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February 2008

Abstract

We consider Smoluchowski’s equation with a homogeneous kernel
of the form a(x, y) = xαyβ + yβxα with −1 < α ≤ β ≤ 1 and λ :=
α+β ∈ [0, 1). We first show that self-similar solutions of this equation
are infinitely differentiable and prove sharp results on the behavior of
self-similar profiles at y = 0 in the case α < 0. We also give some
partial uniqueness results for self-similar profiles: in the case α = 0
we prove that two profiles with the same mass and moment of order λ
are necessarily equal, while in the case α < 0 we prove that two profiles
with the same moments of order α and β, and which are asymptotic
at y = 0, are equal. Our methods include a new representation of the
coagulation operator, and estimates of its regularity using derivatives
of fractional order.
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1 Introduction

1.1 Smoluchowski’s equation

Smoluchowski’s coagulation equation is a well-known model for irre-
versible aggregation processes involving a set of particles which can
join to form groups of two or more of them, which we call clusters.
Below we will briefly present the model, but we refer the reader to the
reviews [2, 3, 11, 13] for a more detailed background on the equation.

We study this equation in a continuous setting, meaning that the
size of a cluster may be any positive number y ∈ (0,∞). We are
interested in the time evolution of the density of clusters of each pos-
sible size, given by a function f = f(t, y) which depends on the time
t and cluster size y. The mass of f at a given time t is given by its
first moment

∫

∞

0 y f(t, y) dy. The continuous Smoluchowski equation
reads:

∂tf(t, y) = C(f(t), f(t))(y), (1)

where

C(f, f)(y) :=
1

2

∫ y

0
a(z, y − z)f(z)f(y − z) dz

−

∫

∞

0
a(z, y)f(z)f(y) dz,

(2)
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where the coagulation kernel a = a(x, y) is a given nonnegative sym-
metric function defined on (0,+∞)× (0,+∞), which governs the time
rate at which a cluster of size x and cluster of size y aggregate. We
write C(f, f) to emphasize that C is a quadratic operator, and to agree
with later discussions in which we consider its associated symmetric
bilinear form C(f, g).

In many physical models the coagulation kernel a is a homogeneous
function [2] in the sense that for some λ ≥ 0 it holds that

a(hx, hy) = hλa(x, y) for x, y, h > 0.

For our results we will take that as a hypothesis, and in fact we will
assume that a is of the following form:

a(x, y) := xαyβ + xβyα for x, y > 0, (3a)

−1 < α ≤ β < 1, λ := α+ β ∈ (−1, 1). (3b)

In some places, we allow a to be a finite linear combination of such
terms.

When the kernel is homogeneous, one may look for self-similar
solutions, also called scaling solutions: solutions which are given by
a rescaling of some fixed function g for all times. In other words, a
solution f = f(t, y) to Smoluchowski’s equation is self-similar if there
exists some nonnegative function g such that

f(t, y) = q(t) g(p(t)y) for all t, y > 0

for some functions q(t), p(t) > 0. Such a function g is called a self-
similar profile (or scaling profile). In this work we will always consider
self-similar solutions with finite mass. If a is homogeneous of degree
−1 < λ < 1, it is known (e.g., [4]) that for f to be a self-similar
solution it must happen that

q(t) = (t0 + t)−
2

1−λ and p(t) = (t0 + t)−
1

1−λ

for some constant t0 > 0, and that g satisfies the self-similar profile
equation:

2g + y∂yg + (1 − λ)C(g, g) = 0. (4)

It is expected (and has been proved in some particular cases) that in
general conditions solutions exhibit a universal self-similar behavior in
the long time, meaning that they are eventually close to a self similar
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solution of the equation. The conjecture that this behavior does in fact
hold is called the dynamical scaling hypothesis, and a lot of effort has
been done to rigorously prove its validity. In particular, it is expected
that with “regular” initial conditions (such as compactly supported
data) solutions become eventually close to a self-similar solution (with
finite mass). For the special cases a(x, y) = 1 or a(x, y) = x + y
rather complete results have been proved [9, 14, 15], but for a general
coefficient almost no information is available. It seems likely that
further study of the scaling profiles is needed before a more complete
understanding of dynamical scaling can be obtained, and our results
aim in this direction.

1.2 Description of the main results

We prove the following partial uniqueness results:

Theorem 1.1. Consider a coagulation kernel of the form (3) with
α = 0. Assume that g1 and g2 are two self-similar profiles of the same
mass for Smoluchowski’s equation, and also that Mλ[g1] = Mλ[g2].
Then, g1 = g2.

Here and in the rest of the paper we use the notation Mµ[g] to
denote the µ-moment of a function g, for any µ ∈ R:

Mµ[g] :=

∫

∞

0
yµg(y) dy. (5)

For coefficients with α < 0 our result is:

Theorem 1.2. Consider a coagulation kernel of the form (3) with
α < 0. Assume that g1 and g2 are two self-similar profiles for Smolu-
chowski’s equation such that

Mα[g1] = Mα[g2] =: Mα, (6)

Mβ[g1] = Mβ[g2] =: Mβ, (7)

lim
y→0

g1(y)e
Λ(y) = lim

y→0
g2(y)e

Λ(y), (8)

where

Λ(y) := 2 log y − (1 − λ)

(

Mβ

α
yα +

Mα

β
yβ

)

.

Then, g1 = g2.
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Remark 1.3. The limit at y = 0 which appears in this result is proved
to exist in section 6; see theorem 1.5 below. Using it it is easy to see
that condition (8) in the above theorem is equivalent to the require-
ment that g1 ∼ g2 when y → 0, this is, limy→0 g1(y)/g2(y) = 1.

To our knowledge, no uniqueness result at all was available for self-
similar profiles of Smoluchowski’s equation. The natural conjecture is
that the full uniqueness result should hold, this is, that two scaling
profiles with the same mass are necessarily equal. This does hold in
the better understood cases with a(x, y) = 1 and a(x, y) = x+ y, but
the techniques we use here do not seem enough to show this for general
λ. A central difficulty is the fact that the moments of the equation
(Mλ when α = 0, or Mα,Mβ when α < 0) are a global property of
the solution that cannot be computed a priori (unlike the a(x, y) = 1
or a(x, y) = x+ y cases), and which are even not easy to approximate
numerically [?].

We also give a proof of the infinite differentiability of self-similar
profiles. This fact was already known in the case α < 0 [4], and here
we generalize this result to include the α ≤ 0 case:

Theorem 1.4. Assume that the coefficient a is of the form (3), or
is a finite linear combination of terms of that form, all with the same
homogeneity degree λ. Then, any self-similar profile with finite mass
for Smoluchowski’s equation is infinitely differentiable on (0,∞).

We remark that in the paper [8], self-similar profiles for α = 0 were
shown to be C1, and in [4, Th. 4.3] solutions for α ≥ 0 were proved to
have a C0,θ Hölder regularity for any 0 ≤ θ < 1 − λ.

Regarding the asymptotic behavior of scaling profiles at 0 and ∞,
some estimates have been rigorously proved [7, 6, 4], and are consistent
with the very complete previous formal calculations by van Dongen
and Ernst [?]. Exponential decay of solutions as y → ∞ was proved
in [4, 8], but the rate of decay is still far from the rate expected by
formal calculations in [?]. As for the behavior at y = 0, one has to
separately treat the α = 0, α > 0 and α < 0 cases:

1. For α = 0, a very precise result was given by Fournier and Lau-
rençot in [8], making rigorous the conclusions in [?]: a self-similar
solution is asymptotic to a constant times y−τ as y → 0, for some
1 < τ < min{3/2, 1+λ}. An intriguing property of this result is
that in order to know the numerical value of τ one needs to com-
pute the solution itself, as τ is given in terms of the λ-moment
of the solution.
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2. For α > 0, the formal arguments in [?] suggest that a scaling
profile g should be asymptotic to a constant times y−1−λ when
y → 0. So far, it has been rigorously proved that all the moments
of order σ > λ of g are finite, while all moments of order σ < λ
are infinite.

3. For α < 0, exponential decay of solutions at y = 0 was proved in
[4]. Our contribution here is a refinement of this behavior which
coincides with the formal result in [?], and which is needed in
the proof of uniqueness for α < 0.

Our precise result for α < 0 is the following:

Theorem 1.5. Assume that the coagulation kernel is of the form (3)
with α < 0. Then, if g is a (nonzero) self-similar profile for Smolu-
chowski’s coagulation equation, it holds that

g(y) ∼ K0e
−Λ(y) (9)

for some strictly positive constant K0, where

Λ(y) := 2 log y − (1 − λ)

(

Mβ

α
yα +

Mα

β
yβ

)

,

and Mα, Mβ are the moments of order α and β of g. In addition, the
function y 7→ g(y)eΛ(y) is decreasing on (0,∞).

Remark 1.6. Notice that in the case β > 0 the term in yβ inside Λ
does not play any role in the behavior of g as y → 0,

We do not prove the asymptotic behavior of self-similar profiles
at y = 0 in the case α = 0 because this was already proved in [8].
However, the same techniques employed in this paper, in particular
the rewriting of the equation in section 5, may be used to give a proof
of it which is somewhat different from the one in [8]. Lemma 5.4 below
easily implies the following additional information on a profile g:

Theorem 1.7. Assume that the coagulation kernel is of the form (3)
with α = 0. If g is a self-similar profile for Smoluchowski’s coagula-
tion equation, then the function y 7→ yτ−1

∫

∞

y
g(z) dz is decreasing on

(0,∞), where
τ := 2 − (1 − λ)Mλ[g].
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1.3 Tools and method of proof

Among the tools used to prove the above results we highlight a new
representation of the coagulation operator, which is given in section
3, and a rewriting of the self-similar profile equation, given in section
5. Let us comment on them briefly.

