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ABSTRACT

This paper addresses the issue of Gender Classification from 3D

facial images. While most of previous work in the literature focuses

on either 2D facial images, here, we study the use of 3D facial shape

for automatic gender classification. After a preprocessing step to ex-

tract the facial masks from triangular meshes obtained using laser

range scanners, we approximate the facial surfaces by collections of

radial and iso-level curves. Once the curves are extracted, we aim at

studying their shape using existant shape analysis framework which

allows to compute similarities between a candidate face and Male

and Female templates. We expect that the shape of certain curves are

similar withinMale/Female classes and different when moving from

one class to another. For classification, we perfom three Machine

Learning algorithms (Adaboost, Neural Network, and SVM). Over-

all, Adaboost was superior in classification performance (84.98% as

classification rate) on a subset of FRGCv2 dataset including the first

(neutral and non-neutral) scans of different subjects. Our results in-

dicate also that (i) the most relevant iso-level curves cover the central

stripe of the face, and (ii) the most relevant radial curves are located

on the upper part of the face.

Index Terms— Gender classification, Riemannian geometry,

shape analysis, boosting.

1. INTRODUCTION

Facial gender is one of the most visual tasks used by humans to

help identification and make interaction with other people. In com-

puter vision, gender classification could be a useful preprocessing

step for face recognition as other soft biometric traits like skin color,

age, eyes colors, and so on used by humans to distinguish their

peers. Most existing work use 2D-images to extract distinctive fa-

cial features like hair density and inner morphology of the face.

While academic and industrial interest in 3D face recognition has

grown in recent years due to its theoretical robustness to lighting

condition and pose variations, few approaches try to use 3D images,

complementary to 2D ones, to make gender classification. Many

techniques have been proposed for solving the gender classifica-

tion problem, however most of them are based on 2D face image,

only a few studies have investigated on 3D facial shape. Bruce et

al. [1] made an interesting experiment in which they tested the

human visual system which are remarkably accurate (approaching

ceiling) at deciding whether faces are male or female, even when

cues from hairstyle, makeup, and facial hair are minimized. The

authors have obtained that the subjects were considerably less ac-

curate when asked to judge the sex of three-dimensional (3D) rep-

resentations of faces obtained by laser-scanning, compared with a

condition where photographs were taken with hair concealed and

eyes closed. In 3D, they approved that the average male face dif-

fers from the average female face by having a more protuberant

nose/brow and more prominent chin/jaw. The effects of manipu-

lating the shapes of the noses and chins of the laser-scanned heads

were assessed and significant effects of such manipulations on the

apparent masculinity or femininity of the heads were revealed. In

[2] O’Toole et al. have supposed that the sex of a face is perhaps its

most salient feature. They applied a principal components analysis

(PCA) separately to the three-dimensional structure and graylevel

image data from laser-scanned human heads. The results indicated

that the three-dimensional head data supported more accurate sex

classification than the graylevel image data, across a range of PCA-

compressed (dimensionality-reduced) representations of the heads.

Yuan et al. [3] proposed a novel fusion-based gender classification

method that is able to compensate for facial expression. They per-

formed experimental investigation to evaluate the significance of dif-

ferent facial regions in the task of gender classification. Jing et al.

[4] were investigated gender classification based on 2.5D facial sur-

face normals (facial needle-maps) which can be recovered from 2D

intensity images using a non-lambertian Shape-from-shading (SFS)

method. The authors described a weighted principal geodesic anal-

ysis (WPGA) method to extract features from facial surface normals

to increase the gender discriminating power in the leading eigen-

vectors. They adopted an a posteriori probability based method for

gender classification. Xiaoguang et al. [5] exploited the range in-

formation of human faces for ethnicity identification using a support

vector machine. An integration scheme is also proposed for ethnicity

and gender identifications by combining the registered range and in-

tensity images. The 3D images provides competitive discriminative

power on ethnicity and gender identifications to the intensity modal-

ity is demonstrated. To the best of our knowledge, no approaches

have been proposed to exploit 3D facial curves where shape analysis

of 3D face return. But, does the use of all the curves on the face lead

to better gender classification performances?, and among the facial

curves is there any ones more relevant than others to discriminate

gender from facial surface?

In this work, we focus on the geometric shape analysis of the 3D

face followed by using machine learning techniques to build classi-

fiers. The basic idea is to approximate a facial surface by a finite

set of iso-level curves and radial curves. Using Riemannian geom-

etry we define geodesic paths between facial curves, and distances

between them. Feature vectors for classification are produced by

comparing test faces to arbitrary male and female templates. Feature

vectors are used as input of machine learning techniques.



