify that (4.3) is strictly hyperbolic in

U1/2 = {(u, τ, E)T |u ∈ R, τ ∈ Z1/2, θ ∈ (0, θ0)},

where we consider θ as a function of U :

θ(u, τ, E) =
1
c

(
E − u2

2
− 1

4
τ4 − 1

2
bτ2θ0

)
.

The solution of a Riemann problem for (4.3) with data in different phases is expected to
have a wave-structure as shown in Figure 10 for positive phase boundary speed.

To ensure uniqueness a kinetic relation has to be supplemented. We consider the
(temperature-independent) relation from Example 3.1. A non-linear and temperature
dependent example (cf. Abeyaratne&Knowles [3]) is provided by (3.11) if (3.10) is now
defined by

f = Ψ+ −Ψ− +
1
2

(p+ + p−) (τ+ − τ−) +
1
2

(η+ + η−) (θ+ − θ−) . (4.4)

4.2 Relaxation Approximation and Sub-Iteration

The relaxation approximation (3.13) for thermoelastic materials we consider hereafter is
described in [9] in the case of purely hyperbolic models. It closely follows the strategy
proposed in the barotropic setting considering a relaxation pressure Π governed by its
own PDE with stiff relaxation. We also refer for a complementary presentation to [5, 8].
Extension of the proposed relaxation procedure to the framework of materials with phase
transition is again motivated by the wave structure of non-classical Riemann solutions
displayed in Figure 10. One additional wave accounting for phase transition is indeed
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(a) κ = 1
2
, low weight. (b) κ = 9

10
, low weight.

(c) κ = 1
2
, heavy weight. (d) κ = 9

10
, heavy weight.

Figure 8: Simulation of a hanging elastic bar (vertical axis corresponds
to space, horizontal axis to time!) with different kinetic relations. The
colors scale with the stress value.

introduced when required, considering the following PDE system with singular perturba-
tion:

∂tu + ∂xΠ = 0,
∂tτ − ∂xu = 0,
∂tE + ∂xΠu = M(UL, UR)δx−σ(UL,UR)t,
∂tΠ + a2∂xu = 0.

(4.5)

A Dirac measure is concentrated on an approximate transition wave propagating with
speed σ(UL, UR) given by

σ(UL, UR) = −uR − uL

τR − τL
,

while the corresponding mass M(UL, UR) is prescribed so as to fulfill the kinetic relation.
The solution of the Riemann problem for (4.5) has the wave structure shown in Figure 11.
The jump conditions (3.21), (3.22) and (3.23) introduced in the barotropic setting in
Section 3.2 are again obviously in order. Then and concerning the jump conditions for
governing the intermediate total energies, it can be easily checked from (3.21) that the
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(b) RR-sub-FV (RR-sub-GE and RR-sub-E)

Figure 9: Comparing different approximate Riemann solvers for a non-
linear kinetic relation. Parameters are chosen as ∆ξ = 0.2, ε = 10−3

and N = 50. The numerical solution is plotted in red (solid line), the
exact in green (dashed line). We skipped the plots for RR-sub-GE and
RR-sub-E methods, since there is no visible difference to the RR-sub-FV
version. We used a grid with 320 cells.

two extreme waves obey the following jump relations:

±a

[
u2

2
+

Π
2a2

]
+ [Πu] = 0,

together with
±a [E] + [Πu] = 0.

We thus readily infer the following formulae

E∗# − 1
2u∗#

2 − 1
2a2 Π∗#

2 = EL − 1
2uL

2 − 1
2a2 ΠL

2,

ER − 1
2uR

2 − 1
2a2 ΠR

2 = E∗+ − 1
2u∗+

2 − 1
2a2 Π∗+

2.
(4.6)

At the approximate transition wave, we easily get :

σ
(
E∗+ − E∗−

)
= Π∗+u∗+ −Π∗−u∗−. (4.7)

If we are in the case of a kinetic relation, which is independent of the temperature, then
we are finished by now since the jump conditions for the total energy stay completely
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Figure 10: Wave structure of a Riemann solution of (4.3)for tho-phase
initial datum.
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Figure 11: Wave structure of an approximate Riemann solution of (4.3)
for two-phase initial datum.

from the others. In other words, the formulae (3.17), Section 3.2, for defining u∗−, τ∗−, Π∗−,
u∗+, τ∗+ and Π∗+ are kept unchanged. It then suffices to plug these formulae in (4.6) and
(4.7) to calculate E∗− and E∗+.
In the remaining section we have a closer look at kinetic relations, which depend on E−
and E+ (as (3.11) with (4.4)). In this case we first solve the linear equations (3.21), (3.22)
and (3.23) to get a one-dimensional solution space, which we can linearly parameterize
by a variable s. By (4.6) and (4.7) we get quadratic polynomial formulas for E∗− = E∗−(s)
and E∗+ = E∗+(s). All together it remains to solve the kinetic relation, which has the form

K(U∗−(s), U∗+(s)) = 0, (4.8)

where U∗± =
(
u∗±, τ∗±, E∗±

)T . Even if the kinetic relation K is linear, we have to solve a
quadratic equation. From computations with the above-mentioned example it seems to be
that choosing a big enough ensures the unique solvability in the hyperbolic phase space.

