N
N

N

HAL

open science

Accuracy of a Maximum Likelihood Phylogeny
Reconstruction
David Defour

» To cite this version:

David Defour. Accuracy of a Maximum Likelihood Phylogeny Reconstruction. [Research Report]

010030, LIRMM. 2010. hal-00726409

HAL Id: hal-00726409
https://hal.science/hal-00726409
Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00726409
https://hal.archives-ouvertes.fr

Accuracy of a Maximum Likelihood Phylogeny
Reconstruction

David Defour!

ELIAUS, Université de Perpignan, 66860 Perpignan, France
{david.defour } @univ-perp.fr

Abstract. We present an accuracy analysis of the Maximum Likelihood
Phylogeny Reconstruction kernel used in PhyML. Historically, PhyML
was relying on double precision arithmetic to avoid rounding error as
well as to minimize the number of underflow. However double precision
arithmetic necessitates more memory and computational resources than
single precision. This concerns is particularly important when considering
an execution on a multicore architecture such as a GPU. This article
provides a numerical analysis of the likelihood kernel executed in PhyML.
Based on this analysis, solutions to minimize the impact of rounding error
and underflow are proposed.

1 Introduction

GPUs are now powerful and programmable processors that have been used to
accelerate general-purpose tasks other than graphics applications. These pro-
cessors rely on a Single Program Multiple Data (SPMD) programming model.
This model is carried out by many vector units working in a Single-Instruction
Multiple-Data (SIMD) fashion, and vector register files. To get speedup with such
hardware, considered applications have to perform many operations on huge set
of independent data. Phylogenetic reconstruction software based on maximum
likelihood belongs to this category. However porting such an application on this
kind of architecture is not straightforward.

Numerical accuracy has been a critical issue when considering a port of an
application for a GPU execution. For many years GPUs were lacking floating-
point standard compliance and double precision arithmetic. However things have
changed with the newest generations of GPU, such has FERMI[1]. Recent GPU
are now exposing high computational capabilities in double precision (dp) com-
pared to single precision (sp). There are IEEE 754-2008 compliant and are among
the few processors to provide FMA and hardware support for denormal numbers.
All these features have an important impact on the accuracy of numerical com-
putation. However double precision numbers are expensive in terms of memory,
register usage and bandwidth requirement. On such architecture dp numbers
have to be used with parsimony as register usage is a critical issue. The number
of hardware registers and the register usage per instance directly impact the
number of instance of the same kernel that can be executed simultaneously.

This paper proposes to conduce a numerical analysis of kernel that evalu-
ates maximum likelihood in PhyML in order to investigate the relevance of a
port on GPU. The rest of this article is organized as follow. Section 2 gives an
introduction on Phylogenetic reconstruction based on maximum likelihood. In
section 3 we are providing a worst-case numerical analysis. The previous analy-
sis is completed in section 4 with measures of PhyML execution on benchmarks.
In section 5 we are proposing solutions to overcome numerical underflow and
rounding error.

2 Likelihood evaluation of a given phylogeny

Phylogenetic attempts to reconstruct, from data about a collection of modern
species, a plausible evolutionary history for the group, a history that is most
often represented by a bifurcating (binary) tree, called a phylogeny. Phyloge-
netic softwares are essential tools in the pharmaceutical industry. There exist
several techniques for phylogeny reconstruction, which presents different trade-
off between speed and accuracy. Among them, techniques based on Maximum
Likelihood (ML) with software such as PhyML or RAXML have shown that there
are well suited for phylogeny inference out of nucleotide or amino acid sequences.

In this paper we consider PhyML (2], [3] a software based on a hill-climbing
algorithm where the tree topology and branch lengths of a unique tree are si-
multaneously and iteratively modified such that each modification increases the
tree likelihood until an optimum is reached. With PhyML model parameters
(transition/transversion ratio, gamma shape parameter) are adjusted along the
computation. Among all the steps involve in PhyML, the likelihood evaluation
is the most time consuming part as it usually take more than 60 % of the total
evaluation time. Our objectif is to focus on this part.