2. OUTLINE OF THE PROPOSED APPROACH

We propose a fully automatic method to perform gender classifica-

tion based on 3D face. Our approach combines geometric shape

analysis of facial curves with Machine Learning techniques. Figure

1 gives an overview of the proposed approach. After 3D scan acqui-

sition and preprocessing in order to extract the informative area of

the face (facial mask) and correct some imperfections such as fill-

ing holes and removing noise, we extract both radial and iso-level

facial curves from the 3D surface. Then, according to the nature

of the curves (close or open), we employ one of the adapted geo-

metric shape analysis frameworks described in [6] to analyse then

compare shapes of corresponding curves on a candidate face and a

Male/Female face templates. This allows to form feature vector for

each face candidate. The Off-line training step perform a learning

step using one of three classical machine learning techniques (Ad-

aboost, Neural Network, and SVM) to build classifiers. In the On-

line gender classification step, computes vector features for a face

candidate and use one of the three classifier to make the decision.

The present paper adopts the following organization : Geomet-

ric shape analysis and comparison for both open curves and close

curves procedures are explained in section 3. In section 4, we de-

tail the Boosting procedure to select the most discriminative facial

curves and build strong classifier for gender classification. Exper-

imental evaluations are given in section 5. The last section gives

some concluding remarks and open some future directions.

3. GEOMETRIC SHAPE ANALYSIS OF FACIAL CURVES

We start by considering a facial curve β in R
3. It is natural to

parametrize it using β : S1 → R
3. Note that the parameterization

is not assumed to be arc-length; we allow a larger class of param-

eterizations for improved analysis. To analyze the shape of β, we
shall represent it mathematically using a square-root velocity func-

tion (SRVF), proposed in [7, 6], and denoted by q(t), according to:

q(t)
.
=

β̇(t)
√

‖β̇(t)‖
(1)

Where ‖.‖ is the Euclidean norm and q(t) is a special function
that captures the shape of β and is particularly convenient for shape

analysis, as we describe next. The conventional metric for compar-

ing the elastic shape of the curves becomes an L
2 metric under the

representation [7, 6]. Depends on the topology of the curve (close

or open), we recall following shape analysis foundations of facial

curves.

3.1. Radial open curves

We define the set of open curves in R3 by C = {q : I → R
3|‖q‖ =

1} ⊂ L
2(I,R3), with the L2 metric on its tangent spaces, C be-

comes a Riemannian manifold. In particular, since the elements

of C have a unit L2 norm, C is a hypersphere in the Hilbert space

L
2(I,R3). In order to compare the shapes of two radial curves, we

can compute the distance between them in C under the chosen met-
ric. This distance is defined to be the length of the (shortest) geodesic

connecting the two points in C. Since C is a sphere, the formulas for
the geodesic and the geodesic length are already well known. The

geodesic length between any two points q1, q2 ∈ C is given by:

dc(q1, q2) = cos−1(〈q1, q2〉) , (2)

and the geodesic path α : [0, 1]→ C, is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) ,

where θ = dc(q1, q2).
It is easy to see that several elements of C can represent curves

with the same shape. For example, if we rotate a face in R
3, and

thus its facial curves, we get different SRVFs for the curves but their

shapes remain unchanged. Another similar situation arises when a

curve is re-parametrized; a re-parameterization changes the SRVF of

curve but not its shape. In order to handle this variability, we define

orbits of the rotation group SO(3) and the re-parameterization group
Γ as equivalence classes in C. Here, Γ is the set of all orientation-

preserving diffeomorphisms of I (to itself) and the elements of Γ
are viewed as re-parameterization functions. For example, for a

curve β : I → R
3 and a function γ ∈ Γ, the curve βα ◦ γ is a

re-parameterization of βα. The corresponding SRVF changes ac-

cording to q(t) 7→
√

γ̇(t)q(γ(t)). We define the equivalent class

containing q as:

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} ,

The set of such equivalence class is called the shape space S of elas-

tic curves [7]. To obtain geodesics and geodesic distances between

elements of S, one needs to solve the optimization problem. The

resulting shape space is the set of such equivalence classes:

S
.
= C/(SO(3)× Γ) (3)

We denote by ds(βα1
, βα2

) the geodesic distance between the
corresponding equivalence classes [q1] and [q2] in S. The figure 2
illustrates some examples of geodesic paths between facial surfaces

and associated collections of radial curves. The first two rows give

an intra-class (same person, different expressions) geodesic path,

whereas the remaining two rows show an inter-class (different sub-

jects) geodesic path.