In order to rewrite the coagulation operator, define a distribution
associated to any function f of finite mass. We use the Banach space
L1

1 of real measurable functions on (0,∞) with finite first moment:

L1
1 := L1((0,∞); y dy). (10)

In general, we use the notation

L1
k := L1((0,∞); yk dy) (11)

for k ∈ R.

Definition 1.8 (Distribution associated to f ∈ L1
1). Given a function

f ∈ L1
1, we define the distribution {f} on R as

〈{f}, φ〉 :=

∫

∞

0
f(z) (φ(z) − φ(0)) dz for φ ∈ C∞

0 (R). (12)

Note that when f is not absolutely integrable at 0, this is just the
classical definition of the finite part of the integral

∫

∞

0 φ(y)f(y) dy [?].
Here, we keep the same expression even when f is integrable. Then,
for a coagulation kernel of the form (3), the coagulation operator may
be written as

C(g, g) = {yαg} ∗ {yβg}.

Here we are considering C(g, g) defined as a distribution; for a more
precise statement, see section 3.

The above expression has the advantage of being simple and lend-
ing itself to convenient and perfectly rigorous manipulations. For
example, it is easy to recover the known expression for the primi-
tive of C(g, g), as the convolution above commutes with integration
and derivation operators. Furthermore, it gives some insight into the
way C(g, g) works: if we are working, say, in the case α = 0, where
g(y) ∼ K y−τ when y → 0 for some K > 0, one can see that C(g, g)
is in many respects analogous to a fractional derivative of g of order
τ − 1, as a fractional derivative of this order is precisely the convolu-
tion with {y−τ}, times a constant. This is crucially used in the proof
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of the differentiability of profiles in section 4, where we carry out a
bootstrap argument which shows that if a profile g is k times differ-
entiable, then the self-similar profile equation implies that it must be
in fact k+ 1−λ times differentiable. The use of fractional derivatives
comes naturally in this context, and actually a different version of this
bootstrap argument has already been used in [8] to show that profiles
for α = 0 are C1. There, it was necessary to first show a certain Hölder
regularity of the solution, and then use this information to obtain C1

regularity. Formulating this in terms of gain of fractional derivatives
makes it easy to iterate the argument to obtain C∞ regularity and
extend it to other kernels.

For the study of the behavior of solutions near y = 0 and the proof
of uniqueness we rewrite the self-similar profile equation by solving the
differential part, along with any other term which can be separated
and solved; see section 5 for a statement of this.

Finally, let us sketch the idea of the proof of our uniqueness result.
A fundamental obstacle that makes equation (4) difficult to study is
the fact that it involves the nonlocal term C(g, g), which makes it
very different from an ordinary differential equation. However, the
coagulation operator for a constant coefficient has a gain part which
only uses values of the function g less than y, and a loss part which
is nonlocal only through the appearance of the integral of g. The
idea is then to solve the latter part of the equation, which is simpler,
assuming the value of the involved moments is given, and then look
at the remaining part as an equation which is local near 0, to which
the kind of arguments used in the theory of o.d.e.s can be adapted.

This idea works well for coefficients with α < 0, as then the so-
lution decays rapidly near y = 0, but it is not directly applicable for
coefficients with α = 0, as then solutions are known not to be inte-
grable near 0 and the gain and loss parts cannot be separated in the
same way (one cannot separate the integral of g, as this term does not
make sense). But, one can still find a way to separate the equation for
the primitive of g in a similar way, and then carry out the argument
on it. This line of reasoning is followed in section 7, where theorems
1.1 and 1.2 are proved. This idea depends crucially on the fact that
in the case α ≤ 0 the self-similar solution behaves better than y−1−λ

near y = 0, so that the linear operator Lg(f) := C(f, g) is regularizing
near y = 0. Hence, this method does not give new information in the
case α > 0, where solutions are expected to be asymptotic to y−1−λ

[?].
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1.4 Organization of the paper

In the next section we give the basic definitions of self-similar pro-
file, and precisely define the coagulation operator as a distribution on
(0,∞). In section 3 we give the representation of this operator in the
way mentioned above, which in particular extends it naturally to a
distribution on (0,∞). This result is a central idea in the proof of in-
finite differentiability of scaling profiles, to which section 4 is devoted.
Section 5 proves that the self-similar profile equation can be rewritten,
as we briefly explained before, in a way which is very useful to prove
the asymptotic behavior of α < 0 profiles at y = 0 (given in section 6).
Finally, we prove our uniqueness theorems 1.1 and 1.2 in section 7.

In an appendix (section 8) we include a very brief introduction to
fractional derivatives in order to clarify the notation and definitions
we are using, as they are not completely standard in the literature.
We also prove some simple but delicate results on fractional differen-
tiation which are used in this paper, and for which we could not find
a reference which gives the explicit statement.

2 Preliminaries: self-similar profiles

When one wants to define precisely the concept of self-similar profile,
it is a well-known inconvenience that in order for C(g, g) to be well
defined by expression (2), g must meet certain conditions; the ones
which are usually imposed are finiteness conditions on certain mo-
ments near 0 and ∞, which are not satisfied by the natural solutions
of (4), known to have a nonintegrable singularity at y = 0 [8, ?, 4, 7].
Hence, the definition of C(g, g) is often changed for a less restrictive
weak formulation by integrating against a suitably regular test func-
tion φ with compact support on (0,∞), which we will do next. Also,
C(g, g) is quadratic in g, and we will need to consider its associated
symmetric bilinear operator, so we actually give a weak definition for
the latter:

Definition 2.1. Let a be a symmetric nonnegative measurable func-
tion defined on (0,∞)×(0,∞), and f, g be locally integrable functions
defined on (0,∞) such that

∫

∞

0

∫

∞

0
a(y, z) y z |f(y)g(z)| dy dz <∞. (13)
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We define the coagulation operator C(f, g) associated to the coagula-
tion coefficient a as the following distribution on (0,∞):

〈C(f, g), φ〉

=
1

2

∫

∞

0

∫

∞

0
a(y, z)f(y)g(z)(φ(y + z) − φ(y) − φ(z)) dx dz

for φ ∈ C∞

0 (0,∞). (14)

When f is regular enough, 〈C(f, f), φ〉 can be see to be equal
to
∫

∞

0 φ(y)C(f, f)(y) dy, where C(f, f)(y) is given by expression (2).
Condition (13) can be somewhat weakened in some cases by loosening
the integrability condition on f at +∞, but the above one is simpler
and will be enough for our purposes.

Definition 2.2 (Self-similar profile). Assume that the coagulation
coefficient a is homogeneous of degree λ. A nonnegative locally inte-
grable function g : (0,∞) → [0,∞) for which

∫

∞

0
y g(y) dy <∞,

∫

∞

0

∫

∞

0
a(y, z) y z |g(y)g(z)| dy dz <∞

is a self-similar profile for Smoluchowski’s coagulation equation if
equation (4) holds in the sense of distributions on (0,∞); this is, if

2g + y ∂yg + (1 − λ)C(g, g) = 0. (15)

3 A representation of the coagulation

operator

In this section we want to give a representation of the coagulation op-
erator when a has the form (3) which sheds some light on its structure,
and in particular will be very helpful to prove our regularity results
later. To begin with, let us give a natural extension of C(f, g) from
definition 2.1 to a distribution on R:

Definition 3.1. Take a coagulation coefficient a and functions f, g
in the conditions of definition 2.1. We define the coagulation opera-
tor associated to the coagulation coefficient a, applied to f, g, as the
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distribution C(f, g) on R given by

〈C(f, g), φ〉

:=
1

2

∫

∞

0

∫

∞

0
a(x, z)f(x)g(z)(φ(x + z) − φ(x) − φ(z) + φ(0)) dx dz

for all φ ∈ C∞

0 (R). (16)

It is easy to see that this is well defined as a distribution on R,
even with the weak requirements on f and g, and that it extends
definition 2.1. Note the addition of the term φ(0), which does not make
a difference when φ has compact support on (0,∞); later we will see
how this extension comes about naturally. To give our representation
for C(f, g) we will use the notation from definition 1.8. Let us initially
treat the case of a constant coefficient a ≡ 1, and then see how it
extends to other coefficients:

Proposition 3.2. Take f, g ∈ L1
1, and let C0 be the coagulation op-

erator with a constant coefficient a ≡ 1 as given in definition 3.1.
Then,

C0(f, g) =
1

2
{f} ∗ {g} as distributions on R.