The output of PhyML is a tree that maximize the likelihood of each link
describing the relation between the N; species or taxa. The IV; taxa are located
at the leaves and the inner node corresponds to extinct ancestors. Each taxa is
describes by N sites or alignment column taking a value in the set of possible
states noted A. The size N4 of the set A is equal to four for DNA and 20 for
amino acids.

Evaluation of likelihood is based on a matrix describing transition probability
among each possible states of A according to a given time or distance. Major
model of transition probability for DNA are K80 [4], F81 [5], HKY85 [6], TN93
[7] or GTR [8].

In PhyML, first an initial tree is computed using a fast distance based al-
gorithm like BIONJ [9]. The probabilities 7, of observing states x of A are
determined as well as the free parameters of the I" model that represents the
differences of evolution between different sites. Then the likelihood of the tree is
evaluated.

The likelihood L of a given tree under the independence of site is computed
by:
N
L= H L,
s=1
where L corresponds to the likelihood of the phylogeny at site s and N cor-
responds to the number of site. However, in real cases for the reconstruction of
large phylogeny, Ls are becoming too small to be represented using single or
double precision numbers. To avoid numerical underflow due to the multiplica-
tion of small quantity, the technique used in PhyML or RAxML adapted from

the solution proposed by Yang [10] consists in evaluating the logarithm of the
likelihood InL in place of the computation of the likelihood:

NP
InL = Z nelnL (1)
s=1

Where, N, correspond to the number of patterns, n, the weight of pattern
s and InL is the logarithm of the likelihood at site s. InL, is evaluated for a
virtual root vr placed anywhere in the tree as:

1
InLg = log((s—) + log(ls(vr)) (2)

where d,, is the scaling factor for the considered virtual root vr. The com-
putation of the likelihood score Is(vr) for site s at the internal node vr which
has two branches v and v is computed as follows:

L(or) =Y | moLs(u=2) { > Pay(buv)Lo(v =) (3)

zeA yeA

where Py, (byy) corresponds to the probability of substitution from state x to y
according to the branch length b,, between nodes v and v.

Lg(r = x) corresponds to the conditional likelihood at site s of the sub-tree
which has r as root, under the hypothesis that x € A is the observed state at this
node. If r is a leaf then L¢(r = x) is equal to 1 if z is the observed state at site s,
0 in the other case. If the observed state is a gap or an unknown character then
Ly(r = z) is equal to 1. If r is an internal node then the conditional likelihood
is computed as follows:

Ly(r=1)= Z P;cy(bru)Ls(u =) Z ny(brv)Ls (v=1y) (4)

yEA y€A

Conditional likelihoods are computed using a recursive scheme where each
step involves multiplication by small probability. This may leads to extremely

small numbers, smaller than the smallest representable floating-point number.
These numerical underflows are dramatic as all the numerical information is
lost. This problem is avoided by testing during the conditional likelihood com-
putation at node r, if all the element of L, are below a threshold. If this is the
case, then all the element of L, are multiplied by a scaling number §,,, bringing
back conditional likelihood closer to the numerical value 1. In order to keep the
meaningfulness of the evaluation of the logarithm of the likelihood (equation 2),
we need to keep track of every scaling event in order to annihilate them when
needed. For a given node r which has two branches v and v, scaling factors are
computed along with the conditional likelihood (equation 4) as follows:

If r is a leaf then 4, is set to 1. The choice for §, depends on the floating-
point representation format (sp or dp) but also of the implementation. It is
set to a power of 2 in RAxML whereas it is set to (mazzea(Ls(r = x)))~! in
PhyML. Setting §, to a power of 2 has many numerical advantages. Division
and multiplication are exact and do not introduce rounding error. In addition

logarithm can be precomputed thus saving times and error.

