
1 

 

Abstract 
 

Over the past decades, 3D face has emerged as a 

solution to face recognition due to its reputed invariance to 

lighting conditions and pose. While proposed approaches 

have proven their efficiency over renowned databases as 

FRGC, less effort was spent on studying the robustness of 

algorithms to quality degradations. In this paper, we 

present a study of the robustness of four state of the art 

algorithms and a multi-matcher framework to face model 

degradations such as Gaussian noise, decimation, and 

holes. The four state of the art algorithms were chosen for 

their different and complementary properties and exemplify 

the major classes of 3D face recognition solutions. As they 

displayed different behavior under data degradations, we 

further designed a fusion framework to best take into 

account their complementary properties. The proposed 

multi-matcher scheme is based on an offline and an online 

weight learning process. Experiments were conducted on a 

subset of the FRGC database, on which we generated 

degradations. Results demonstrate the competitive 

robustness of the proposed approach. 

1. Introduction 

3D Face analysis has been an important challenge in 

computer vision and pattern recognition over the last 

decades. While humans can recognize faces easily even in 

degraded conditions, automatic face recognition remains 

altered by unconstrained environments. Most work in 3D 

face recognition deals with variations in facial expressions, 

few others investigates the robustness to quality 

degradations of 3D face models. Those degradations may 

have several origins. Firstly, acquisitions conditions can be 

seen as a source of degradations such as illumination, 

motion in front of 3D sensor, missing data due to 

self-occlusions or structured-light absorption, and distance 

to the 3D scanner. Also, compression, useful when the 

storage capacity matters, as well as sampling (resolution 

reduction of the 3D model) can degrade 3D models. A short 

study of those model degradations was conducted in [1] and 

[2] on the FRGC dataset [3].  

Analyzing the behavior of recognition algorithms in the 

presence of such degradations is a necessary step before 

their application in a real environment. Most works in the 

biometry field recognize the impact of the quality of 

acquisition data on the performance of algorithms [7]. 

More specifically, 3D face recognition algorithms reckon 

with this issue, in that they apply some pre-processing 

techniques [1]. For instance, median filtering for removing 

spikes and interpolation for filling holes have been used. 

The issue of occlusion was studied in [4] and [5]. In [5], 

Bronstein et al. studied the robustness of their 3D face 

matching approach to occlusion. For this purpose, they 

generated mild and severe missing data on 3D face. They 

showed that their recognition accuracy was not affected, 

and that their verification rate was only slightly affected. 

However, the test set was limited to 30 persons. In [6], 

Rodrigues et al. also simulated missing data on the face by 

manually excluding some regions of interest. To overcome 

this issue, they proposed to match local regions of faces 

together and conclude that the better results were obtained 

by fusing 28 over the 38 regions. 

To our knowledge, there are yet no specific studies on 

the behavior of 3D face recognition algorithms under 3D 

face models degradations. In this paper, we study the 

behavior of four state of the art algorithms for 3D face 

recognition, subsequently called individual experts, under 

several frequent quality damages such as noise, decimation 

and holes. For a more comprehensive study of the impact of 

degradations, we chose experts that all make use of 

different properties of 3D face models and exemplify the 

major classes of 3D face recognition solutions currently 

proposed in the literature. As these experts capture different 

geometric properties, we further propose a multi-matcher 
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scheme, which aims at enhancing the individual robustness 

of experts against listed degradations.  

This paper is organized as follows. The multi-matching 

technique for combining similarity measures is described in 

section 2. The different experts used in this work are 

introduced in section 3. Section 4 analyzes and discusses 

experimental results on the FRGC database. Section 5 

concludes the paper. 

