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ABSTRACT. We review the main types of mathematical models that have been designed
to represent and predict the evolution of a cell population under the action of anti-cancer
drugs that are in use in the clinic, with effects on healthy and cancer tissue growth, which
from a cell functional point of view are classically dividedbetween “proliferation, death
and differentiation”. We focus here on the choices of the drug targets in these models,
aiming at showing that they must be linked in each case to a given therapeutic application.
We recall some analytical results that have been obtained inusing models of proliferation
in cell populations with control in recent years. We presentsome simulations performed
when no theoretical result is available and we state some open problems. In view of clinical
applications, we propose possible ways to design optimal therapeutic strategies by using
combinations of drugs, cytotoxic, cytostatic, or redifferentiating agents, depending on the
type of cancer considered, acting on different targets at the level of cell populations.

1. Introduction. Mathematical models have been called for some time already by cancer
biologists and clinical oncologists to help improve the efficacy of anti-cancer treatments.
Indeed, understanding better the evolution of cancers and how to treat them in an opti-
mal way is still an open question, that might benefit from contributions of mathematics to
represent cell proliferation control by drugs.

Knowing that most anti-cancer treatments use combinationsof drugs with different
molecular targets and different functional effects on proliferating cell populations, we ad-
vocate considering these effects not just as on inhibition of a global ‘birth minus death’
rate, but rather with a refined point of view, considering multiple targets, representing dif-
ferential drug effects on birth, death or differentiation,by different control targets in math-
ematical models. The closer these model representations are to actual clinical questions,
the better.

The main two pitfalls of clinical oncology, that limit increasing drug doses, are un-
wanted toxic side effects on healthy cell populations and occurrence of resistance to drugs
in cancer cell populations. According to the medical questions at stake, one may consider
different models to represent the underlying biological phenomena that are the object of
control by drugs. Spatial representations may be partly helpful, in particular when tumour
neo-angiogenesis and anti-angiogenic drugs are present. However, in as much as drug
effects are the tools of control considered here, and since they act mostly by modifying
the physiology of cells, physiologically structured models should always be used, with or
without added spatial structure. In particular, focus willbe set here on models structured

2000Mathematics Subject Classification.Primary: 92-02; Secondary: 92D25 92C50 35Q80.
Key words and phrases.Cell population dynamics, Proliferation, Cell division cycle, Adaptive dynamics,

Cancer drugs, Control targets.

1
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according to age in the cell cycle, or according to an evolutionary phenotype if evolution
towards drug resistance is the main issue.

The paper is organised in the following way: firstly, we review the main difficulties
inherent to cell population modelling for drug delivery control, and categories of drugs
used in the clinic, from a pharmacological point of view. We then present in an abstract
way, but with concrete instances, how anti-cancer drug targets may actually be represented
in cell proliferation dynamic models. Finally, we briefly review the main types of models
lately used in the scientific literature on drug control in healthy and cancer cell populations,
sketching some results recently obtained, either theorems, or hints to possible future results
coming from mere simulations, when proper mathematical analyses still seem out of reach.

2. Anticancer drug effects and their representation in mathematical models. The types
of models used to predict cell population behaviour under control by drugs range from cel-
lular automata to ordinary and partial differential equations (ODEs and PDEs), PDEs being
amenable to transformation into delay differential equations (DDEs) by integration of PDEs
along characteristics [49, 84]. Biological variability (physiological differences between
cells) is easily taken into account by stochastic models, and so-called individual-based
models (IBMs) are amenable to include any kind of rule one puts in the individual agents.
These models are hardly amenable to mathematical analysis,in particular to the study of
their asymptotics, given the intrinsically finite number ofcells they take into account, but
their simulation may give hints to possible properties of their behaviour, that need to be fur-
ther explored by mathematical analysis [35]. As regards physiologically structured PDEs,
their structure variables (e.g., age in cell cycle models) electively represent biological vari-
abilities considered as the most relevant for the question at stake, and their asymptotics can
be studied when the model is tractable, sometimes resultingin theorems - which is hardly
possible with agent-based models.