2.1 Optimization phase

PhyML optimizes the tree by adjusting the free parameters of the model (like
branch length). This consists in computing the local minima with algorithms
like golden section or Brent methods. Local modifications of the tree topology
and branch length are applied simultaneously such that the logarithm of the
likelihood is converging to a minimum. When a series of modifications leads to a
lower value of likelihood, then the currant phylogeny is mixed with the previous
tree. Free parameters are also adjusted periodically (every four series).

The impacts of local modifications on the likelihood score are measured
through equation 3. This represents the core of the likelihood evaluation. To
accelerate this process, PhyML stores for each internal node C that has one
ancestor P and two branches U and V' the three conditional likelihood (one for
each different combination of subtree {U, V'}, {P, U}, {P, V}. The three con-
ditional likelihoods are initially computed using a leaf to root followed by a root
to leaf step.

2.2 Data structure

Regarding the previous description, the N; taxa described by the N sites taking
value in A are used to build a tree where each of the N; — 3 internal node stores:

— 3 conditional likelihood corresponding to each sub-tree for each possible value
of A for each site.

— A scaling factor for each site of N

— An adapted logarithm likelihood per site.

adapted log. likelihood: InL.*
scaling factor: é

conditional likelihood: L.(#4)

Virtual root

N 4 states|

-

>
N s sites

subtree | ! . . subtree \

IALLITS Nt-taxa""" >

Fig. 1. Description of the internal structure of the phylogeny tree.

This corresponds to (3.N4 + 2).Ns.(N; — 3) values stored on four or eight bytes
for respectively single or double precision floating-point numbers. The memory
requirement which is in O(N 4.Ng.Ny) is dominated by the space for conditional
likelihood, and scaling factor when necessary. The scaling vector attached to a
given likelihood is not necessary for internal nodes that are close enough to the
leaf. Therefore, PhyML is saving some space by allocating memory to the scaling

vector only when one or more elements of the scaling vector are different from
1.

3 Numerical analysis

The use of floating-point arithmetic in software leads to several kind of error: er-
ror of method, catastrophic cancellation and rounding error. The error of method
corresponds to the error due to the approximation of real phenomena by an equa-
tion or a formula. Considering likelihood evaluation, this error is encounter in
the model description and is not linked with floating-point arithmetic. Catas-
trophic cancelation is another source of error that happens when subtracting
nearby quantities, such that the most significant digits in the operands match
and cancel each other. This kind of error is not a problem as likelihood deals
with probabilities, which are all positive. However rounding error are of a major
concern as likelihood are iteratively computed, which means that rounding error
are getting accumulated at each step of the algorithm. For example [11] have
notice that numerical instability arises when considering more than 2000 taxa
in single precision.

3.1 Floating-point arithmetic and error

The IEEE 754-2008 [12] standard describes floating-point data and representa-
tion format such that a floating-point number « is characterized by 3 fields, a
mantissa m, an exponent e and a sign s as follows:

x=(=1)>m.r

where r is the radix equal to 2 or 10. In the rest of this paper we are dealing
with the binary32 and binary64 formats of the IEEE 754-2008 that were formerly
known as the single (sp) and double formats (dp) in the IEEE 754-1985. In these
format the radix is set to 2, the mantissa is respectively represented on 23 + 1
or 52 4+ 1, with exponent e in the range [—126;+127] or [—1022; +1023].

Throughout the paper, we will note +, —, and x the usual mathematical
operations, and @, © and ® the corresponding operations in IEEE 754-2008
floating-point arithmetic, in the round to nearest mode. Similarly we represent
by x* the floating-point approximation of the real mathematical value z.

Theorem 1 (Relative error). The relative error Er is the difference between
the real number x and its floating-point approximation x* divided by x.