Here, the convolution {f} ∗ {g} is understood as a convolution of
distributions with compact support to the left [?]. This expression is
surprisingly simple, and is well-suited for the study of the coagulation
operator when the functions f , g have a singularity at 0, which is the
case with some self-similar profiles. Its proof just consists of writing
out the definitions:

Proof. For φ ∈ C∞

0 (R),

〈{f} ∗ {g}, φ〉 = 〈{f}, (R{g}) ∗ φ〉 , (17)

(where R is the reflection operator, Rφ(y) := φ(−y), defined by du-
ality on distributions) and

((R{g}) ∗ φ)(x) = 〈{g}, τ−xφ〉 =

∫

∞

0
g(z)(φ(x + z) − φ(x)) dz,
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so from (17) we have

〈{f} ∗ {g}, φ〉 =

∫

∞

0
f(x)

(

((R{g}) ∗ φ)(x) − ((R{g}) ∗ φ)(0)
)

dx

=

∫

∞

0
f(x)

(

∫

∞

0
g(z)(φ(x + z) − φ(x)) dz

−

∫

∞

0
g(z)(φ(z) − φ(0)) dz

)

dx

=

∫

∞

0

∫

∞

0
f(x)g(z) (φ(x+ z) − φ(x) − φ(z) + φ(0)) dx dz,

which is our result, in view of expression (16).

This directly gives a representation of the coagulation operator
C(f, g) with a coagulation kernel a satisfying (3), as the following
relation holds for any f, g satisfying (13):

C(f, g) = C0(y
αf, yβg) +C0(y

βf, yαg),

where C(f, g) is the operator associated to a, and the equality is an
equality of distributions on R.

Theorem 3.3. Assume that the coagulation operator a is of the form
(3), and take f, g which satisfy (13). Then, the coagulation operator
associated to a (as given in definition 3.1) can be written as

C(f, g) =
1

2

(

{yαf} ∗ {yβg} + {yβf} ∗ {yαg}
)

,

where equality holds as distributions on R.

We emphasize that this operator is defined as a distribution on R

and, as pointed out after definition 3.1, extends the usual operator C
from definition 2.1 (which is a distribution on (0,∞)).

4 Local regularity

With the representation of the coagulation operator C(g, g) given in
theorem 3.3, the study of its regularity can be viewed as the study
of the regularity of convolutions of the above type, which is a more
manageable problem. The difficulty here is that when α ≥ 0 a scaling
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solution g is not integrable near 0, but is expected to be very regular
locally, and hence we need to study the convolution of functions which
have singularities at 0. Precisely, the following general result on the
local integrability of scaling profiles near y = 0 is known (see [7] or [4]
for a proof):

Proposition 4.1. Assume that the coagulation coefficient a is of the
form (3), or is a finite linear combination of terms of that form, all
with the same homogeneity degree λ. Then, all self-similar profiles
g for Smoluchowski’s equation (in the sense of definition 2.2) satisfy
that

∫ R

0
ykg(y) dy <∞ for all R > 0 and all k > λ.

For convenience, we will measure the regularity of a function by
looking at how many of its derivatives are locally integrable on (0,∞).
To study the regularity of C we will need to use an interesting rela-
tionship between the kind of singularity of a function near 0 and the
local integrability of its fractional integrals, which we give in lemma
4.3 below. Let us start with the following elementary lemma that we
state without proof:

Lemma 4.2. For 0 < k < 1,
∫

∞

0
(xk−1 − (z + x)k−1) dx =

1

k
zk for z > 0. (18)

Lemma 4.3. If f ∈ L1
k, with 0 < k ≤ 1, then

∥

∥

∥
D−k{f}

∥

∥

∥

L1(R)
≤

2

Γ(k + 1)

∥

∥

∥
ykf

∥

∥

∥

L1(0,∞)
.

Remark 4.4. We recall that we denote L1
k := L1((0,∞); yk dy) as in

eq. (11).

Proof. For any φ ∈ C∞

0 (R) we will prove that

∣

∣

∣

〈

D−k{f}, φ
〉
∣

∣

∣
≤

2

Γ(k + 1)

∥

∥

∥
ykf

∥

∥

∥

L1(0,∞)
‖φ‖

∞
, (19)

which is equivalent to our inequality. We have:

〈

D−k{f}, φ
〉

= 〈{f},D−kφ〉 =

∫

∞

0
f(z) (D−kφ(z) −D−kφ(0)) dz,

(20)

13



and the part inside the parentheses is

D−kφ(z) −D−kφ(0)

=
1

Γ(k)

∫

∞

z

φ(x)(x− z)k−1 dx−
1

Γ(k)

∫

∞

0
φ(x)xk−1 dx

=
1

Γ(k)

∫

∞

z

φ(x)
(

(x− z)k−1 − xk−1
)

dx−
1

Γ(k)

∫ z

0
φ(x)xk−1 dx.

(21)

We put back this these two terms in (20), and bound them separately.
The first term is 0 when k = 1, and for 0 < k < 1 we have
∫

∞

0
|f(z)|

∫

∞

z

|φ(x)|
∣

∣

∣
(x− z)k−1 − xk−1

∣

∣

∣
dx dz

≤ ‖φ‖
∞

∫

∞

0
|f(z)|

∫

∞

z

∣

∣

∣
(x− z)k−1 − xk−1

∣

∣

∣
dx dz

=
1

k
‖φ‖

∞

∫

∞

0
zk |f(z)| dz, (22)

thanks to lemma 4.2. As for the second term in (21), putting it into
(20) we have

∫

∞

0
|f(z)|

∫ z

0
|φ(x)| xk−1 dx dz ≤ ‖φ‖

∞

∫

∞

0
|f(z)|

∫ z

0
xk−1 dx dz

=
1

k
‖φ‖

∞

∫

∞

0
zk |f(z)| dz. (23)

Then, eqs. (20)–(23) prove that
∣

∣

∣

〈

D−k{f}, φ
〉
∣

∣

∣
≤

2

kΓ(k)
‖φ‖

∞

∫

∞

0
zk |f(z)| dz,

which proves inequality (19), taking into account that kΓ(k) = Γ(k+
1).

In the light of the above lemma, our next result can be understood
as saying: if two functions are locally regular but have a nonintegrable
singularity at 0, their convolution is slightly less regular. How much
less regular it is depends on the nature of the singularity. In particular,
the local regularity of the convolution depends only on local properties
of the initial functions, which is a general property of the convolution
operation. In the next lemma, the reader can keep in mind that µ will
be negative when we use it, so a function f for which Dµf is integrable
may well be not integrable near 0, as lemma 4.3 makes clear.
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Lemma 4.5. Let T , S be two distributions on R with support on
[0,∞) (this is, T, S ∈ D′

L), and assume that

1. For some ν ∈ R, DνT and DνS are locally integrable on (0,∞).

2. For some µ ≤ ν, DµT , DµS are locally integrable on R.

Then, the distribution Dµ+ν(T ∗ S) is locally integrable on (0,∞).

Proof. We break T and S into a part near 0, an intermediate part,
and a part near ∞. For this, choose 0 < ǫ < 1/4. We can find smooth
nonnegative cutoff functions Φ0, Φ1, Φ2 on (0,∞) such that

Φ0 ≡ 1 on (0, ǫ), Φ0 ≡ 0 on (2ǫ,∞)

Φ1 ≡ 1 on (2ǫ,
1

ǫ
), Φ1 ≡ 0 on (0, ǫ) ∪ (

2

ǫ
,∞)

Φ2 ≡ 1 on (
2

ǫ
,∞), Φ2 ≡ 0 on (0,

1

ǫ
)

and such that
Φ0 + Φ1 + Φ2 ≡ 1 on (0,+∞).

In other words, Φ0,Φ1,Φ2 form a partition of unity on (0,∞) subor-
dinated to the open cover (0, 2ǫ) ∪ (ǫ, 2/ǫ) ∪ (1/ǫ,∞). Then,

S = SΦ0 + SΦ1 + SΦ2 =: S0 + S1 + S2,

T = TΦ0 + TΦ1 + TΦ2 =: T0 + T1 + T2,

where we have denoted Si := SΦi, Ti := TΦi for i = 0, 1, 2. We can
break the convolution S ∗ T by using this decomposition. Note that
for i = 0, 1, 2, S2 ∗Ti is zero on (0, 1/ǫ), and the same happens with S,
T interchanged; as we are only interested in studying the regularity of
S ∗ T on a bounded interval, we can disregard these terms and write

S ∗ T = S0 ∗ T0 + S0 ∗ T1 + S1 ∗ T0 + S1 ∗ T1 on (0, 1/ǫ).

Similarly, the term S0 ∗ T0 is zero on (2ǫ,∞), so we have

S ∗ T = S0 ∗ T1 + S1 ∗ T0 + S1 ∗ T1 on (2ǫ, 1/ǫ). (24)

Then, we can write Dµ+ν of each of these terms by using theorem 8.8:

Dµ+ν(S0 ∗ T1) = (DµS0) ∗ (DνT1) (25)

Dµ+ν(S1 ∗ T0) = (DνS1) ∗ (DµT0) (26)

Dµ+ν(S1 ∗ T1) = (DµS1) ∗ (DνT1). (27)
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By the hypotheses of the lemma, we can see that all of the terms
that take part in the convolutions on the right hand side are inte-
grable functions, as the product by Φ0 or Φ1 does not change their
local regularity properties (theorem 8.10). Let us do the reasoning for
DµS1: as DνS is integrable on (2ǫ, 1/ǫ) by hypothesis, we have that
Dν(SΦ1) = DνS1 is integrable on that interval by theorem 8.10; then,
thanks to lemma 8.11, DµS1 is also, as µ ≤ ν. The rest of the terms
can be treated analogously, and are seen to be integrable without the
help of lemma 8.11.

Then, all the terms on the right hand side of (25)–(27) are con-
volutions of integrable functions, and hence are integrable, and (24)
then proves that Dµ+ν(S ∗ T ) is integrable on (2ǫ, 1/ǫ).