2.1. A model, what for? Guidelines to design a model for an application. It should
be stressed that designing cell population models under theaction of drugs puts from the
beginning modellers in a perspective completely differentfrom the one used to represent
the “natural history” of tumour growth under the influence ofmechanical or physiological
factors, but without built-in drug control. A model for anticancer therapeutics should be
thought of toward a precise aim, with the idea to control by a given means the biological
system under study (the growth of a cell population, or of different cell populations), or
to analyse a precise aspect of it. Moreover, given the complexity of biological phenomena
underlying tissue growth, i.e., proliferation of histologically homogeneous cell populations
(notwithstanding some biological variability between individual cells), choosing well de-
lineated questions of therapeutics arising in the clinic ofcancers as a source of inspiration
helps designing practical models adapted to represent actual treatments, with the aim to
answer questions (about prediction of unwanted toxic side effects, drug resistance, and
optimal combinations of drugs) asked by clinicians.

Optimisation of drug delivery is always a concern for clinicians. This for mathemati-
cians implies defining an objective function, usually the number or density of cancer cells
to be minimised, under constraints that may be limitation oftoxicity to healthy cells or
avoidance of the thriving of a drug-resistant subpopulation in cancer cells, or both. On-
cologists seldom use only one drug, but rather, combinations of drugs acting on different
molecular targets with the aim to potentiate their effects.If one wants to accurately rep-
resent and study such combinations, it is necessary to design models with built-in specific
targets for the drugs in use [38].



CELL POPULATION MODELS WITH DRUG TARGETS 3

Anticancer drugs are most often known for theirmoleculareffects, i.e., effects that
involve blockade or re-establishment of an intracellular signalling pathway, for instance
targeting a specific enzyme or a chain of molecular reactionsstarting with a membrane
or cytosol receptor. Nevertheless, such effects are not always specific, and even when a
drug has been designed to block a given pathway by conformational analysis of known
molecules, unexpected other effects may be unravelled by preclinical and clinical trials,
and these effects may be deleterious on other pathways or to other cells. Furthermore, anti-
cancer drugs show their therapeutic effects in a measurableway only at the cell population
level by actualcell functionaleffects, i.e., on cell death, birth or differentiation.

This points out the multiscale nature of drug delivery problems: drugs are given at the
whole body level (collection of communicating cell populations), exert their effects at the
single cell level, but these effects, as far proliferation is concerned, are actually measurable
at the cell population level only [39]. The most relevant level to describe proliferation
and its control by drugs is clearly the cell population level, but the single cell (molecular,
at which drugs chemically act) and whole body (at which drugsat delivered) levels must
also be considered, at least if one aims at designing models for practical applications, i.e.,
for therapeutic optimisation. Drug effects must be different in cancer and in healthy cell
populations if a therapeutic benefit is searched for, which stresses the fact that identical
functional targets should be represented as behaving differently in cancer and in healthy
tissues.

Note that we will consider here onlyproliferatingcell populations. In an extended rep-
resentation including applications to fast invading tumours (e.g., gliomas) and their treat-
ments, a fourth fate for tumours beyond cell proliferation,death and differentiation that
should be considered is cell motion, which (“go or grow” alternative) is, in a given time
lapse, incompatible with proliferation [36].

2.2. A gap between molecular and functional targets.Anticancer drugs that are de-
signed for their effects at the molecular level are most often known to block a specific
intracellular signalling pathway (a chain of molecular reactions) that is assumed to end up
by being involved in “apoptosis, proliferation, differentiation” all together, with seldom
further precisions, because of the entanglement of the various molecular pathways partic-
ipating in these physiological cell functions. Molecules designed at the single cell level
thus need to be further studied at upper levels, by cell population dynamic studies in cell
cultures and in experimental animal models, to investigatein a differential way all these
physiological functions, plus drug resistance in diseasedcell populations.

Otherwise said, in the same way as silencing a gene may have effects on other pheno-
types than the targeted one, blocking a molecular pathway has seldom specific effects on
a functional target in a cell population, hence the interestof investigating combinations of
drugs by their functional more than by their molecular effects, and at the cell population
rather than at the molecular level, from an experimental point of view in cell cultures. Such
process obviously ought to be completed by further studies using whole body animal exper-
iments, to unravel possible unexpected toxic side effects on other cell populations, possibly
resulting in prohibitive toxicities to healthy tissues.