2. Fusing individual similarity measures for a 

multi-matcher 

Each individual expert generates similarity scores. The 

role of a fusion step is to weight individual experts between 

them to produce a stronger expert. The fusion operates on 

two levels: at first, it must preserve individual expert 

strengths. Secondly, it must promote the complementarity 

between them. In this work, we adopt a competitive fusion 

approach and propose an adaptive score level fusion 

scheme using a weighted sum rule. The weight associated 

with each expert is set after an offline and an online weight 

learning steps. Both steps automatically define the most 

relevant weights of all scores for each probe matched to the 

whole gallery set. The basic idea is that more weight is 

allocated to  an expert which performs better according to 

both its global behavior on a learning dataset (offline 

learning, see eq. (1)) and its actual order of similarity scores 

(online ranking, see eq. (2)). The global behavior of an 

expert on a learning dataset can be evaluated according to 

Equal Error Rates (EER), Verification Rate (VR) and 

Recognition Rate (RR). Both types of weights (offline and 

online) are further combined to generate a final weight (eq. 

(3)).  

Before the fusion step, scores achieved by different 

experts are first normalized into a common scale. We use a 

Min-Max normalization [8], which maps the matching 

scores to the range of [0, 1] linearly. During the offline step, 

we use the approach proposed in [9] to assign a weight to 

scores of a given expert. Let the performance indicator of 

the mth expert be em, m = 1, 2, …, M. The corresponding 

weight Pm associated to the scores produced by the mth 

expert is calculated as: 

 P鱈 噺 奪悼探 , u 噺 ∑ e谷托谷退怠 , ∑ P谷 噺 な, ど 判托谷退怠  P鱈 判 な        (1) 

 

For instance, when using EER as performance indicator 

of an expert, its corresponding weight Pm is inversely 

proportional to its corresponding error                               

( P鱈 噺 岫迭淘岻奪悼    ,    and  u 噺 ∑ 怠奪島托谷退怠 ), thereby giving more 

importance to experts having small EER. 

During the online step, each expert f produces a 

similarity score Sg,f between each gallery face and the probe 

face. All of these similarities Sg,f  are then sorted in a 

descending order. We assign to each score Sg,f a weight wg,f 

which is a function of its ordered position pg,f. 

Specifically, the weight wg,f is defined as: 

 w巽,脱 噺 f岫p岻 噺 ln 岫 択塔丹塔,唐岻
                                   

(2) 

 

where Ng is the number of subjects in the gallery.  

 

This online weighting strategy gives more importance to 

better ranked scores and aims at discarding matching scores 

far from the best ones. The final matching score between a 

face g in the gallery and the probe face takes into account 

both online and offline matching scores. It is defined by: 

 Sf辿樽叩狸岫g岻 噺 ∑ P鱈鱈 樺奪淡丹奪嘆担坦 茅 w巽,鱈 茅 S巽,鱈                (3) 

 

The probe face is recognized as the one in the gallery 

which obtains the highest final score according to (3). As 

the score ranking pg,f is used in the weighting scheme as in 

eq. (3) through eq. (2), this fusion scheme only works for 

identification scenario (one probe versus N galleries). 

3. Experts 

In this section, we present the four experts used in this 

paper, both for analyzing the impact of 3D model 

degradation on the 3D face recognition performance, and 

for illustrating the contribution of our fusion scheme. Those 

experts were chosen because they all make use of different 

3D face properties to perform the 3D face recognition. 

Specifically, the first expert (E1, namely elastic shape 

analysis of radial curves), presented in section 3.1, is a 

hybrid approach. It is neither completely holistic and 

neither totally local, as it samples a set of radial curves from 

a facial surface, and measures the geodesic distances 

computed over each pair of corresponding radial curves. 

The second expert (E2, namely MS-ELBP + SIFT), 

presented in section 3.2, is a local feature-based approach 

which makes use of an extended LBP (ELBP) and 

SIFT-based matching. Finally, the last two experts, namely 

E3 and E4, are both holistic approaches. The third expert 

(E3, namely TPS warping parameters), presented in section 

3.3, considers non rigid facial surface matching through 

Thin-Plate-Spline (TPS) whereas the fourth expert (E4, 

namely ICP) makes rigid facial surface matching through 

ICP [20].  

Hence, we believe that the 4 chosen experts use different 

geometric properties of 3D faces for the resolution of the 

same problem. Comparative results will be provided in 

section 4. 

