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Laboratoire Statistique et Génome, CNRS, Université d’Evry, France
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Abstract

A high number of discrete optimization problems, including Vertex

Cover, Set Cover or Feedback Vertex Set, can be unified into the class of

covering problems. Several of them were shown to be inapproximable by

deterministic algorithms. This article proposes a new random approach,

called Choose Outsiders First, which consists in selecting randomly ele-

ments which are excluded from the cover. We show that this approach

leads to random outputs which mean size is at most twice the optimal

solution.

In his landmark paper in complexity theory [11], R. Karp provides a list of
21 NP-complete problems from which most of the NP-completness results are
deduced. Among them are the extensively studied Vertex Cover, Set Cover,
Feedback Vertex (or Arc) Set or Hitting Set problems, which belong to the class
of covering problems. Covering problems ask how large a certain combinatorial
structure has to be to cover another one, and have a wide range of applications in
all areas involving combinatorial optimization problems, including VLSI systems
[10], routing [6] or scheduling [7]. In the last decades, they also became central
in computational biology [12] as parsimony is often considered as the choice
criteria between the different evolutional scenarios explaining the observations
[9].

Most of the covering problems are NP-complete, so that they need to be
solved by using heuristics. The proposed algorithms can mainly be classified
into two families. The firt one consists in the primal-dual approaches which are
based on the formulation of covering problems as integer linear programming
problems [13]. The second type of approximation algorithms are based on local
ratio techniques which consist in solving a problem locally and extending the
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solution [2, 4]. A common measure of the quality of those heuristics is their
approximation factor. The litterature about approximation results for cover-
ing problems is huge, and an overview can be found in [1]. The main covering
problems listed above were shown to be APX-hard. The Set Cover is even
not approximable better then within a logarithmic factor, whereas the constant
approximability of Hitting Set and Directed Feedback Vertex (or Arc) Set prob-
lems are still open questions. The best known solutions for Vertex Cover and
Undirected Feedback Vertex Set have an approximation ratio of 2.

One way to reach better approximation results is the use of random algo-
rithms and the study of the mean approximation ratio of the outputs. A random
local ratio approach proposed in [3] yields for instance a mean approximation
of 2 for the Vertex Cover problem and of the maximum size of the sets for the
Set Cover and Hitting Set problems.

In this paper, we propose a new random algorithm for covering problems.
Its main difference with already studied heuristics is that the aim is not to select
good candidates for the cover but to exclude randomly elements from the cover.
This corresponds to assign a random order to the elements and to consider them
in increasing order. An element is then added to the cover if and only if has to
be added in order not to miss a structure which has to be covered. This idea was
introduced in the case of the unweighted Vertex Cover in [8] and was proved to
yield a mean 2-approximation for this particular covering problem [5]. We show
that this approach, that we call Choose Outsiders First, is in fact much more
general in the sense that it can be applied and yields a mean approximation ratio
of 2 for any covering problem. This is to our knowledge the first approximation
result for which the ratio is independent from the input for problems like the
Set Cover or the Directed Feedback Vertex Set.

1 The algorithm

Following Bar-Yehuda’s [3] formalism, an unweighted covering problem is a pair
(U, f : 2U → {0, 1}, ω : U → R

+) where U is a finite set, f is monotone, i.e.,
A ⊆ B ⇒ f(A) ≤ f(B), and f(U) = 1. For a set C ⊂ U , ω(C) =

∑

x∈C ω(x)
is called the weight of C. A set C ⊆ U is a cover if f(C) = 1. The problem is
then to find a cover of minimum weight, that is a set C∗ ⊂ U such that

ω(C∗) = min(ω(C) : C ⊂ U and f(C) = 1)

To do so, we consider the algorithm Choose Outsiders First which relies on
the idea that if the optimal cover is small, a randomly chosen vertex has a high
probability not to be contained in the optimal solution. Therefore, two sets
OUT and IN are considered and at each step, a vertex is randomly chosen and
is put into OUT , that is considered to be not in the cover. However, from time
to time, a structure which has to be covered has seen all its elements but one
put into OUT . This last element has then to be put into the cover and is added
in the IN set. Once all the elements of U have been classified into OUT or IN ,
the set IN is a cover and is output by the algorithm.
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The pseudo-code of Choose Outsiders First is given in Algorithm 1. At each
step of the algorithm, we say that a vertex is available if it hasn’t be classified
yet and denote by A the set available vertices, that is A = U \{OUT ∪IN}. The
pseudo-code of Algorithm 1 is written by using A, IN and OUT at each step
for better readability but in practice, the algorithm can be written by updating
only A and IN or OUT and IN , the union of the three sets beeing always U .
Note that if the conditions of Line 2 are checked in polynomial time, which is
the case if the problem is in NP, the total running time is polynomial.