The gap to bridge between these three levels of observation (single cell, cell popula-
tion, whole body) of this multiscale perspective is an intrinsic difficulty for which no mir-
acle solution is known in general. Specific ways to integratethem depend on the type
of model used at the cell population level, which is central in proliferation. A common
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suggestion [38, 39] is to use compartmental ODEs for pharmacology (pharmacokinetics-
pharmacodynamics, PK-PD for short) of anti-cancer drugs, structured PDEs for cell pop-
ulations in each compartment, and a simultaneous management of the cell populations
attacked by drugs by optimisation algorithms at the whole body level.

2.3. Drugs used in cancer treatments considered at the single cell level. Tissue re-
newal, which at the cell population level is made of proliferation, cell death and differen-
tiation, relies on physiological phenomena that are built of elementary molecular reaction
chains, and it is on these cell biochemical reactions that anti-cancer drugs act. In particular,
proliferation of cell populations relies at the single celllevel on the cell division cycle [71].

2.3.1. DNA damaging agents.Also known as alkylating agents, these drugs act by directly
binding to the DNA and creating damages in it, such as double strand breaks, that are hard
to repair by the cell. They are in principle not cell cycle phase-specific. However, the fact
that DNA is less protected inS phase, when it is duplicated, makes them more active in
this phase. Commonly used alkylating agents are for instance cisplatin, oxaliplatin and
cyclophosphamide. DNA damaging agents are cytotoxic drugs(see below).

2.3.2. Cell cycle phase-specific agents.S phase-specific drugs block DNA replication ei-
ther by acting as substrate substitutes in metabolic reactions (antimetabolites) or by inhibit-
ing enzymes of these metabolic reactions, or both. Such are 5-Fluorouracil, a substitute for
normal uracil, that also acts by blocking the enzyme thymidilate synthase, and irinotecan,
that blocks topoisomerase II, an enzyme that is essential toDNA replication. M phase
specific drugs block mitosis either by destroying the mitotic spindle (spindle poisons, such
as vinca alkaloids, e.g., vincristine) or preventing its dissociation, such as taxanes (e.g.,
docetaxel and taxotere). These drugs secondarily create damages to the DNA (and thus are
cytotoxic) since it cannot be properly duplicated (S phase-specific drugs) or they produce
cells that are unable to divide; in both cases, cells under attack are short-lived due to cell
control mechanisms occurring at so-called checkpoints (see belowCell death).

2.3.3. Molecular targeted therapies.Although in principle all drugs have molecular tar-
gets, that are defined as specifically as possible, this recently denominated category of drugs
was firstly restricted to chemicals shown to very specifically re-establish the normal func-
tioning of a molecular signalling pathway perturbed in cancer. One of the first used molec-
ular targeted therapies was in 1986 all-transretinoic acidor ATRA, a molecule that corrects
the normal granulocyte differentiation process blocked inacute promyelocytic leukaemia
(APL, also known as type 3 acute myeloblastic leukaemia) by the chimeric protein PML-
RARα, ATRA destroying this protein [55]. The term ‘molecular targeted therapy’ now
includes mostly monoclonal antibodies (associations of a growth factor receptor antago-
nist with an antibody that is specific of the receptor, with a name usually ending in -mab)
and tyrosine kinase inhibitors (TKIs, that directly block growth factor receptors in kinases
at a tyrosine site, with a name usually ending in -nib). The best known success story in
molecular targeted therapies is that of imatinib mesylate,that has completely transformed
the prognosis of chronic myelogenous leukaemia (CML) [47]. ATRA and imatinib actu-
ally cure most of APL (over 80%, by using it in combination with a cytotoxic drug) and
CML (over 95%, in monotherapy) patients, respectively, likely because they are directed
against well identified chimeric (abnormal) proteins, PML-RARα and BCR-Abl, respec-
tively. However, in cases where other protein targets are normal but only abnormally over-
expressed, molecular targeted therapies are not so effective, and sometimes highly toxic.
Other recent molecular targeted therapies include histonedeacetylase (HDAC) inhibitors,
drugs that block the effects of HDACs, electively in cancer cells, since healthy cells seem
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to be more protected against their effects. Since these enzymes are involved in most cell
processes (proliferation, cell differentiation and death), they may be molecule-specific, but
not functionally specific, as are for instance imatinib on proliferation or ATRA on differen-
tiation; however, tentative functional distinctions between them have been proposed [101].
Molecular targeted therapies are usually cytostatic (see below) but may become cytotoxic
at high doses.