Proposition 4.6. Take a coagulation coefficient a which is of the
form (3) with α ≥ 0, or is a linear combination of terms of that form,
and C the coagulation operator associated to a (given by definition
3.1). Assume that g : (0,∞) → R is such that

1. ykg is locally integrable on [0,∞) for some 1 ≥ k ≥ β,

2. and Dνg is locally integrable on (0,∞) for some ν ≥ k.

Then, Dα−k+νC(g, g) is locally integrable on (0,∞).

Remark 4.7. The hypothesis that α ≥ 0 is given for convenience,
as we only need the result in that case; however, the lemma is true
and proved in the same way also for negative α with the additional
requirement that 1+α ≥ k ≥ β, so that {yαg} makes sense according
to definition 1.8.

Proof. It is enough to prove it for a coagulation coefficient of the form
(3) with α ≥ 0, as then we can apply the result to each term of the
linear combination. For such a coefficient, the representation theorem
3.3 shows we can write C(g, g) as

C(g, g) = {yαg} ∗ {yβg}.

As y 7→ ykg(y) is locally integrable on [0,∞), we know that

• yk−αyαg is locally integrable on [0,∞), and

• yk−βyβg is locally integrable on [0,∞),

and hence from lemma 4.3

• Dα−k{yαg} is locally integrable on R, and
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• Dβ−k{yβg} is locally integrable on R, so Dα−k{yβg} is also (as
β ≥ α; see lemma 8.11).

In addition, both Dν{yαg} and Dν{yβg} are locally integrable on
(0,∞), as {yαg}, {yβg} are equal to the functions yαg, yβg, respec-
tively, on that set, and then theorem 8.10 applies there. Hence, we
obtain our result as an application of lemma 4.5 with S := {yαg},
T := {yβg} and µ := α− k

Now we can finally prove theorem 1.4:

Proof of theorem 1.4. Take any λ < k < 1, with λ the homogeneity
degree of a. Then, ykg is locally integrable on [0,∞) as recalled in
proposition 4.1 (actually, we know it is integrable). We will show the
following: if, for some ν ≥ 0, Dνg is locally integrable on (0,∞), then
Dν+1+α−kg is also locally integrable on (0,∞). As ν + 1 + α− k > ν,
this implies that g is infinitely differentiable by a bootstrap argument.

To show this, write the equation for a self-similar profile as

2g(y)+ yD1g+ (1−λ)C(g, g) = 0 as distributions on (0,∞). (28)

Assume that Dνg is locally integrable on (0,∞). Then, by proposition
4.6, Dν+α−kC(g, g) is locally integrable on (0,∞), and hence eq. (28)
shows that Dν+α−k(yD1g) is locally integrable on (0,∞). By theorem
8.10, the same is true of Dν+α−kD1g = Dν+α−k+1g, which proves our
claim. Hence, g is infinitely differentiable.

5 Rewriting the self-similar equation

One of the techniques that we use in order to study the behavior of
scaling profiles near y = 0 and the uniqueness of self-similar solutions
is a way of rewriting equation (15) in which we “solve” the differential
part of the equation as far as possible. We introduce this method
next:

Lemma 5.1 (Solution of an o.d.e.). Let g be an absolutely continuous
function, and let h, µ be locally integrable functions, all of them defined
on (0,∞). If the following equation holds

µ(y)g(y) + yg′(y) = h(y) for almost all y > 0, (29)

then g is given by

g(y) = K(y)e−Λ(y) for all y > 0,
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where Λ and K are absolutely continuous functions which satisfy that

Λ′(y) =
µ(y)

y
for almost all y > 0, (30)

K ′(y) =
1

y
eΛ(y)h(y) for almost all y > 0. (31)

Proof. We remark that one may find the expression of g by the method
of variation of constants. To prove the result, a direct check shows
that if we take functions Λ, K satisfying (30), (31) and define

g̃(y) := K(y)e−Λ(y),

then equation (29) holds with g̃ instead of g. We may add a constant
to K so that g(1) = g̃(1), for instance. Now, if we regard (29) as an
ordinary differential equation for g, then both g and g̃ are solutions of
it in the sense of Carathéodory, and then general uniqueness theorems
(see, e.g., [?]) prove that g = g̃.

Lemma 5.2 (Primitive of C). Assume that the coagulation coefficient
a is of the form (3) with α = 0, and take a function g ∈ L1

1 ∩L
1
λ (this

is, with finite mass and finite moment of order λ). Then the primitive
of C(g, g) can be written as

D−1C(g, g) = G ∗ (yλg) −Mλ[g]G, (32)

where G is the function given by

G(y) :=

∫

∞

y

g(z) dz for y > 0, G(y) := 0 for y ≤ 0. (33)

We remark that this equality is an equality of distributions on R.

Remark 5.3. This is not a new result: one may arrive at the same
expression by taking a characteristic function of the interval (y,∞)
as the function φ in (14). The main point of the lemma is that it is
rigorously proved as an equality of distributions.

Proof. The representation of C(g, g) in theorem 3.3 gives

C(g, g) = {g} ∗ {yλg} = {g} ∗ (yλg) −Mλ[g]{g}, (34)
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as g has finite λ-moment. Hence, taking the primitive D−1 (see eq.
(126)) we have

D−1C(g, g) = (D−1{g}) ∗ (yλg) −Mλ[g]D−1{g}

= G ∗ (yλg) −Mλ[g]G,

where we have used the derivation rule for a convolution (cf. theo-
rem 8.8) and the fact that, as distributions on R,

D−1{g} = G.

Lemma 5.4. Assume that the coagulation coefficient a is of the form
(3) with α = 0. If g is a self-similar solution of Smoluchowski’s equa-
tion, it holds that

G(y) = y1−τK(y), (35)

for some absolutely continuous function K, where G is given by (33),
and where

τ := 2 − (1 − λ)Mλ[g] (36)

K ′(y) = yτ−2h(y) for almost all y > 0, (37)

h := (1 − λ)
(

G ∗ (yλg)
)

, (38)

We note that for the convolution in (38) it is assumed that g(y) is 0
for y < 0.

Remark 5.5. Note that the quantity τ here is in agreement with that
in [?, 8].

Proof. It is known that in the case α = 0 the moment of order λ of a
solution g is finite [4, 8]. Then from lemma 5.2 we have

D−1C(g, g) = G ∗ (yλg) −Mλ[g]G. (39)

Hence, using (39) we can rewrite equation (4) by taking its primitive:

G− yg + (1 − λ)
(

G ∗ (yλg) −Mλ[g]G
)

= 0, (40)

which holds for all y > 0. Equivalently,

(1 − (1 − λ)Mλ[g])G− yg + (1 − λ)
(

G ∗ (yλg)
)

= 0. (41)
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Rewrite this as
(τ − 1)G − yg + h = 0, (42)

where τ and h are given by (36) and (38). Now, if we solve for G in
eq. (42) by using lemma 5.1 with the independent term h, we obtain

G(y) = y1−τK(y), (43)

with
K ′(y) = −yτ−2h(y). (44)

which is our result.

Lemma 5.6. Assume that the coagulation coefficient a is of the form
(3) with α < 0, and take a self-similar solution g of Smoluchowski’s
equation. Then it holds that

g(y) = K(y)e−Λ(y) (45)

for some absolutely continuous function K such that

K ′(y) =
1

y
eΛ(y)h(y) for almost all y > 0, (46)

with

h := −(1 − λ)(yαg) ∗ (yβg) (47)

Λ(y) := 2 log y − (1 − λ)

(

Mβ

α
yα +

Mα

β
yβ

)

. (48)

We also note that

e−Λ(y) =
1

y2
exp

(

(1 − λ)

(

Mβ

α
yα +

Mα

β
yβ

))

. (49)

Proof. Let g be a self-similar profile for Smoluchowski’s coagulation
equation with such a kernel a. It is known [4] that it is infinitely
differentiable and has finite moments of all orders, and hence satisfies
equation (4) in a strong way:

2g + y∂yg + (1 − λ)C(g, g) = 0,

or, separating the gain and loss parts of C(g, g),

2g + y∂yg + (1 − λ)(yαg) ∗ (yβg)

− (1 − λ)Mβ y
αg − (1 − λ)Mα y

βg = 0, (50)
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where Mα and Mβ are the moments of order α and β, respectively, of
g. Now, if we apply lemma 5.1 to equation (50) with the independent
term h given by (47) and µ := 2− (1− λ)(Mβ y

α +Mα y
β), we obtain

that
g(y) = K(y)e−Λ(y), (51)

for some absolutely continuous functions K, Λ such that

Λ′(y) =
1

y

(

2 − (1 − λ)(Mβ y
α +Mα y

β)
)

for almost all y > 0,

(52)

K ′(y) =
1

y
eΛ(y)h(y) for almost all y > 0. (53)

We may actually choose Λ as a particular primitive, as then the inte-
gration constant for K can be adjusted so that (51) is still true. Then,
we can take Λ as in (48), and the result is proved.