3.1. 3D face matching algorithm based on elastic 

shape analysis of radial curves 

The first expert performs 3D face matching based on 
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elastic shape analysis of radial curves [21]. As illustrated in 

figure 1, probe and gallery facial surfaces are first aligned 

using ICP algorithm; radial curves are then extracted from 

both surfaces; the corresponding probe and gallery curves 

are then compared within a Riemannian framework, and 

finally individual scores are fused to produce a general one 

which represent the degree of similarity between probe and 

gallery facial surfaces.  

 

 

Figure 1: Block diagram of the studied 3D face rec. method 

Within the proposed approach, the authors introduce a 

quality inspection filter that examines all the extracted 

radial curves in both gallery and probe models and retains 

valid ones based on the defined criterion. 

3.1.1 Radial curves extraction 

The reference curve is chosen to be the vertical curve 

once the face has been set into the upright position. Each 

radial curve βα is obtained by slicing the facial surface by a 

plane Pα with the nose tip as its origin, and which makes an 

angle α with the vertical plane. That is, the intersection of 

Pα with S gives the radial curve βα. This step is repeated to 

extract radial curves, indexed by the angle α, from the facial 

surface at equal angular separation. Figure 2 shows 

examples of some radial curves extraction under different 

quality degradations. 

 

 

Figure 2: Examples of 3D faces with radial curves under different 

quality degradation 

3.1.2 Radial curves matching framework 

The Square-root velocity function is a specific 

mathematical representation (SRVF), denoted by q(t), used 

by the authors to analyze the shape of radial curves. It is 

denoted according to: q岫t岻 噺岌 痴岌 岫担岻謬舗痴岌 岫担岻舗                         

(4) 

It has been shown in [10] that the classical elastic metric 

for comparing shapes of curves becomes the L2-metric 

under the SRVF representation. The collection of normed 

SRVF defines the pre-shape space set: C 噺 岶q: 蝦 温戴|    押q押 噺 な岼  汽  渚態岫I, 温戴岻
             

(5) 

The geodesic length between any two points q1, q2 Є C is 

given by: d達岫q怠, q態岻 噺 cos貸怠岫隼 q怠, q態 伴岻
                     

(6) 

The framework allows one to compute geodesic paths 

denoting optimal deformations between individual curves. 

Therefore, these deformations are combined to obtain full 

deformations between faces. 

 
Figure 3: Examples of geodesic paths between source and target  

Shown in Figure 3 is an example of such geodesic path 

between source and target faces belonging to the same 

person under different expressions. 

The missing data problem is addressed by a quality 

module that inspects the quality of curves, and discards 

them if needed. Authors report that, by elastically matching 

radial curves, deformations due to expression are tackled. 

Thus, this method is a hybrid approach in between a holistic 

one such as ICP and a SIFT local feature-based one such as 

the second expert, introduced in the following subsection. 

3.2. MS-ELBP + SIFT 

The second expert is based on Multi-Scale extended LBP 

(MS-ELBP) along with local feature SIFT-based matching 

as detailed in [11]. This expert first generates several 3D 

facial representations (MS-ELBP) which are followed by a 

local feature SIFT-based matching and score fusion. It does 

not require any registration for roughly frontal faces as the 

ones in the FRGC datasets. 

3.2.1 LBP and its descriptive power of local shape 

variations 

LBP, a non-parametric algorithm [12], was first 

proposed to describe local texture of 2D images. It has been 

extensively adopted for 2D face recognition in the last 

several years [13]. However, computationally simple and 

direct application of LBP on depth images results in 

unexpected confusion to similar but different local shapes. 

To address this problem, two complementary solutions 
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were considered. The first one aims at improving the 

discriminative ability of LBP with Extended LBP coding 

approach, and the other one focuses on providing a more 

comprehensive geometric description of the neighborhood 

by exploiting a Multi-Scale strategy. 

3.2.1.1 Extended Local Binary Patterns 

Instead of LBP, ELBP not only extracts relative gray 

value difference between the central pixel and its 

neighboring pixels provided by LBP, but also focuses on 

their absolute difference. Specifically, the ELBP code 

consists of several LBP codes at multiple layers which 

encode the exact gray value difference (GD) between the 

central pixel and its neighboring pixels. The first layer of 

ELBP is actually the original LBP code encoding the sign 

of GD. The following layers of ELBP then encode the 

absolute value of GD. Basically, each absolute GD value is 

first encoded in its binary representation and then all the 

binary values at a given layer result in an additional local 

binary pattern. As a result, when describing similar local 

shapes, although the first layer LBP is not discriminative 

enough, the information encoded in the other additional 

layers can be used to distinguish them. Experimentally, the 

number of additional layers was set to 4. 