The probability distribution used to choose the excluded vertex at each step
is the one proportional to the weights of the available vertices. Elements of
small weight are therefore excluded with lower probability and thus favored to
be in the output. Note that in the case of an unweighted covering problem, the
algorithms picks uniformly the excluded vertex.

Algorithm 1: Choose Outsiders First

IN = ∅, OUT = ∅, A = U ;1

while A 6= ∅ do2

Pick randomly u ∈ A with probability ω(u)
ω(A) ;3

OUT = OUT ∪ {u} ;4

for v ∈ U \ {IN ∪OUT} such that f(U \ {OUT ∪ {v}}) = 0 do5

IN = IN ∪ {v}6

end7

A = U \ {OUT ∪ IN} ;8

end9

The size of the output cover is a random variable, which we call CoverSize.
To assess the efficiency of the algorithm, we have to rely the values of CoverSize
to the size of an optimal solution. Let us first show that this value is equal to
min(CoverSize).

Theorem 1. Any optimal cover C∗ has a non-null probability to be output by

Choose Outsiders First. Hence, the optimal size of a cover is min(CoverSize).

Proof. Let C∗ be an optimal cover. Consider a run of the algorithm such that,
if possible, the random picked vertex is always chosen in U \ C∗. Let us show
by induction that at each step, OUT ∩ C∗ = ∅ and IN ⊆ C∗. Note that it is
trivially true at the beginning of the algorithm.

Suppose now it is true at some point just before a random vertex is picked
and suppose that no vertex in U \C∗ is available. Then A ⊂ C∗, IN ⊂ C∗ and
OUT ∩ C∗ = ∅, that is U \ OUT = C∗. But if there is a vertex v in A, it has
not been put into IN in the previous round, which means that the condition
at Line 5 was not satisfied. Hence, U \ {OUT ∪ {v}} = C∗ \ {v} is a cover,
which contradicts the minimality of C∗. Consequently, a vertex of U \ C∗ has
to be available and it is such a vertex which is chosen. Thus the two desired set
relations are still valid after Line 4.
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Figure 1: Consider the Feedback Arc Set problem on the graph G on the left,
that is finding a set of arcs of minimal weight hitting all the cycles of G. Assume
that b is picked first, followed by g, c (d is then added to IN) and h. At this
point, we have OUT = {b, c, g, h} and IN = {d}. The right part of the figure
shows the resulting incompatibility graph, where two edges of G are linked if
adding them both to OUT creates a cycle containing no edge in IN .

Suppose now that they are valid after Line 4 and let v an element which is
added to IN at Line 6. Then v satisfied the condition on Line 5, which means
that U \ {OUT ∪ {v}} is not a cover. But if v /∈ C∗, C∗ ⊆ U \ {OUT ∪ {v}},
which would be a contradiction with the monotonicity of the covering property.
Thus, only vertices of C∗ are added to IN , so that the set relations remain true
after Line 7.

2 Analysis of the mean approximation ratio

The key structure for the analysis of the RANDOM COVER algorithm is a
graph encoding the fact that the choice of a vertex to put into OUT may force
some others to go into IN : consider two sets OUT and IN generated by the
algorithm as they are on the beginning of a run of the loop at Line 5 . We define
the incompatibility graph GOUT,IN as follows:

• V (GOUT,IN ) = A

• (u, v) is an edge of GOUT,IN if f(U \ {OUT ∪ {u, v}}) = 0.

GOUT,IN represents the set of elements of U which still have to be classified
and two of them are linked by an edge if they are incompatible, that is both of
them cannot be added simultaneously to OUT as putting all other elements in
IN would not lead to a solution of the covering. Note that the incompatibility
graph changes when the sets OUT and IN are updated. Moreover, if u denotes
the vertex put into OUT at Line 4, the set of vertices put into IN at Line 6 is
exactly the neighborhood N(u) of u in GOUT,IN .

An example of incompatibility graph is shown in Figure 1 in the context of
a Feedback Arc Set problem.
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Consider again any pair (OUT, IN) of sets generated by the algorithm. Let
XOUT,IN be the random variable counting the weight of the elements of U
which will be added in the future to IN . The weight of the elements already
in IN is not counted here. In particular, XOUT,IN = 0 if OUT ∪ IN = U and
CoverSize = X∅,∅.

Proposition 1 can easily be adapted to show that the minimum weight of
the vertices to add to IN in order to obtain a cover containing all the vertices
of IN and none of OUT is min(XOUT,IN ).

Lemma 2. Let GOUT,IN be an incompatibility graph and S the vertices cor-

responding to a minimum solution, that is such that IN ∪ S is a cover and

ω(S) = min(XOUT,IN ). For any vertex u of G, denote by NS(u) the set of its

neighbors in S. Then:

1. the set H of the vertices which are not in S is an independent set.