3.2. Iso-level closed curves

In the same manner, we define the set of closed curves in R
3 by

C̃ = {q : S
1 → R

3|
∫

S1
q(t)‖q(t)‖dt = 0} ⊂ L

2(S1,R3)},

where L
2(S1,R3) denotes the set of all integrable functions from

S
1 to R3. The quantity

∫

S1
q(t)‖q(t)‖dt is the total displacement in

R
3 while moving from the origin of the curve until the end. When

it is zero, the curve is closed. Thus, the set C̃ represents the set of

all closed curves in R
3. It is called a pre-shape space since curves

with same shapes but different orientations and re-parameterizations

can be represented by different elements of C̃. To define a shape,

its representation should be independent of its rotations and repa-

rameterization. This is obtained mathematically by a removing the

rotation group SO(3) and the re-parameterization group Γ from C̃.
As described in [7, 6], we define the orbits of the rotation group

SO(3) and the re-parameterization group Γ as equivalence classes

in C̃. The resulting shape space is :

S̃
.
= C̃/(SO(3)× Γ) (4)

To define geodesics on pre-shape and shape spaces we need a Rie-

mannian metric. For this purpose we inherit the standard L
2 metric

the large space L2(S1,R3). For any u, v ∈ L
2(S1,R3), the standard

L
2 inner-product is given by:

〈〈u, v〉〉 =

∫

S1

〈u(t), v(t)〉 dt . (5)
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Fig. 1: Outline of the proposed 3D face gender classification approach.

Fig. 2: Examples of intra- and inter-class geodesics between facial

surfaces and their associated radial curves.

Fig. 3: Examples of intra- and inter-class geodesics between facial

surfaces and their associated iso-level curves.

The computation of geodesics and geodesic distances utilize the in-

trinsic geometries of these spaces. While the detailed description of

the geometries of C̃ and S̃ are given in [7, 6]. An important tool in

our framework is the construction of a geodesic path between two

elements of S̃, under the Riemannian metric given by equation 5.

Given two curves βλ1
and βλ2

, represented by their SRVF respec-

tively q1 and q2, we need to find a geodesic path between the orbits
[q1] and [q2] in the space S̃. We use in this context, a numerical

method called the path-straighteningmethod [8] which connects the

two points [q1] and [q2] an arbitrary path α and then updates this path

repeatedly in the negative direction of the gradient of energy given

by:

E[α] =
1

2

∫

s

〈〈α̇(s), α̇(s)〉〉ds (6)

It has been proven in [8] that the critical points ofE are geodesic

paths in S̃. We denote by ds̃(βλ1
, βλ2

) the geodesic distance be-

tween the corresponding equivalence classes [q1] and [q2] in S̃. The
figure 3 illustrates some examples of geodesic paths between facial

surfaces and associated collections of iso-level curves. The first

two rows give an intra-class (same person, different expressions)

geodesic path, whereas the remaining two rows show an inter-class

(different subjects) geodesic path.

4. BOOSTING FOR GENDER CLASSIFICATION

Radial and iso-level curves capture locally the shape of different fa-

cial regions. However, to recognize the gender of facial surfaces,

we only interested to the shapes of some facial regions. In gender

classification application, the comparison of these curves shapes,

runs into trouble according to the degree of facial regions shapes

(male/female) changes. For that purposes, we introduce a feature se-

lection step to identify (or localize) the most discriminative curves.

We propose to use the well-known machine learning algorithm, Ad-

aBoost, introduced by Freund and Schapire in [9]. Boosting is based

on iterative selection of weak classifiers by using a distribution of

training samples. At each iteration, the best (relevant) weak classifier



Fig. 4: Examples of females facial surfaces and the template face is

shown in the center of figure

is provided and weighted by the quality of its classification. In prac-

tice, the individual iso-level curves and radial curves are used as the

weak classifiers. After M iterations, the most relevant T (T < M)
facial curves are returned by the algorithm.

To train and test the boosting algorithm for this application, we

use all scans of all subjects present in FRGCv2 dataset(466). Firstly
we selected the first male scan as male facial template that we

called Fmale
temp while the first female scan as female facial template,

F female
temp .

For each face candidate, we compute the distance over all curves

to the defined templates. This allows to form feature vectors for

each test face. Let (i) match scores distances when face candidate

and the template belong to the same class, and (ii) non-match scores

are distances between candidate face and template when belong to

different classes. In these areas of the matrices, we extract two kind

of scores (i) the match scores (intra-class comparisons) and (ii) the

non-match scores (inter-class comparison).