3.2.1.2 Multi-Scale Strategy 

The ELBP operator is further extended with different 

sizes of local neighborhood to handle various scales. The 

local neighborhood is defined as a set of P sampling points 

evenly spaced on a circle of radius R that is centered at the 

pixel to be labeled. For each (P, R) couple and each layer of 

the ELBP approach, a face is generated regarding the 

corresponding decimal number of the LBP binary code as 

the intensity value of each pixel. Such an image is called a 

MS-ELBP Depth Face (DF). Hence, DFs contain many 

details of local shapes (Figure 4). 

 

 

Figure 4: MS-ELBP-DFs of a range face image with different 

radii from 1 to 8 (from left to right). 

3.2.2 SIFT based local feature matching 

Once the MS-ELBP-DFs are computed, the widely-used 

SIFT based features [15] are extracted from each DF 

separately for similarity score calculation and final 

decision. Because MS-ELBP-DFs highlight local shape 

characteristics of smooth range images, many more 

SIFT-based keypoints are detected than those in the 

original range images. In [11] it is reported that the average 

number of descriptors extracted from each of DFs is 553, 

while that of each range image is limited to 41. 

Given the features extracted from each MS-ELBP-DF 

pair of the gallery and probe face scan respectively, two 

facial keypoint sets can be matched [15]. Here, NLi(P, R) 

denotes the number of the matched keypoints in the ith layer 

of ELBP-DF pair, with a parameter setting of (P, R). 

The similarity measure, NLi(P, R), is with a positive 

polarity (a bigger value means a better matching 

relationship). A face in the probe set is matched with every 

face in the gallery, resulting in an n-sized vector. Each of 

these vectors is then normalized to the interval of [0, 1] 

using the min-max rule. Matching scores of all scales are 

fused using a basic weighted sum rule: S 噺 ∑ w宅套岫P,   R岻 茅 N宅套岫P,   R岻                (7) 

The corresponding weight, wLi(P,R), is calculated 

dynamically during the online step using the scheme in[16]: w宅套岫P,   R岻 噺 鱈奪叩樽岾択L套岫P,   R岻峇貸鱈叩淡迭 岫択L套岫P,   R岻岻鱈奪叩樽岾択L套岫P,   R岻峇貸鱈叩淡鉄 岫択L套岫P,   R岻岻     (8) 

where the operators max1(V) and max2(V) produce the first 

and second maximum values of the vector V. The gallery 

face image which has the maximum value in S is declared 

as the identity of the probe face image.

 

Extended results 

and analysis are provided in [11]. As we can see, this 

method is a local feature-based approach which should 

make it more tolerant to occlusion and missing data. 

3.3. Recognition via TPS Warping Parameters 

The third expert fits a generic model to facial scans in 

order to extract warping parameters to be used as biometric 

signatures. Face recognition based on morphable models 

has been extensively studied in the literature. A flexible 

model of an object class, which is a linear combination of 

the example shapes and textures, was introduced in [17]. Its 

extension to 3D was proposed in [18] and proved to give 

promising results. This expert makes use of a generic head 

model which is strongly deformed to fit facial models in the 

gallery, using the Thin Plate Spline (TPS) algorithm. Here, 

the aim is to utilize the discriminative properties of the 

warping parameters obtained during the fitting process. 

TPS method was made popular by Fred L. Bookstein in 

1989 in the context of biomedical image analysis [19]. For 

the 3D surfaces S and T, and a set of corresponding points 

on each surface, Pi and Mi respectively, the TPS algorithm 

computes an interpolation function f(x, y) to compute T’, 

which approximates T by warping S: 

 T嫗 噺 岶岫x嫗, y嫗, z旺岻| 褐岫x, y, z岻 樺 S, x嫗 噺 x, y嫗 噺 y, z嫗 噺 f岫x, y岻岼  (9) f岫x, y岻 噺  a怠 髪 a淡x 髪 a湛y 髪 ∑ w辿 姦 岫|P辿 伐 岫x, y岻|岻      (10) U岫r岻 噺  r態 ln岫r態岻 , r 噺  紐x態 髪 y態      (11) 
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When a generic model is deformed to fit an individual 

face in the database, an approximate representation of the 

facial surface is obtained. The deformation parameters 

represent the deviation from the generic face, and are 

therefore claimed to possess dense information about the 

facial shape.  