2. for every vertex u,

min(XOUT∪{u},IN∪{N(u)}) ≤ min(XOUT,IN )−
∑

v∈NS(u)

ω(v)

Proof. 1. Suppose that an edge links to vertices u and v of H. It means
that U \ {OUT ∪{u, v}} is not a cover, which, together with the fact that
IN ∪ S is a cover, contradicts the monotonicity of the covering property.

2. When u is added to OUT , the whole neighborhood of u is added to IN .
In particular, all the vertices of S∩N(u) are added to IN . Hence, starting
from OUT ′ = OUT ∪{v} and IN ′ = IN ∪N(u), it is possible to complete
IN ′ into a cover by adding the vertices of S \N(u). The optimal solution
is therefore of weight at most ω(S)−

∑

v∈NS(u) ω(v).

Theorem 3. For all pair of sets OUT and IN that may be generated by the

algorithm,

E(XOUT,IN ) ≤ 2min(XOUT,IN )

In particular, applying it for OUT = ∅ and IN = ∅ yields

E(CoverSize) ≤ 2min(CoverSize)

Proof. The proof is done by induction on |A|.
If |A| = 0, XOUT,IN is constant and equal to 0 so that the theorem trivially

holds.
Let’s consider a pair (OUT, IN) generated by the algorithm and suppose

that the theorem holds for every pair (OUT ′, IN ′) with OUT ⊂ OUT ′ and
IN ⊂ IN ′.
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To improve readability, the indices OUT and IN are omitted in the rest of
this proof: X (resp. G) stands for XOUT,IN (resp. GOUT,IN ) and X+u,+N(u)

for XOUT∪{u},IN∪N(u).
As in Lemma 2, S is a optimal size solution given OUT and IN and N ,

NS and NH stand for the different neighborhoods in the incompatibility graph
GOUT,IN .

E(X) =
∑

uinA

E(X|u is chosen )P(u is chosen )

=
1

ω(A)

∑

u∈A

ω(u)E(X|u is chosen )

=
1

ω(A)

∑

u∈A

ω(u)E(X+u,+N(u)) +
∑

v∈N(u)

ω(v)

≤
1

ω(A)

∑

u∈A

ω(u)
(

2min(X+u,+N(u)) +
∑

v∈N(u)

ω(v)
)

by induction

≤
1

ω(A)

∑

u∈A

ω(u)
(

2(min(X)−
∑

v∈NS(u)

ω(v)) +
∑

v∈N(u)

ω(v)
)

by Lemma 2

≤ 2min(X) +
1

ω(A)

∑

u∈A

ω(u)
(

− 2
∑

v∈NS(u)

ω(v) +
∑

v∈N(u)

ω(v)
)

≤ 2min(X) +
1

ω(A)

∑

u∈A

ω(u)
(

∑

v∈NH(u)

ω(v)−
∑

v∈NS(u)

ω(v)
)

(1)

For any edge e = (u, v) of the incompatibility graph, we define its weight
as the product of the weight of its endvertices, that is ω(e) = ω(u)ω(v). Let
e(H,S) denote the total weight of the edges linking S to H, that is e(H,S) =
∑

e=(u,v),u∈H,v∈S ω(e).
Then, as H is an independent set,

∑

u∈H

ω(u)
(

∑

v∈NH(u)

ω(v)−
∑

v∈NS(u)

ω(v)
)

= −
∑

u∈H

ω(u)
(

∑

v∈NS(u)

ω(v)
)

= −e(H,S)

and

∑

u∈S

ω(u)
(

∑

v∈NH(u)

ω(v)−
∑

v∈NS(u)

ω(v)
)

≤
∑

u∈S

∑

u∈S

ω(u)
(

∑

v∈NH(u)

ω(v)
)

≤ e(H,S)
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Thus, Equation 1 yields

E(X) ≤ 2min(X),

which proves the theorem.

Using the standard Markov Inequality, this theorem allows to obtain almost
surely a 2 + α approximation for every positive α as stated in the following
corollary.

Corollary 4. Consider any covering problem in NP. For every α > 0 and

ǫ > 0, there exist a polynomial time random algorithm which output is a 2 + α
approximation with probability at least 1− ǫ.

Proof. Consider one run of the Choose Ousiders First algorithm. Let X be the
weight of the output and Opt be the weight of an optimal solution. Then

P(X > (2 + α)Opt) ≤
E(X)

(2 + α)Opt
by Markov’s inequality

≤
2Opt

(2 + α)Opt
by Theorem 3

≤
1

1 + α/2

Thus, running the algorithm p times with p ≥ − ln ǫ
ln(1+α/2) and taking the

minimum X∗ among all the outputs yields

P(X∗ > (2 + α)Opt) ≤
( 1

1 + α/2

)p

≤ ǫ
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