[|

||

The relative error provides a lower bound on the minimum numbers of reliable
digits in the result, compared to the exact mathematical result. To ease the
computation of rounding error we introduce the quantity e€,:

Theorem 2 (€,). For any integer n, we will represent by €, a quantily a such
that

af <27

For example, based on this representation, the rounding error done during
the multiplication or addition of two FP number a and b is such that

a®b=(axb).(1+e¢,)
a®b=(a+0b).(1+¢,)

with 7 = —24 with single precision arithmetic or = —53 with double preci-
sion arithmetic’s. We can noticed that €,.€, = €44 and k., = €atlog, (k) The
interested reader can read [13] for further discussion around numerical problems
related to floating-point usage.

3.2 Worst-case rounding error analysis

Every floating-point operation introduces a rounding error in the computed re-
sults. To determine its impact we compute a guaranteed bound of the rounding
error based on the worst-case behavior. This worst-case scenario infers that all
the rounding errors are maximum and happen in the same direction.

Let L*(r = x) be the computed conditional likelihood. Then at each node of
the internal tree, we compute:

Li(r=2)= [Z Pry(bry) ® Ls(u =y)| ® [Z Pry(bry) ® Ls(v = y)]

yeA yeA
= [Z(sz(bM) X Ls(u=y))(1+ey)]® [Z Pry(bro) @ Ls(v = y)]
yeA yeA
= [Z Pﬂﬂy(bru) X Ls(u= y)](l + 6n+10g2(NA))®
yeA
[Z Pry(bry) @ Ls(v = y)](1 + €n+10g2(NA))
yeA

= Ls(r = 2)(1 + €;410g,(Na)+1)

()

For each conditional likelihood computation, (logy(N.4)+1) bits of the results
can be lost due to rounding error. This corresponds to 3 bits for DNA input data
and 5.32 bits for AA input data.

Conditional likelihood computation is an iterative process conduced at each
internal node of the considered tree describing the relation among the V; taxa. At
each step, rounding errors are cumulated. To simplify rounding error evaluation,
let’s place the virtual root such that the depth of the tree is minimal. This
corresponds to an equilibrate tree of depth log,(N;). The maximum rounding
error for the computation of the conditional likelihood at the virtual root, is
log, (Ny).(logo (N 4) + 1) bits. All bits of the computed results of the conditional
likelihood can be lost when the number of considered taxa is greater than:

Single-precision|Double-precision
DNA 20 = 64 21766 — 207104
AA | 231 =228 2996 = 996

We observe that with AA input data, the conditional likelihood computed in
single precision might be meaningless for the reconstruction of a tree with more
than 23 species !

The logarithm of the likelihood of a tree is a combination of the condi-
tional likelihood for every site as in equation 1. During this process, the sum-
mation of the N, conditional likelihood can introduce logy Ny extra bits or er-
ror. The maximum relative error associated with the computation of InL is
2log;(Ns)+logs (Ne).(logz (Na)+1) reducing even more the number of taxa that can
be considered safely.

Rounding error occurs during the optimization phase as well. The compu-
tation of the likelihood score is evaluated using equation 3. Let I*(vr) be the
computed likelihood score at node vr for the site s.

Z;‘(vr)zz e @ Ls(u=2) ® ZPmy(buv)QbLs(v:y)

zeA yeA

= Z (me X Lg(u=2)))(1+ 677) ® Z Pwy(buv> x Ls(v=y) | (1+ 6n+10g2(NA))
zeA yeA

= Z e X Ls(u =) X Z Pry(buv) X Ls(v =9) | (1 + €nii0g,(Na) T €nt1)
z€A yeA

Yo Mo x Lo(u=a) x | Y Pay(buw) X Ly (v =9) | | (14 642108, (V) + Entlog, (Na+1))
r€A yeA
(6)

We observe that the rounding error accumulated during the evaluation of the
likelihood score can affect the result with a relative error less than 2712 1082(Na)
ontlog2(NA)+1 This means that up to 4.3 bits may be lost for DNA input data
and 8.7 bits for AA input data.