Before TPS warping, a linear transformation is 

computed in a least square sense, based on 15 landmark 

points on both generic and inspected (target face) models. 

The obtained transformation which includes rotation, 

translation and isotropic scaling is applied onto the generic 

model. After that, in addition to the 15 point pairs utilized 

for alignment, 136 more pairs are generated, by coupling a 

set of points on the generic model with their closest 

neighbor on the target face. Using 151 point pairs in total, 

TPS interpolation is computed for the generic model.  

 

 

Figure 5: The proposed feature extraction scheme and an 

illustration on a sample model: (a) Target face with and without 

texture (b) generic model before (with landmarks) and after 

alignment (c) generic model after warping with and without 

texture 

Given in (10), the function f(x,y) includes the warping 

coefficients: wi, i={1,2,...n} to be utilized. When we 

transpose the formula for the other two directions, 

following feature vector is obtained: [(w1x,w1y,w1z), 

(w2x,w2y,w2z) …(w151x,w151y,w151z)]. The whole scheme is 

summarized in Figure 5, with an illustration on a sample 

model.   

Once the feature vectors are extracted, Cosine and 

Euclidean distances are calculated between two warping 

vectors, resulting in two distance vectors of size 151x1. In 

order to measure the central tendency of these vectors, 

trimmed mean approach is adopted and hence, sensitivity to 

outliers is avoided. For trimmed mean method, the portion 

to be ignored is taken as 10%. 

3.4. ICP algorithm 

In section 4, we also provide results of the baseline 

algorithm ICP as a comparison. Iterative Closest Point 

(ICP) algorithm [20] is a well-known reference algorithm 

in matching 3D point clouds through rigid transforms 

(translation, rotation). It is clearly a holistic matching 

algorithm in considering only rigid transforms. In our 

experiments, an automatic detection of the nose was 

applied, and the face was cropped with a sphere of radius 

100 mm centered on the nose tip. 

4. Experiments 

As stated in the introduction, 3D models can suffer from 

various types of degradations having different origins. 

However, it is not easy to acquire a large dataset 

representing significantly these different degradations. A 

fundamental issue here is the quantification of degradations 

on real data. In this work, we decided to generate degraded 

data from the FRGC v2.0 dataset which is one of the most 

comprehensive dataset known so far in the literature. That 

choice allows us to have a large set of 3D face models 

under parameterized degradations, thereby testing the 

behavior of the experts and their fusion towards them. In 

this section, we first define the evaluation protocol then 

discuss the experimental results.  

4.1. Experimental setup 

The kinds of degradations that we consider are canonical 

ones as they typically occur in the acquisition process. They 

are Gaussian noise on depth, decimation in terms of 

resolution and holes for missing data. 

410 subjects having more than one 3D face models were 

selected from the FRGC v2.0 database [3]. For each 

subject, one model with neutral facial expression was 

randomly picked to make up the gallery. We also randomly 

picked another model for each subject, which is used as a 

probe model. Before we could apply artificial, controlled 

degradations, we need to ensure that original 3D models are 

as clean as possible. Hence, gallery and probe sets were 

first preprocessed to remove spikes and holes as in [3]. 

Facial regions were further cropped from these gallery and 

probe sets based on the nose-tip within a sphere of diameter 

100mm. For this purpose, nose-tips were manually located 

on every face.  

From here, each cropped probe face model was then 

altered to some extent to create new, degraded sets, 

according to the following degradations: 

- Gaussian noise corresponds to the injection of an error 

within a Gaussian distribution on the Z coordinates on 
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the depth image. This tends to emulate the behavior of 

electronic noise of acquisition devices, albeit a 

simplistic manner. In our experiments, we set the RMS 

value of the error respectively to 0.2, 0.4 and 0.8 (mm). 