Table 1: Match scores and non-match scores for Machine Learning

inputs.

For each curve Face male1 Face female1 ...

Fmale
temp {xα,λ

n , 1} {xα,λ
n , 0} ...

F female
temp {xα,λ

n , 0} {xα,λ
n , 1} ...

Both scores lists represent the input of the machine learning.

More formally, we consider a set of pairs (xα,λ
n , yn)1≤n≤N where

xα,λ
n is a similarity score between two curves at the same level α, λ

and yn can take two values: 0 in the case of match score and 1 in
the case of non-match score. For each curve βj , the weak learner

determines the optimal threshold classification function, such that

the minimum number of scores are misclassified. A weak classifier

hj(x
k
n) thus consists of a geometric feature βj and a threshold θ,

such that

hj(x
k
n) =

{

1 if xk
n < θ (intra-class)

0 otherwise. (inter-class)
(7)

Fig. 5: Examples of males facial surfaces and the template face is

shown in the center of figure

The figure 5 consists of some facial surfaces of different males

persons taken from FRGCv2, and the template face is shown in the

center of the figure, while the Figure 4 shows some different females

persons taken from FRGCv2, and the template face is shown in the

center of the figure.

5. EXPERIMENTAL RESULTS

The difficulty encountered to compare our approach with those pub-

lished in the state of the art, unfortunately so far there is no standard

protocol to compare gender classification results, contrary to the

face recognition. The most state-of-the-art approaches ([3],[4]) use

the selected databases to publish the results of their approaches. In

contrast, we will give the first result of gender classification on the

the will known database FRGCv2 and also use all subjects 466.

Experiments have been carried out on a subset taken from the

FRGCv2 dataset including the first (neutral and non-neutral) scans

of different subjects, 466 individual in total. Face scans are given

as matrices of size 480x640 of 3D points, individuals have been ac-

quired with near-frontal view. The Adaboost algorithm has been

trained and tested using 10-fold cross validation. According to this,

the dataset is split into a training and a test subset of size 1/10 and

9/10 of the original dataset, respectively. Training is repeated 10

times, with each of the 10 subsets used exactly once as the test data.

Finally, the results from the ten steps are averaged to produce a single

estimation of the performance of the classifier. In this way, all obser-

vations are used for both training and test, and each observation is

used for test exactly once. The table 2 gives gender classification re-

sults for the three classification methods Adaboost, Neural Network,

and SVM.

As shown in this table, the Boosting outperforms Neural Net-

work and SVM algorithms. It achieves near 85% as correct classi-

fication which is an encouraging result. To understand and explain

the results mentioned above, we looked at the early iterations of the

Boosting algorithm and the selected radial and iso-level curves in

each iteration. Figures 6 and 7 gives the locations of most relevant



Table 2: Gender classification results using different Adaboost,

Neural Network, and SVM.

Machine Learning Methods

AdaBoost(∗) SVM(∗) NN(∗)

Gender Classification Rate 84.98% 83.69% 84.33%
(∗) Results for 10-fold cross-validation.

curves on both male and female surfaces.

Fig. 6: Relevant radial and iso-level curves selected by Boosting

given on different male faces.

We can notice that (i) Selected iso-level curves are located on

the central stripe of the face. This is due to the different male/female

faces morphology, especially the volume of the nose which is, in

general, more significant for males than females as explained in [1].

(ii) Selected iso-level curves are located on the upper part of the face

and pass throw the cheek/nose/brow regions. These regions present

different shapes between the two classes.

Fig. 7: Relevant radial and iso-level curves selected by Boosting

given on different female faces.

6. CONCLUSION

In this paper we demonstrate the effectiveness of the use of 3D infor-

mation for gender classification. First, we consider both radial and

iso-level curves which are significantly used in the 3D face recogni-

tion literature. Second, by using existing tools for facial shape analy-

sis and comparison, we compare candidate faces to male and female

facial templates over all curves to produce feature vectors. Then

these vectors will be considered as inputs of Machine Learning tech-

niques (Boosting, Neural Network, and SVM) to build classifiers.

We showed in our experimental results that the classifiers achieved

comparable results and by examinating the (relevant) selected curves

are located in facial regions where face morphology is different. We

demonstrated that the use of 3D shape of face could be a powerful

analysis tool to study the facial variation with sex.

As future directions, the presented shape analysis framework

allows to compute statistics as the intrinsic mean (average) shape

which could be interesting to build more representative templates of

male/female classes. We try also to use same approach to study more

classification problem as ethnicity classification (Caucasian/Asian)

or facial expression recognition.
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