4 Measured error

4.1 Rounding error analysis on real cases

Worst-case analysis is necessary for critical system (plane, missile, satellite, ..) to
prevent behavior with dramatic consequences to happen. However phylogenetic
reconstruction can tolerates rare rounding error if it leads to a faster reconstruc-
tion. The worst-case analysis described in the previous section is pessimistic
and do not reflect most of the cases. For example rounding error may compen-
sate each other’s or are too often overestimated especially near the leaf where
conditional likelihood is exact (0 or 1).

We have executed PhyML on sets of data available on PhyML website. These
data set have the following caracteristic:

Data set|Type|Nb of pattern|Nb of species
DNA1 |DNA 382 54

AA1 AA 37
DNA2 |DNA 896 1566
AA2 AA

We have designed a version of PhyML based on MPFR to measure the round-
ing error that occurs during the computation of likelihood score and compared

it to the double precision version of PhyML. We used both DNA and AA input
data set distributed with PhyML. The measured rounding error were collected
for all the likelihood score to obtained the distribution of the error for DNA (Fig-
ure 2,a) and AA (Figure 2,b). Over the 105588238 computations of likelihood
score involved with DNA input data, we measured a relative maximum error
of 275008 For AA data, the maximum error was of 274914 over the 60180549
computation. The measured maximum rounding error is much lower than the
maximum error we could expect (section 3.2). This comes from the fact that
rounding errors are compensating one another in most of the cases and are
rarely getting accumulated. This is confirmed by the graphics of the rounding
error distribution. We observe that more than 70 % of the rounding errors are
located between 275! and 27°* and only 0.01% are located close to the worst

case.

253 9.2 0.16 0.08 0.4 0.02 0.01 0.91 943 0.21 011 065 0.03 001 001

5 5 B @ s 54 55 s @ s s 6o 6 @ @ o 65 5 B B 5 5 B 5 @ s w0 60 6 @ © o 65
(a) DNA (b) AA
Fig. 2. Cumulated rounding error distribution of the conditional likelihood computa-

tion in double precision for DNA and AA data. The abscise = represent the relative
error 272 and the bar represents the proportion of error located between 2% and 27271

4.2 Likelihood range estimation

Likelihood computation deals with probability numbers. These numbers are
ranging from 0 to 1. A worst-case analysis to determine the floating-point range
used during the evaluation of the likelihood score is uninformative as it always
consider the smallest probability within the transition model, which leads quickly
to the smallest exponent possible. We measured the distribution of the exponent
over the computation of conditional likelihood for the AA and DNA set of input
data provided with PhyML. The results are given in Figure 3.

5 Propositions

Likelihood computation involves two kinds of numerical problems due to the
use of floating-point arithmetic as seen in the previous section: accumulation
of rounding error and underflow. In this section we are proposing solutions to
overcome both these problems.

10

-130 -120 -110 -100 -90 80 70 60 50 —

(a) DNA (b) AA
Fig. 3. Distribution of the floating-point exponent of the conditional likelihood in dou-
ble precision for DNA and AA data.

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 ~-10 ©

5.1 Underflow

Underflows happen with large phylogenetic trees as at each internal node we are
multiplying likelihoods, which correspond to extremely small numbers. There
are two solutions to deal with underflow.

The first solution consists is increasing the range of representable floating-
point numbers. The fastest is to rely on format handled in hardware. For exam-
ple, the single precision, the double precision, and the extended double precision
format of the IEEE 754-2008 standard store the exponent on respectively 8, 11
and 15 bits. However this may not be enough for large phylogeny (figure 3).
In that case, the only solution is to use floating-point numbers handled in soft-
ware. Library like MPFR [14] allows the user to customize the floating-point
format used to store and perform computation. However the extra memory and
operations is a major problem with likelihood computation.