- Decimation corresponds to removing vertices from the 

original data. In this experiment, vertices are picked 

randomly and removed respectively from a ratio of x2, 

x4 and x8. 

- Holes are generated at random locations on the face. At 

first, we pick a random vertex on the surface of the face. 

Then, we crop the hole according to a 1 centimeter 

radius sphere centered on the latter vertex. For each 

level, we generate respectively 1, 2, 3 holes on the 

whole face. 

Figure 6 shows examples of those degradations. In the 

subsequent, these three types of degradation are 

respectively denoted decimation (D), missing data (MD) 

and noise (N) having each three levels (2, 4 and 8). Each 

individual expert was then benchmarked on the subset of 

410 subjects without degradations then using the 

previously defined degradations.  
 

 

Figure 6: An example of degradations applied to one model. From 

left to right: the Original face, with Noise, Decimation, and Holes 

As we will see in the following subsection, every 

individual expert displays different behavior in terms of 

performance drop against these degradations. Then, we 

further propose the fusion of these experts at score level, 

using the fusion scheme as described in section 2, thereby 

giving birth to several multi-matchers. The associated 

experimental protocol, as well as the performance of those 

multi-matchers, is detailed in subsection 4.2.2.  

4.2. Results and Analysis 

The performances of the four individual experts over the 

degradations are first analyzed. Then, our proposed fusion 

scheme (section 2) is compared to the standard sum rule 

fusion method [22]. 

4.2.1 Performances of the individual experts 

Recall that the four individual experts are: Expert using 

Elastic Shape Matching (E1), Expert based on MS-ELBP 

(E2), Expert using TPS (E3), ICP (E4). The 4 algorithms 

were benchmarked on the subset of 410 subjects as defined 

previously in subsection 4.1 and the various generated 

degradations. Figures 7-9 show the rank-one recognition 

rates of the four experts, respectively under noise (N), 

decimation (D) and missing data (MD). As we can notice, 

all the algorithms record to some extent performance drops 

under degradations. While all the four algorithms resist 

relatively well to decimation and missing data, their 

performance drops drastically when the noise is increased 

to some level, 0.8 mm RMS in this work. 

These results also suggest that the local feature-based 

expert, namely E2, displays the best robustness against the 

noise and decimation types of degradation. E1, a hybrid 

method, also displays a good behavior against decimation. 

Quite interestingly, the holistic approaches (E3 and E4) 

seem to behave better than other approaches against 

missing data. 
 

 

Figure 7: The rank one rec. rates under noise 

 

 

Figure 8: The rank one rec. rates under decimation 

 

Figure 9: The rank one rec.  rates under missing data 

Figure 9 shows that holistic approaches, E3 and E4, 

display quite stable performance in the presence of MD.  

4.2.2 Performances of multi-matchers 

As all the three experts make use of different properties 
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of facial surfaces, we further propose to study several 

multi-matchers, namely (1) E1+E2, (2) E1+E3, (3) E2+E3 

and (4) E1+E2+E3, using the fusion scheme proposed in 

section 2. The 4th expert, based on ICP was considered as 

baseline. Since a learning dataset is needed to set the offline 

weights based on some global performance indicator of 

each expert, the whole dataset of 410 subjects was 

randomly divided into two equal parts, one part for learning 

and the other one for testing. This experimental setup was 

then cross-validated 50 times using each time different 

learning and testing data, and the performance averaged 

over these 50 cross-validations.  

All the four multi-matchers were benchmarked on the 

degradations, namely decimation (D), missing data (MD) 

and noise (N) with the three levels (2, 4 and 8). 

We experimented with three performance indicators, 

namely rank-one recognition rate (RR), verification rate at 

0.1% FAR (VR) and Equal Error Rate (EER). The best 

performance being achieved using RR in the fusion 

scheme, we only report in fig.10, fig.11 and fig.12 the 

performance achieved by the four multi-matchers 

compared to the individual experts E1, E2 and E3 under 

different degradation scenarios and levels.  