6 Asymptotic behavior at y = 0 for

kernels with α < 0

In this section we prove theorem 1.5. Assume that the coagulation
coefficient a is of the form (3) with α < 0. Let g be a self-similar
profile for Smoluchowski’s coagulation equation with such a kernel a.
Then from lemma 5.6 we know it holds that

g(y) = K(y)e−Λ(y), (54)

for some absolutely continuous functions K such that

K ′(y) =
1

y
eΛ(y)h(y) for almost all y > 0, (55)

where

h := −(1 − λ)(yαg) ∗ (yβg) (56)

Λ(y) := 2 log y − (1 − λ)
Mβ

α
yα − (1 − λ)

Mα

β
yβ. (57)

We recall that

e−Λ(y) =
1

y2
exp

(

(1 − λ)
Mβ

α
yα + (1 − λ)

Mα

β
yβ

)

. (58)
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We will prove that K is bounded on (0, R) for any R > 0. Obviously,
K is bounded on any interval (δ,R) with 0 < δ < R, as is clear from
(54), so the point is in proving that K is bounded on (0, δ) for some
δ > 0.

Then, take ǫ, δ > 0 and define

Nǫ := sup
y∈(0,δ)

g(y)Φǫ(y),

where

Φǫ(y) :=

{

eΛ(ǫ) if 0 < y < δ

eΛ(y) if δ ≤ y.
(59)

The dependence of Nǫ on ǫ is explicitly noted because we want to take
the limit ǫ→ 0; of course, Nǫ depends also on δ, but we do not write
the dependence explicitly, as our intention is to fix δ at some value,
which has not been chosen yet. We can give a bound for g in terms of
Nǫ:

g(y) ≤ NǫΦǫ(y)
−1 for y ∈ (0, δ). (60)

On the other hand, from (55),

K(y) = K(δ) − (1 − λ)

∫ δ

y

1

z
eΛ(z)h(z) dz for y > 0. (61)

Let us find a bound for h using (60) and our knowledge that g is a
bounded function [4]:

g(y) ≤ K0 for y > 0. (62)

We have
h = −(1 − λ)(yαg) ∗ (yβg). (63)

To bound this for y ∈ (0, δ), take δ small enough so that e−Λ(y) is
increasing on (0, δ) (and so is Φǫ(y)

−1), and then

(yαg)∗(yβg) ≤ NǫK0 Φǫ(y)
−1 (yα)∗(yβ) = NǫK1 Φǫ(y)

−1yλ+1, (64)

for y ∈ (0, δ). Then, from (63),

|h(y)| ≤ NǫK2 Φǫ(y)
−1yλ+1, (65)
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and continuing from (61), taking into account that eΛ(z)Φǫ(z)
−1 is

decreasing on (0, δ),

|K(y)| ≤ K(δ) + (1 − λ)NǫK2

∫ δ

y

zλeΛ(z)Φǫ(z)
−1 dz

≤ K(δ) +NǫK3 e
Λ(y) Φǫ(y)

−1

∫ δ

y

zλ dz

≤ K(δ) +NǫK4 e
Λ(y) Φǫ(y)

−1 δλ+1 for y ∈ (0, δ). (66)

Hence, multiplying by e−Λ(y)Φǫ(y) (which is always less than 1), taking
into account that gΦǫ = K e−ΛΦǫ, and taking the supremum over
(0, y),

Nǫ ≤ K(δ) +NǫK4 δ
λ+1, (67)

As λ + 1 > 0, taking δ small enough gives a bound for Nǫ which is
independent of ǫ, and hence proves that K is bounded on (0, δ). This
in turn implies that it has a strictly positive limit at y = 0, as it is a
nonincreasing function, which can be seen from (55)–(56).

7 Partial uniqueness of scaling profiles

Let us prove theorems 1.1 and 1.2 on the uniqueness of scaling profiles.
For this, we prove local results of uniqueness near y = 0 for coagulation
kernels of the form (3) with α ≤ 0, and then extend them to global
results in section 7.2.

7.1 Local uniqueness near y = 0

Let us prove the following result:

Lemma 7.1. Assume that the coagulation coefficient a is of the form
(3) with α ≤ 0. Assume that g1 and g2 are two self-similar profiles
for Smoluchowski’s equation, and also that

1. in the case α = 0, Mλ[g1] = Mλ[g2], and

lim
y→0

yτ−1G1(y) = lim
y→0

yτ−1G2(y),

where τ is given by (36), and G1, G2 are the primitives of g1,
g2 based at +∞, defined as in (33).
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2. in the case α < 0, Mα[g1] = Mα[g2], Mβ[g1] = Mβ[g2], and

lim
y→0

g1(y)eΛ(y) = lim
y→0

g2(y)eΛ(y),

where Λ is given by (48).

Then, there is a ǫ > 0 such that g1(y) = g2(y) for 0 < y < ǫ.

7.1.1 Proof for α = 0

Step 1: Rewriting the equation for a difference of profiles.

Assume that the coagulation coefficient a is given by (3) with α = 0
(so β = λ). If g is a self-similar profile, from lemma 5.4 we know that

G(y) = y1−τK(y), (68)

where

τ := 2 − (1 − λ)Mλ[g] (69)

K(y) = K0 −

∫ y

0
zτ−2h(z) dz, (70)

h := (1 − λ)
(

G ∗ (yλg)
)

. (71)

and K0 is given by

K0 := lim
y→0

K(y) = lim
y→0

yτ−1G(y), (72)

which is known to exist and be strictly positive [8]. Note that here we
have integrated eq. (37) between 0 and y, which can be done once we
know K has a limit at y = 0.

Gathering the above, we have

yτ−1G(y) = K0 − (1 − λ)

∫ y

0
zτ−2

(

G ∗ (yλg)
)

(z) dz, (73)

which is a remarkable equation in the sense that it is local near 0, and
the term to the right is more regular near 0 than that to the left, as
will be precised later. We also remark that in (73) the parameters τ
and K0 depend on g.

Now, let us obtain the corresponding equation for the difference
of two self-similar profiles. Let g1, g2 be two solutions of self-similar
profiles, and assume that they satisfy the conditions in lemma 7.1.
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Then, both g1 and g2 satisfy (73) with the same τ and K0, and we
can take the difference to get

yτ−1∆G(y) = −
1 − λ

2

∫ y

0
zτ−2

(

(∆G) ∗ (yλg1)
)

(z) dz

−
1 − λ

2

∫ y

0
zτ−2

(

G2 ∗ (yλ∆f)
)

(z) dz, (74)

where
∆f := g1 − g2, ∆F := G1 −G2.

Now, to obtain local uniqueness near 0, take ǫ > 0 and write

N ≡ N(ǫ) := sup
y∈(0,ǫ)

yτ−1 |∆G(y)| . (75)

Observe that this quantity is known to be bounded thanks to [8]. Let
us prove from equation (74) that, if we take ǫ small enough, then N
must be 0.

Step 2: Estimate for the first term. Constants independent
of ǫ will be denoted by K1, K2... We will use the following bound,
which holds for all solutions g of (4) [8] (and in particular for g1 and
g2):

g(y) ≤ K1y
−τ for y > 0 (76)

for some constant K1 > 0, which implies that

G(y) ≤ K2y
1−τ for y > 0, (77)

for some other constant K2. Then, from (76),

∣

∣

∣
(∆G) ∗ (yλg1)(z)

∣

∣

∣
≤

∫ z

0
|∆G(x)| (x− z)λ |g1(x− z)| dx

≤ K1N

∫ z

0
x1−τ (x− z)λ−τ dx ≤ K3Nz

2+λ−2τ . (78)

Hence, the first term on the right hand side of (74) can be estimated
by

∣

∣

∣

∣

∫ y

0
zτ−2

(

(∆G) ∗ (yλg1)
)

(z) dz

∣

∣

∣

∣

≤ N K3

∫ y

0
zλ−τ dz = N K4 z

1+λ−τ .

(79)
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Step 3: Estimate for the second term. For the second term
in (74) we need to make ∆G appear instead of ∆g. We use integration
by parts to write:
∫ y

0
zτ−2

(

G2 ∗ (yλ∆g)
)

(z) dz

= yτ−2

∫ y

0

(

G2 ∗ (yλ∆g)
)

(z) dz

+ (2 − τ)

∫ y

0
zτ−3

∫ z

0

(

G2 ∗ (yλ∆g)
)

(x) dx dz. (80)

Here, the boundary term at y = 0 in the integration by parts vanishes,
which is a consequence of the bound below in eq. (85), which we will
show next for the term

∫ y

0 G2 ∗ (yλ∆g) appearing above. Write:

∫ y

0

(

G2 ∗ (yλ∆g)
)

(z) dz = D−1
(

G2 ∗ (yλ∆g)
)

(z) dz

= (G2 ∗D
−1(yλ∆g))(y). (81)

Also,

D−1(yλ∆g)(y) = −yλ∆G(y) + λ

∫ y

0
zλ−1∆G(z) dz, (82)

so
∣

∣

∣
D−1(yλ∆g)(y)

∣

∣

∣
≤
∣

∣

∣
yλ∆G(y)

∣

∣

∣
+ λ

∫ y

0
zλ−1 |∆G(z)| dz

≤ Ny1−τ+λ +Nλ

∫ y

0
zλ−τ dz ≤ K5N y1+λ−τ . (83)

Hence, from (81),
∣

∣

∣

∣

∫ y

0

(

G2 ∗ (yλ∆g)
)

(z) dz

∣

∣

∣

∣

≤
∣

∣

∣
(G2 ∗D

−1(yλ∆g))(y)
∣

∣

∣

≤ N K2K5

∫ y

0
z1−τ (y − z)1+λ−τ dz ≤ N K6 y

3+λ−2τ . (84)

And finally, gathering (80) and (84),
∣

∣

∣

∣

∫ y

0
zτ−2

(

G2 ∗ (yλ∆g)
)

(z) dz

∣

∣

∣

∣

≤ N K6 y
τ−2y3+λ−2τ +N K6 |2 − τ |

∫ y

0
zτ−3z3+λ−2τ dz

≤ NK7 y
1+λ−τ . (85)
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Step 4: Final estimate Now, from eq. (74), taking the supre-
mum on (0, ǫ) and using (79) and (85) one has

N(ǫ) ≤ N(ǫ)K8 ǫ
1+λ−τ . (86)

Note that 1 + λ− τ > 0 [8], which is crucial for this argument, and is
a particular property of the coagulation kernel we are using. Hence,
for ǫ > 0 small enough, we have that

N ≡ N(ǫ) = 0,

and hence that
g1(y) = g2(y) for 0 < y < ǫ,

which proves lemma 7.1 when α = 0.