The second solution is to fully exploit the range offered by floating-point
format. As it is noticed in [11], scaling can dramatically decrease performance
of the likelihood computation. Likelihood corresponds to probabilities, which
range between 0 and 1. Therefore only half of the representation range of both
single and double floating-point representation format is exploited. One way to
diminish scaling is to exploit full range of floating-point format. This can be
done by setting initial conditional likelihood for every leaf to MAX_EXP, with
MAX_EXP = 227 for sp and MAX_EXP = 211023 for dp. This trick will
involves division by M AX _EX P every time conditional likelihood are multiplied
together. In a similar manner, the scaling steps performed during conditional
likelihood computation can be optimized by choosing scaling factor that will
make likelihood close to M AX_EX P instead of 1.

5.2 Rounding error

Rounding errors are of a major concern as we noticed in section 3.2. There are
several solutions to minimize the impact of rounding error. One can use floating-
point arithmetic with more precision likes quad floating-point numbers or use
software library of floating-point arithmetic that increases the precision like the

11

double-double or quad-double floating-point format [15] or MPFR [14]. Another
solution is to use compensate arithmetic [16] which keeps track of rounding error
in an extra floating-point number. But all these solutions require more memory
and more basic operations. This will increase the cost in times and memory
of phylogenetic reconstruction by a factor of at least five in time and two in
memory.

An interesting approach is to use single precision representation format. This
solution is necessary to consider an efficient implementation on accelerator such
as GPU. It will divide by two the memory necessary to store conditional values,
the bandwidth to transfer data and the time to execute floating-point operations
as more instance can run in parallel. However this solution presents the drawback
of diminishing the number of floating-point operations that can be considered to
evaluation conditional likelihood leading to numerical problems encounter with
more than 2000 species in RAxML [11].

An alternative is to develop a mixed precision implementation. Use double
precision when accuracy is necessary and single precision to accelerate compu-
tation. With the emergence of GPGPU, this alternative is gaining interests [17],
[18], [19]. Mixed precision implementation can be address in several ways.

More than 60% of the execution time is used to evaluate likelihood score.
A prudent mixed precision implementation can compute and store conditional
likelihood in dp to keep good accuracy and perform score likelihood computation
in single precision. This solution does not reduce the memory necessary to store
conditional likelihood but will reduce its execution time by allowing a SIMD
implementation.

Another solution is to benefit of the accuracy of dp during computation and
single precision during storage. This solution passes by an iterative computation
of conditional likelihood done in dp and once computed stored in sp. Then all
the likelihood score evaluations can also be done in sp. The objective is to start
with conditional likelihood that do not embed large rounding error and then
perform optimization at full speed with single precision on the branches of the
tree. With this solution the accumulation of rounding error depends more on
the number of optimization done on the tree than on the depth of it. However
rounding error are still getting accumulated, which impose recomputing at full
precision conditional likelihood periodically.

The algorithm describing the computation of conditional likelihood is de-
scribed in pseudo C in Listing 1.1. We observe that only three temporary nodes
storing conditional likelihood in full precision are necessary.

Listing 1.1. Algorithm for conditional likelihood evaluation in mixed precision

mixed_lk_eval (Node) {
double * lk_left , xlk_right , *lk_node;

*lk_left = mixed_lk_eval (Node—>left);
xlk_right = mixed_lk_eval (Node—>right);

)

x1k_node malloc (nb_element % sizeof(double))
lk_right);

xlk_node = compute_cond_likelihood (1k_left ,

12

free (lk_left);
free(lk_left);
Node—>1k = convert_lk_in_sp(lk_node);

6 Tests

It Hhs to be done. I'm not an expert in PhyML. When I tried the previous

proposition, I broke everything, and nothings were working correctly after that
!

7 conclusion

We have done a numerical analysis of the core computation of PhyML, a phy-
logenetic reconstruction software based on maximum likelihood. We have seen
that rounding errors as well as numerical underflows are of a major concern. The
worst-case analysis is too pessimistic as phylogenetic reconstruction can tolerate
rounding error if there are rare enough. We have measured the probability of
encountering the worst case on real execution of PhyML. We have given several
propositions in order to minimize the impact of underflow as well as rounding
error.