 

Figure 10: Rank-one Rec. Rate of the multi-matchers compared to 

the individual experts under different levels of noise 

As we can see from fig.10, all the four multi-matchers 

display better performance under different level of noise, 

except once for E1+E3 on N(4), the best and stable 

performance being achieved by E1+E2+E3 which gives 

99.77% recognition rate on the original data, 97.01%, 

96.68%  and 91.13% respectively under the three different 

noise level. This suggests that the fusion scheme has really 

capitalized on the complementary properties of individual 

experts. Notice also that E2+E3, which is the fusion of a 

local feature-based matcher (E2) with a holistic matcher 

through TPS (E3), outperforms E1+E2 and E1+E3 which 

are combinations of a hybrid method (E1) along with a 

local feature-based expert (E2) and a holistic expert (E3), 

respectively.   

Fig.11 and Fig.12 further confirm the previous trend. 

Fig.11 gives the behavior of the four multi-matchers under 

different levels of decimation compared to the three 

original experts. Once again, all the four multi-matchers 

display better and more stable performances than the three 

individual experts in almost all cases, the best performance 

still being achieved by E1+E2+E3 with 98.31%, 97.68% 

and 96.60% recognition rate respectively under decimation 

level 2, 4 and 8. The performance is thus only slightly 

decreased.  

 

Figure 11: Rank-one Rec. Rate of the multi-matchers compared to 

the individual experts under different levels of decimation 

 

Figure 12: Rank-one Rec. Rate of the multi-matchers compared to 

the individual experts under different levels of missing data 

Fig.12 depicts the behavior of the four multi-matchers 

under different levels of missing data compared to the three 

original individual experts. Once again, all the four 

multi-matchers display better and stable performance than 

the three individual experts in almost all cases, the best 

performance being still achieved by E1+E2+E3 with 

97.39%, 96.56% and 96.34% recognition rate respectively 

under missing data level 2, 4 and 8. As we can see, missing 

data only affects slightly the overall performance of the 

multi-matcher E1+E2+E3.  

From Table 1, we can notice some performance 

improvements for the E1+E2+E3 multi-matcher (MM), 

compared to the standard sum rule (SS) and max rule (Max) 

fusion methods, for all the degradations at different levels. 

This proves that the proposed multi-matcher preserves the 

complementarity between all the experts. For the same 

experiment, the ICP algorithm seems to be more affected 

by decimation and Gaussian noise. 

While the performances of our multi matcher are 

affected by degradations, this experiment shows that, 
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within a recognition scenario, it is more robust than any of 

the engaged individual experts to any type of degradation.  

Table 1. Comparison between Rank-one Recognition Rate (%) of 

standard sum (SS) rule fusion method , max rule (Max) and our 

multimatcher (MM) for the E1+E2+E3 (4) 

 SS Max MM  SS Max MM 

N(2) 95.25 94.91 97.01 D(2) 95.60 95.22 98.31 

N(4) 94.60 93.40 96.68 D(4) 94.50 94.37 97.68 

N(8) 88.80 85.56 91.13 D(8) 94.20 93.73 96.60 

 SS Max MM 

MD(2) 95.40 95.07 97.39 

MD(4) 94.83 94.18 96.56 

MD(8) 94.50 94.41 96.34 

 

5. Conclusion and Perspectives 

In this paper, we discussed the robustness of four 

individual experts and their fusion with respect to three 

sample quality degradation scenarios, namely noise, 

decimation and missing data. The experimental results 

demonstrate that: (1) All the individual experts suffer 

somehow from sample quality degradations and display 

different behavior depending upon their intrinsic 

properties; (2) Globally, the performances are more 

affected by the presence of noise than by the presence of 

holes or decimation. (3) The multi-matchers using the 

proposed fusion scheme almost all perform better than 

individual experts under different degradation scenarios, 

thereby suggesting that the fusion scheme capitalizes on the 

individual expert strengths. Furthermore, the decrease in 

the performances due to quality degradations of the 

multi-matchers is less important than the decrease of each 

individual expert. 

As a future development work, we would like to study 

the behavior of our multi matcher scheme against 

degradations within a verification scenario. This 

proposition suggests that the weight computation model 

has to be slightly modified. 
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