7.1.2 Proof for α < 0

Assume again that a is of the form (3), now with α < 0. Take g a
self-similar profile for Smoluchowski’s coagulation equation with such
a kernel a. By lemma 5.6 we know that

g(y) = K(y)e−Λ(y), (87)

with

Λ(y) := 2 log y − (1 − λ)
Mβ

α
yα − (1 − λ)

Mα

β
yβ, (88)

and an absolutely continuous function K such that

K ′(y) =
1

y
eΛ(y)h(y) for almost all y > 0, with (89)

h := −(1 − λ)(yαg) ∗ (yβg). (90)

In addition, in theorem 1.5 we proved that K is bounded on any
interval (0, R) with R > 0, and in fact has a limit when y → 0.

Now, assume that we have two self-similar solutions g1, g2 in the
conditions of lemma 7.1. Then the above reasoning applies to both g1
and g2 with the same Λ, and we have, denoting ∆A := A1 − A2 for
any function A,

∆g(y) = ∆K(y)e−Λ(y), (91)
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with

(∆K)′(y) =
1

y
eΛ(y)∆h(y) for almost all y > 0, (92)

∆h = − (1 − λ)(yα∆g) ∗ (yβg2)

− (1 − λ)(yαg2) ∗ (yβ∆g).
(93)

Then, from eq. (87) and the equality of the limits in (8) we see that
limy→0 ∆K(y) = 0, so

∆K(y) =

∫ y

0

1

z
eΛ(z)∆h(z) dz. (94)

Let us find a bound for ∆h using ∆K. Take ǫ > 0 and call

N := sup
y∈(0,ǫ)

|∆K(y)| . (95)

Then, for the first term in (93),
∣

∣

∣
(yα∆g) ∗ (yβg2)

∣

∣

∣
≤ N (yαe−Λ(y)) ∗ (yβg2)

≤ NK0 e
−Λ(y) (yβ) ∗ (yα) ≤ NK1 e

−Λ(y) yλ+1, (96)

where we have also used that g is bounded on (0, ǫ); of course, we have
much stronger information on its behavior at y = 0, which has been
used through the fact that ∆K is bounded and has a limit at y = 0.

For the second term in (93) a similar calculation shows that
∣

∣

∣
(yαg2) ∗ (yβ∆g)

∣

∣

∣
≤ NK2 y

λ+1e−Λ(y). (97)

Putting together (96) and (97) we obtain a bound for ∆h:

|∆h(y)| ≤ NK3 y
λ+1e−Λ(y), (98)

and continuing from (94),

|∆K(y)| ≤ NK3

∫ y

0
zλ dz = NK4 y

λ+1. (99)

Finally, taking the supremum on (0, ǫ),

N ≤ NK4 ǫ
λ+1, (100)

and then (as λ+ 1 > 0) choosing ǫ small enough proves that N = 0.
Hence,

g1(y) = g2(y) for y ∈ (0, ǫ). (101)

This proves lemma 7.1 also in the case α < 0, so we have finished its
proof.
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7.2 Global uniqueness

We can extend the results in the previous section so that they hold
on (0,∞), and not only on some interval (0, δ):

Proposition 7.2. Consider equation (4) with a coagulation coefficient
of the form (3).

1. If α = 0, then for each Mλ,K0 > 0 this equation has at most
one solution g such that

∫

∞

0
yλg(y) dy = Mλ

lim
y→0

yτ−1G(y) = K0,

where τ is given by (69).

2. If α < 0, then for each Mα,Mβ ,K0 > 0 this equation has at
most one solution g such that

∫

∞

0
yαg(y) dy = Mα,

∫

∞

0
yβg(y) dy = Mβ ,

lim
y→0

g(y)eΛ(y) = K0.

Note that this already contains theorem 1.2. After this it will also
be easy to prove theorem 1.1.

Proof. Take two self-similar profiles g1 and g2 satisfying the hypothe-
ses of the theorem. The results in previous sections show that g1 = g2
on some interval (0, ǫ), for some ǫ > 0. Following a strategy usual in
uniqueness theorems for ordinary differential equations, we will show
that whenever g1 = g2 on an interval (0, y0), there is a δ > 0 such that
g1 = g2 on (0, y0 + δ). Together with our local uniqueness result, a
well-known argument then shows that g1 = g2 on (0,∞).

So, assume that g1 = g2 on (0, y0) for some y0 > 0. Take δ > 0 (to
be fixed later) and define

N := sup
y∈(y0,y0+δ)

|∆g(y)| (102)

= sup
y∈(0,y0+δ)

|∆g(y)| . (103)

Choosing δ appropriately, we will prove that N = 0. Take the differ-
ence of the self-similar equation for g1 and g2 to get

y∆g = ∆G+ (1 − λ)D−1C(∆g, g1 + g2). (104)
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Hence, taking the supremum on (y0, y0 + δ),

y0N ≤ ‖∆G‖L∞(y0,y0+δ)

+ (1 − λ) ‖D−1C(∆g, g1 + g2)‖L∞(y0,y0+δ) . (105)

To bound the first term we have, for y ∈ (y0, y0 + δ),

|∆G(y)| =

∣

∣

∣

∣

∫ y

y0

δg(z) dz

∣

∣

∣

∣

≤ N(y − y0) ≤ N(δ − y0). (106)

The bound for the second term in (105) depends on the type of kernel
we are considering:

Bound for an α < 0 kernel

2C(∆g, g1) = {yα∆g} ∗ {yβg1} + {yβ∆g} ∗ {yαg1}

= (yα∆g) ∗ {yβg1} + (yβ∆g) ∗ {yαg1}, (107)

so, for δ ≤ y ≤ 2δ,

|C(∆g, g1)|

≤ ‖yα∆g‖L∞(0,y)Mβ +
∥

∥

∥
yβ∆g

∥

∥

∥

L∞(0,y)
Mα ≤ K0N,

where the first inequality has been obtained by applying Young’s
inequality for measures (or, alternatively, by writing out explicitly
C(∆g, g1) with its classical formula and bounding each term). Hence,

∫ y

δ

|C(∆g, g1)| dz ≤ K0N (y − δ). (108)

Bound for an α = 0 kernel

2C(∆g, g1) = {yλ∆g} ∗ {g1} + {∆g} ∗ {yλg1}

= (yλ∆g) ∗ {g1} + {∆g} ∗ (yλg1) −Mλ{∆g}, (109)

and then

2 |D−1C(∆g, g1)|

≤ Dλ−1(y
λ∆g) ∗D−λ{g1} +D−1{∆g} ∗ (yλg1) +MλD−1{∆g}

≤Mλ

∥

∥

∥
Dλ−1(y

λ∆g)
∥

∥

∥

L∞(−∞,y)
+ 2Mλ(y − δ)N. (110)
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We need to bound
∥

∥Dλ−1(y
λ∆g)

∥

∥

L∞(−∞,y)
:

Dλ−1(y
λ∆g) =

1

Γ(1 − λ)

∫ y

−∞

zλ∆g(z)(y − z)−λ dz

1

Γ(1 − λ)

∫ y

δ

zλ∆g(z)(y − z)−λ dz

≤ K1N

∫ y

δ

(y − z)−λ dz

= K1N
1

1 − λ
(y − δ)1−λ. (111)

Finally, with (108) and (111) we can continue from (105) to get

y0N ≤ K2N (y − δ)1−λ, (112)

so choosing δ small enough we can deduce that N = 0. This finishes
the proof.

Let us finally prove theorem 1.1:

Proof of theorem 1.1. Assume that a is of the form (3) with α = 0,
and take two solutions g1, g2 of equation (4) in the conditions of
theorem 1.1, this is,

∫

∞

0
y g1(y) dy =

∫

∞

0
y g2(y) dy,

∫

∞

0
yλ g1(y) dy =

∫

∞

0
yλ g2(y) dy.

Then, for any µ > 0, the function

g̃1(y) := µ1+λg1(µy) for y > 0

is another solution of equation (4), which is a simple consequence of
the homogeneity of the coagulation coefficient a (see, for example, [8]).
We also check easily that

∫

∞

0
yλ g̃1(y) dy =

∫

∞

0
yλ g1(y) dy (113)

∫

∞

0
y g̃1(y) dy = µλ−1

∫

∞

0
y g1(y) dy (114)

lim
y→0

yτ−1

∫

∞

y

g̃1(z) dz = µ1+λ−τ lim
y→0

yτ−1

∫

∞

y

g1(z) dz, (115)
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where τ := 2 − (1 − λ)Mλ[g1]. Hence, the moment of order λ of g̃1 is
the same no matter which µ we take, so we can choose µ > 0 in such
a way that

∫

∞

0
yλ g̃1(y) dy =

∫

∞

0
yλ g2(y) dy

lim
y→0

yτ−1

∫

∞

y

g̃1(z) dz = lim
y→0

yτ−1

∫

∞

y

g2(z) dz.