For the sake of improvement the relaxation solver can be used in combination with
sub-iterative methods as introduced in Section 3.3. However let us point out that only
the versatile RR-sub-FV version is applicable as the RR-sub-GE/RR-sub-E methods rely
on special properties of the barotropic system.
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4.3 Numerical Experiments

For thermoelastic materials with the proposed kinetic relations we are not aware of com-
plete exact Riemann solutions. Therefore this section is not devoted to the analysis of
our numerical approach but serves merely as way to gain more understanding on the
thermoelastic Riemann problem.
Let us have a look at the Riemann problem with initial conditions
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Figure 12: Riemann problem (4.9) solved with RR solver for three
equidistant grids with 80, 320 and 1280 volumes.

UL =

 1.5
−τM − 0.3

EL

 and UR =

 0.0
τM + 0.3

ER

 . (4.9)

The state τM > 0 is a Maxwell-state given by τM =
√

b (θ − θ0). The total energies EL/R

are chosen such that such that θL = θ∗ and θR = θ∗ + 1.5 holds. The parameters are

θ∗ = 280.0, θ0 = 300.0, c = 10.0 and b = − 1
30

. (4.10)

In the first example we use the kinetic relation

τ+ = −κτ− with κ =
3
4
. (4.11)

The overall scheme converges to the same function for the RR as well as the RR-sub-FV
solver, see Figures 12 and 13. Figure 12 shows the over-all schemes for different grids.
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Figure 13: Riemann problem (4.9) solved with RR-sub-FV solver for a
equidistant grid with 320 volumes.

As in the barotropic case we observe over/undershoots for the RR solver, while the RR-
sub-FV solver behaves monotonically. As expected we observe a solution made up of four
waves. Note that the phase boundary and the contact discontinuity are sharply captured.
The latter property is due to the fact that we use a relaxation numerical flux in the bulk
phase which exactly captures contact discontinuities at rest.

In the next example we have constructed an exact solution of a Riemann problem,
involving only two waves. It consists of a shock connecting UL to UM and a phase
boundary connecting UM to UR. The exact values are

UL =

 uL

τL

EL

 =


√

8737338
1202−1

3226225
1202

 , UM =

 uM

τM

EM

 =

 0
−2

2684


and

UR =

 uR

τR

ER

 =


(
− 7

18212988 + 1
54638964

√
3
)√

190106437188982− 13135845917929
√

3
1
6

(
9−√3

)
877339726147

327833784 + 33039211
9106494

√
3

 .

The results are plotted In Figure 14. In the numerical solution there are relicts of the
contact discontinuity and the 3-wave (the so-called wall-heating phenomenon [24]). Nev-
ertheless the method seems to converge to the correct solution as already observed in the
classical Lagrangian setting.
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Figure 14: Initial value problem solved with RR-sub-FV (green) with
reference solution (red).
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Basel, 2002.

[19] P. G. LeFloch, J. M. Mercier, and C. Rohde. Fully discrete, entropy conservative
schemes of arbitrary order. SIAM J. Numer. Anal., 40(5):1968–1992, 2002.

[20] P. G. LeFloch and M. D. Thanh. Non-classical Riemann solvers and kinetic rela-
tions. II. An hyperbolic-elliptic model of phase-transition dynamics. Proc. Roy. Soc.
Edinburgh Sect. A, 132(1):181–219, 2002.

[21] J.-M. Mercier and B. Piccoli. Admissible Riemann solvers for genuinely nonlinear
p-systems of mixed type. J. Differential Equations, 180(2):395–426, 2002.

[22] C. Merkle and C. Rohde. Computation of dynamical phase transitions in solids.
Appl. Numer. Math., 56(10-11):1450–1463, 2006.

[23] C. Merkle and C. Rohde. The sharp-interface approach for fluids with phase change:
Riemann problems and ghost fluid techniques. M2AN Math. Model. Numer. Anal.,
41(6):1089–1123, 2007.

[24] W. Noh. Errors for calculations of strong shocks using an artificial viscosity and an
artificial heat flux. Journal of Computational Physics, 72(1):78 – 120, 1987.

[25] V. Perrier. A conservative method for the simulation of the isothermal euler system
with the van-der-waals equation of state. Journal of Scientific Computing, 48:296–
303, 2011. 10.1007/s10915-010-9415-9.

[26] I. Suliciu. On the thermodynamics of rate-type fluids and phase transitions. I. Rate-
type fluids. International Journal of Engineering Science, 36(9):921 – 947, 1998.

[27] L. Truskinovsky. Kinks versus shocks. In Shock induced transitions and phase struc-
tures in general media, volume 52 of IMA Vol. Math. Appl., pages 185–229. Springer,
New York, 1993.

[28] X. Zhong, T. Y. Hou, and P. G. LeFloch. Computational methods for propagating
phase boundaries. J. Comput. Phys., 124(1):192–216, 1996.

26