This study is necessary before an implementation on GPU were single pre-
cision is more efficient than double precision by several orders of magnitude.
PhyML will definitely benefit of the presence of the FMA available in the latest
generation of GPU such as the Nvidia FERMI as it will divide by two the num-
ber of rounding error. However the ratio of floating-point operation done per
data is not sufficient yet to expect good performance out of a straightforward
implementation on a GPU. The internal algorithm has to be reconsidered.

References

1. NVIDIA: Nvidia’s next generation cuda compute architecture: Fermi. whitepaper,
nvidia

2. Guindon, S.: Méthodes et algorithmes pour 'approche statistique en phylogénie.
PhD thesis, Université Montpellier II (Jully 2003)

3. Guindon, S., Gascuel, O.: A simple, fast and accurate algorithm to estimate large
phylogenies by maximum likelihood. Systematic Biology 52 (2003) 696704

4. Kimura, M.: A Simple Method for Estimating Evolutionary Rates of Base Substitu-
tions Through Comparative Studies of Nucleotide Sequences. Journal of Molecular
Evolution 10(111-120) (1980)

5. Felsenstein, J.: Evolutionary trees from DNA sequences : a maximum likelihood
approach. Journal of Molecular Evolution 17 (1981) 368-376

6. Hasegawa, M., Kishino, H., Yano, T.: Dating of the human-ape splitting dating of
the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of
Molecular Evolution 22 (1985) 160-174

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

13

Tamura, K., Nei, M.: Estimation of the number of nucleotide substitutions in the
control region of mitochondrial dna in humans and chimpanzees. Mol. Biol. Evol.
10 (1993) 512-526

Lanave, C., Preparata, G., Sacone, C., Serio3, G.: A new method for calculating
evolutionary substitution rates. Journal of Molecular Evolution 20 (1984) 86-93
Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simple
model of sequence data. Mol. Biol. Evol. 14 (1997) 685-695

Yang, Z.: Maximum likelihood estimation on large phylogenies and analysis of
adaptive evolution in human influenza virus a. Journal of Molecular Evolution
51(5) (2000) 423-432

Berger, S., Stamatakis, A.: Accuracy and performance of single versus double pre-
cision arithmetics for maximum likelihood phylogeny reconstruction. Proceedings
of PBC09, Parallel Biocomputing Workshop, Wroclaw, Poland, (September 2009)
: IEEE standard for floating-point arithmetic. (2008) 1-58

Goldberg, D.: What every computer scientist should know about floating point
arithmetic. ACM Computing Surveys 23(1) (1991) 5-48

Fousse, L., Hanrot, G., Lefevre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans-
actions on Mathematical Software 33(2) (2007) 13:1-13:15

Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating
point arithmetic. Computer Arithmetic, IEEE Symposium on 0 (2001) 0155
Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation. Technical
Report 05.12, Hamburg University of Technology, Hamburg, Germany (2005)
Goddeke, D., Strzodka, R., Turek, S.: Performance and accuracy of hardware-
oriented native-, emulated- and mixed-precision solvers in fem simulations. Inter-
national Journal of Parallel, Emergent and Distributed Systems 22(4) (January
2007) 221-256

Buttari, A., Dongarra, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed precision it-
erative refinement techniques for the solution of dense linear systems. International
Journal of High Performance Computing Applications 21(4) (2007) 457-466
Grand, S.L., Goetz, A.W., Xu, D., Poole, D., Walker, R.C.: Achieving high per-
formance in amber pme simulations using graphics processing units without com-
promising accuracy. Technical report (2010)

	Accuracy of a Maximum Likelihood Phylogeny Reconstruction
	Introduction
	Likelihood evaluation of a given phylogeny
	Optimization phase
	Data structure

	Numerical analysis
	Floating-point arithmetic and error
	Worst-case rounding error analysis

	Measured error
	Rounding error analysis on real cases
	Likelihood range estimation

	Propositions
	Underflow
	Rounding error

	Tests
	conclusion