Hence, with this value of µ, by proposition 7.2 we have that g̃1 = g2,
and in particular their masses are equal; as the masses of g1 and g2
are also equal, from (114) we deduce that in fact µ must be equal to
1, so g1 = g̃1 = g2, which shows the result.

8 Appendix: fractional derivatives

The extension of the concept of integration and differentiation to in-
clude derivatives and integrals of noninteger order is a well established
theory [?, ?, ?]. Here we give a brief but self-contained introduction
to it and state without proof the main standard results. Some par-
ticular properties needed in the rest of this paper and which are not
commonly encountered will be given with complete proofs below.

For our purposes, the simplest and most general definition of frac-
tional derivatives is given in the context of distributions, and can be
found in the book by Schwartz [?, VI.5]. The reader can check that
our definitions are the same as those given there, even if the presenta-
tion is somewhat different. Other expositions are found in [?, ?], and
we refer to those sources for the proof of the main results on fractional
differentiation given below.

In the following we will use the space C∞

R consisting of all infinitely
differentiable functions f : R → R which have support bounded below;
this is, those f which have support contained in [a,+∞) for some
a ∈ R. The notation C∞

R is intended to suggest that the important part
of a function f is to the right, if one represents the real line as usual.1

Analogously, we define C∞

L as the set of all infinitely differentiable
functions f : R → R whose support is bounded above.

1We prefer to write C∞

R
instead of D+, used in Schwartz’s book, as in the literature

related to Smoluchowski’s equation the subscript ‘+’ is frequently used to denote that
functions in the involved space are nonnegative, which could cause confusion here, where
we want to stress a property of their support.
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We will first define fractional derivatives for smooth functions,
and then extend the concept to distributions with a common dual-
ity method.

8.1 Fractional derivatives of smooth functions

Definition 8.1 (Left fractional derivatives). For f ∈ C∞

R and real
k > 0, we define the left integral or order k of f as

D−kf(y) :=
1

Γ(k)

∫ y

−∞

f(z)(y − z)k−1 dz for y ∈ R, (116)

where Γ is the Gamma function. For k = 0 we just write Dkf = f .
For real k ≥ 0 we write k as k = n − s, with n > 0 an integer and
0 ≤ s < 1, and define the left derivative of order k of f to be

Dkf :=
dn

dyn
(D−sf). (117)

The above is a usual definition of fractional integrals and deriva-
tives [?], sometimes called the Riemann-Lebesgue definition. Names
given to the above also differ slightly from place to place: we may refer
to Dkf as the left derivative of order k of f , or just the k-th derivative
of f , for any real k (even for k < 0), thus emphasizing that all Dk are
part of a family of operators with common properties.

There is a completely analogous concept of right derivative where
integrals are taken from +∞:

Definition 8.2 (Right fractional derivatives). For f ∈ C∞

L and real
k > 0, we define the right integral or order k of f as

D−kf(y) :=
1

Γ(k)

∫

∞

y

f(z)(z − y)k−1 dz for y ∈ R, (118)

where Γ is the Gamma function. For k = 0 we just write Dkf = f .
For real k ≥ 0 we write k as k = n − s, with n > 0 an integer and
0 ≤ s < 1, and define the left derivative of order k of f to be

Dkf := (−1)n
dn

dyn
(D−sf). (119)

Some easy consequences are the following:

1. For k ∈ R and f ∈ C∞

R , Dkf is again on C∞

R , and the analogous
result holds for Dk and C∞

L .
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2. For integer k ≥ 0, Dk is just the usual k-th derivative of f ,
while D−k is the k-fold iteration of the primitive based at −∞;
in particular, D−1f is the only primitive of f which is 0 at −∞.
Analogously, Dk is the usual k-th derivative of f , times (−1)k

(see next for a natural reason for this definition), while D−k is
the k-fold iteration of the primitive based at +∞.

3. Right derivatives are the concept symmetric to that of left deriva-
tives under the reflection of R: if we define the reflection of a
function f : R → R to be the function Rf : R → R given by
Rf(y) := f(−y), then

Dk(f) := R(Dk(Rf)) for k ∈ R, f ∈ C∞

L . (120)

Alternatively, one can take this as a definition of right derivatives
from the perhaps more natural concept of left derivatives. Note
that the alternating sign in equation (119) is unavoidable if we
want to conserve this symmetry property.

Remarkably, the following composition result holds:

Theorem 8.3. For real k, j,

Dj(Dkf) = Dj+kf for any f ∈ C∞

R , (121)

Dj(Dkf) = Dj+kf for any f ∈ C∞

L . (122)

A proof follows from elementary analysis arguments. For this result
to hold it is essential that our definitions 8.1 and 8.2 above have picked
specific primitives (those which are 0 at −∞ or +∞, respectively) out
of all the possible primitives of a function f . Said in another way,
the spaces C∞

R , C∞

L in which we are working only contain one of
all the possible primitives of a given function f , and thus the above
composition rule can hold.

Also, it is easy to see that Dk is the dual of Dk in the following
sense:

Lemma 8.4. For f ∈ C∞

R and g ∈ C∞

L it holds that

∫ +∞

−∞

Dkf(y) g(y) dy =

∫ +∞

−∞

f(y)Dkg(y) dy. (123)

This suggests the definition for distributions given below.
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8.2 Fractional derivatives of distributions

Consider the set D′

L of distributions on R which have compact support
bounded below. One can show that D′

L is the dual of C∞

L when the
latter is equipped with a natural topology (which extends that of C∞

0 )
[?, VI.5]. So, D′

L should be thought of as (C∞

L )′, which is useful for
remembering that distributions in this space have support contained
in (a,∞) for some a ∈ R. For these distributions, one can define 〈T, ψ〉
for any ψ ∈ C∞

L as
〈T, ψ〉 := 〈T, ψ̃〉 (124)

for any ψ̃ ∈ C∞

0 (R) which coincides with ψ on the support of T . Of
course, this definition does not depend on the particular extension
chosen. We define D′

L analogously, and also the pairing 〈T, φ〉 for any
T ∈ D′

L, φ ∈ C∞

R .

Definition 8.5 (Fractional derivatives of distributions). Take k ∈ R.
For a distribution T ∈ D′

L we define the distribution DkT as

〈DkT, ψ〉 := 〈T,Dkψ〉 for ψ ∈ C∞

L (R). (125)

Analogously, for a distribution T ∈ D′

R we define the distribution DkT
as

〈DkT, ψ〉 := 〈T,Dkφ〉 for φ ∈ C∞

L (R). (126)

Here, Dkφ and Dkψ are the right and left fractional derivatives, re-
spectively, defined in section 8.1. Note that the duality products here
are well defined as indicated in (124). Also, this agrees with defini-
tions 8.1 and 8.2 when T is a function in C∞

R (or C∞

L ), as can be seen
from (123).

Then, the Dk are linear operators for which the composition rule
(121) still holds: for any j, k ∈ R,

Dj(DkT ) = Dj+kT for any T ∈ D′

R (127)

Dj(DkT ) = Dj+kT for any T ∈ D′

L. (128)

The convolution of two distributions in D′

R (or two distributions
in D′

L) is well defined [?, VI.5], as we show below:

Definition 8.6 (Convolution of a distribution and a smooth function).
Given T ∈ D′

R and φ ∈ C∞

L we define T ∗ φ as the distribution in D′

R

given by
〈T ∗ φ,ψ〉 := 〈T, (Rφ) ∗ ψ〉 for ψ ∈ C∞

R . (129)
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Note that (Rφ) ∗ ψ ∈ C∞

R . For T ∈ D′

L and ψ ∈ C∞

R the convolution
T ∗ ψ is defined analogously.

The convolution with a function in C∞

R (or C∞

L ) is regularizing, as it
happens in the more familiar case of convolution with a C∞ function
with bounded support: if T ∈ D′

L and ψ ∈ C∞

R , then one can prove
that T ∗ ψ is equal to a function in C∞

R , given by

T ∗ ψ(y) = 〈T, τyψ〉 for y ∈ R, (130)

where (τyψ)(x) := ψ(x− y) is the translation of ψ by y. Similarly the
convolution T ∗ φ for T ∈ D′

R and φ ∈ C∞

L is a function in C∞

L .

Definition 8.7 (Convolution of two distributions). Given T, S ∈ D′

R,
we define T ∗ S as the distribution in D′

R given by

〈T ∗ S,ψ〉 := 〈T, (RS) ∗ ψ〉 for ψ ∈ C∞

R . (131)

(As remarked before (130), (RS) ∗ ψ ∈ C∞

R .) The convolution T ∗ S
for T, S ∈ D′

L is defined analogously.

The following well-known result on the derivation of a convolution
holds in complete generality with these definitions:

Theorem 8.8. For any T, S ∈ D′

L and any k ∈ R,

Dk(T ∗ S) = (DkT ) ∗ S.

Although fractional derivation and integration operators of non-
integer order are not local, their regularity properties nevertheless
depend only on local properties of the function they act on, as can be
easily proved by observing that Dkf can be written as a convolution
of f with a distribution which is C∞ away from 0 [?, VI.5, p. 174]. A
manifestation of this is the following result:

Theorem 8.9. Let T be a distribution on R with compact support to
the left (this is, T ∈ D′

L), and such that T is C∞(U), for U ⊆ R a
given open set. Then, DkT ∈ C∞(U) for all k ∈ R.

It is well known that multiplying a distribution by a C∞ function
preserves its local regularity, and this is still true when one measures
this regularity in terms of the integrability of a given fractional deriva-
tive. As this result is not easily found in the literature and its proof
is not obvious, we give it in section 8.3 below:
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Theorem 8.10. Let T be a distribution on R with compact support
to the left (this is, T ∈ D′

L), and assume that DµT is locally integrable
for some µ > 0. Then, for any smooth function Φ on R, Dµ(ΦT ) is
locally integrable.

Of course, the analogous result holds for a distribution with com-
pact support to the right and right derivatives Dµ.

Let us also prove a result which is used in this paper, which says
that the property that DkT is locally integrable is stronger the higher
k is:

Lemma 8.11. Let T ∈ D′

L be a distribution on R with compact sup-
port to the left, and assume that DkT is locally integrable on R for
some k ∈ R. Then, Dk−mT is locally integrable for all real m ≥ 0.

Proof. It is enough to prove it for k = 0, as then the general result
is obtained by applying this particular case to the distribution DkT ,
taking into account the composition law (127).

Then, to prove it for k = 0, take T a locally integrable function
on R with support contained on (R,∞). Fix a compact interval [a, b]
with b > R. For a test function φ ∈ C∞

0 (R) with compact support
contained on (a, b) and any m > 0 we have

〈

D−mT, φ
〉

=
1

Γ(m)

∫ b

R

T (y)

∫ b

y

φ(z)(z − y)m−1 dz dy,

and hence

∣

∣

〈

D−mT, φ
〉
∣

∣ ≤ ‖φ‖
∞

1

Γ(m)

∫ b

R

|T (y)|

∫ b

y

(z − y)m−1 dz dy

= ‖φ‖
∞

1

Γ(m)

∫ b

R

|T (y)|

∫ b−y

0
zm−1 dz dy

≤ ‖φ‖
∞

(b−R)m

mΓ(m)

∫ b

R

|T (y)| dy,

which proves that D−mT is locally integrable on (a, b).

8.3 Regularity of a product by a smooth func-

tion

In this section we give the proof of theorem 8.10 on the regularity of
fractional order of a product by a C∞ function. We recall its statement:
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Theorem 8.12. Let T ∈ D′

L be a distribution on R with compact
support to the left, and assume that DµT is locally integrable for some
µ > 0. Then, for any smooth function Φ on R, Dµ(ΦT ) is locally
integrable.

The proof is broken into several lemmas. The following one some-
times serves as a weaker substitute for the rule of differentiation of a
product:

Lemma 8.13. Take 0 < k < 1. If φ,ψ ∈ C∞(R) and have compact
support to the right, then the following equality holds:

Dk(φD−kψ)(y) = φ(y)ψ(y)

−
sin(πk)

π

∫

∞

y

ψ(x)
1

x− y

∫ x

y

φ′(z)(x − z)k(z − y)−k dz dx.

Proof. We have Dk(φD−kψ) = D1Dk−1(φD−kψ). Let us calculate
this:

Dk−1(φD−kψ)(y)

=
1

Γ(k)Γ(1 − k)

∫

∞

y

φ(z)

∫

∞

z

ψ(x)(x − z)k−1(z − y)−k dx dz

= K1

∫

∞

y

ψ(x)

∫ x

y

φ(z)(x− z)k−1(z − y)−k dz dx, (132)

where we have set K1 := 1/(Γ(k)Γ(1 − k)) for short. By a change of
variables u = (z − y)/(x− y), the inner integral can be written as
∫ x

y

φ(z)(x− z)k−1(z− y)−k dz =

∫ 1

0
φ(u(x− y)+ y)(1−u)k−1u−k du,

so we can calculate the derivative in y of (132) and obtain

Dk(φD−kψ)(y) = −K1
d

dy

∫

∞

y

ψ(x)

∫ x

y

φ(z)(x−z)k−1(z−y)−k dz dx

= −K1
d

dy

∫

∞

y

ψ(x)

∫ 1

0
φ(u(x− y) + y)(1 − u)k−1u−k du dx

=
B(k, 1 − k)

Γ(k)Γ(1 − k)
ψ(y)φ(y)

−K1

∫

∞

y

ψ(x)

∫ 1

0
φ′(u(x− y) + y)(1 − u)ku−k du dx

= ψ(y)φ(y) −K1

∫

∞

y

ψ(x)
1

x− y

∫ 1

0
φ′(z)(x − z)k(z − y)−k dz dx,
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where B(k, 1−k) is the Beta function for the parameters (k, 1−k). We
have used the well-known relationship between the Beta and Gamma
functions, and have undone our previous change of variables. This is
the expression in the lemma; note that K1 is the constant that appears
there.

Lemma 8.14. Take k ≥ 0 and Φ ∈ C∞

b (R). Then, for all ψ ∈ C∞

0 (R)
with compact support contained on a fixed interval (−∞, b) it holds
that

|D−k(ΦDk−1ψ)(y)| ≤ (b− y) ‖ψ‖
∞
‖Φ‖

∞
for all y < b. (133)

Proof. For y ≥ b, D−k(ΦDk−1ψ)(y) is zero. For y < b we have

|D−k(ΦDk−1ψ)(y)|

≤
1

Γ(k)Γ(1 − k)

∫ b

y

|Φ(z)| (z − y)k−1

∫ b

z

|ψ(x)| (x− z)−k dx dz

≤
1

Γ(k)Γ(1 − k)
‖ψ‖

∞
‖Φ‖

∞

∫ b

y

∫ x

y

(z − y)k−1(x− z)−k dz dx

≤
B(k, 1 − k)

Γ(k)Γ(1 − k)
(b− y) ‖ψ‖

∞
‖Φ‖

∞
= (b− y) ‖ψ‖

∞
‖Φ‖

∞
,

taking into account the relationship between the Gamma and Beta
functions.

Lemma 8.15. Take Φ ∈ C∞

b (R) and 0 ≤ k < 1. Fix a < b ∈ R.
Then, for all ψ ∈ C∞

0 (R) with compact support contained on a fixed
interval (−∞, b) it holds that

‖Dk(ΦD−kψ)‖L∞(a,b) ≤ K ‖ψ‖
∞
,

where K ≥ 0 is a constant that only depends on k, Φ and the interval
(a, b).

Proof. For k = 0 the statement is trivial. For 0 < k < 1, we use
lemma 8.13 to write, for y < b,

Dk(ΦD−kψ)(y) = Φ(y)ψ(y)

−
sin(πk)

π

∫ b

y

ψ(x)
1

x− y

∫ x

y

Φ′(z)(x − z)k(z − y)−k dz dx,
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where we have also taken into account that ψ(x) is 0 for x ≥ b. Here,
the first term has the straightforward bound ‖Φψ‖

∞
≤ ‖Φ‖

∞
‖ψ‖

∞
.

As for the second one,

∣

∣

∣

∣

∫ b

y

ψ(x)
1

x− y

∫ x

y

Φ′(z)(x− z)k(z − y)−k dz dx

∣

∣

∣

∣

≤ ‖ψ‖
∞

∥

∥Φ′
∥

∥

∞

∫ b

y

1

x− y

∫ x

y

(x− z)k(z − y)−k dz dx

= K (b− y) ‖ψ‖
∞

∥

∥Φ′
∥

∥

∞
,

where the constant K is B(1 + k, 1 − k). Using this for a < y < b
proves the statement.

Lemma 8.16. Take Φ ∈ C∞

b (R) and k < 1. Fix a < b ∈ R. Then,
for all ψ ∈ C∞

0 (R) with compact support contained on a fixed interval
(−∞, b) it holds that

‖Dk(ΦD−kψ)‖L∞(a,b) ≤ K ‖ψ‖
∞
,

where K ≥ 0 is a constant that only depends on k, Φ and the interval
(a, b).

Proof. Lemma 8.15 proves this when 0 ≤ k < 1, and we can prove the
general case inductively: if the result is valid for a given k < 1, then

Dk−1(ΦD1−kψ) = Dk−1(ΦD1(D−kψ))

= Dk−1D1(ΦD−kψ) −Dk−1((D1Φ)(D−kψ))

= Dk(ΦD−kψ) −Dk−1((D1Φ)(D−kψ)).

For the first term we can use our induction hypothesis, and the second
one can be bounded thanks to lemma (133). This shows the lemma.

Proof of theorem 8.10. Take R ∈ R so that T has support contained
in (R,∞). Fix a compact interval (a, b) with b > R. For a function
ψ ∈ C∞

0 (R) with compact support on (a, b) we have

〈Dµ(ΦT ), ψ〉 = 〈ΦT,Dµψ〉 = 〈T,ΦDµψ〉

=
〈

D−µDµT,ΦDµψ
〉

= 〈DµT,D−µΦDµψ〉 .
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Taking into account that DµT has support contained in (R,∞) and
that D−µΦDµψ is smooth and has support contained in (−∞, b), we
have

|〈Dµ(ΦT ), ψ〉| ≤ ‖DµT‖L1(R,b) ‖D−µΦDµψ‖L∞(R,b)

≤ K ‖DµT‖L1(R,b) ‖ψ‖∞ ,

thanks to lemma 8.16.
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