2.4. Drug effects and targets at the cell population level.Indeed, since the aimed-at and
clinically measurable effects of drugs are functional (on proliferation, cell differentiation
or death) at the cell population level, it is at least as interesting to consider such drug effects
as acting on functional terms in model equations representing tissue growth. As mentioned
above, bridging the gap between the molecular and functional effects of anti-cancer drugs
remains in general an open question. Another issue in the measurement of drug effects
in cell populations comes from technological limitations due to the tools used to identify
model parameters, that seldom can be all highlighted, unless the model is very simplified.
Such identification relies in particular on flow cytometer measurements [95, 96] and, more
recently, on fluorescence-based methods investigating cell by cell a whole population [30,
88, 89].

2.4.1. Cytotoxics and cytostatics.Cytotoxic drugs are those that are aimed at killing cells
- usually killing not only cancer cells -, sending them to death either by directly launching
apoptosis (i.e., ‘clean’ cell death), or blocking them in anirreversible phase of the division
cycle where long-term survival is impossible. On the contrary, cytostatic drugs may kill not
even a single cell, being not directed at creating damages tothe cells, but rather slow down
the growth of the cell population as a whole, which may be experimentally evidenced by a
lengthening of the cell population doubling time. It is known however that, depending on
the drug dose, various cytostatics may become cytotoxic, and this has been represented in
a model dealing with lapatinib [58].

2.4.2. Cell death.A direct enhancement of death rates by drugs is the simplest way to
represent the effect of cytotoxics, and it is the only one available in the simplest ODE
models where a“birth minus death” term is the only possible target in the equations

(i.e.,
dn

dt
= r(n).n − d.n). Although apoptosis pathways, involving at the molecularlevel

members of the Bcl2 family, have been explored with the aim tofind targets for drugs
that would be specific of apoptosis launching, it does not seem that specific proapoptotic
drugs are already routinely available in the clinic. However, if one wants to oppose drug
effects that are clearly cytotoxic to others that are only cytostatic, it is licit, provided that
the model allows separate identifiability of cytotoxic and cytostatic effects, to represent
cytotoxic effects on death rates, as opposed to cytostatic ones on proliferation rates.

In age-structured models of the cell division cycle, where cell cycle phases are distinct,
separated by transition rates between them, it is also possible, knowing that these transi-
tions are under the control of protein p53 - “the guardian of the genome” -, itself triggered
by DNA damage, to represent cytotoxic effects, rather than directly on death rates, by
p53-mediated blockade of the cell cycle at these transitions (so-called checkpoints, mainly
betweenG1 andS, and betweenG2 andM phases). We allude here at McKendrick-like
PDE models for the densityni(t, x) ≥ 0 of cells with agex in cell cycle phasei = 1, . . . , I
at timet, in which inputs of drug may be considered as impacting deathtermsdi(t, x) in
phases or boundary terms, p53-controlled transition ratesKi→i+1(t, x) between phases in
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transport equations for cell division cycle phases

∂

∂t
ni(t, x) +

∂

∂x
{vi(x)ni(t, x)}+ {di(t, x) +Ki→i+1(t, x)}ni(t, x) = 0 (1)

with boundary termsni(t, x = 0) =

∫

ξ≥0

Ki−1→i(t, ξ) ni−1(t, ξ) dξ. (See below Eq. (5)

for a more complete description.)
But then one would have to describe in equations the actual sequencing of physiological

mechanisms by which, as classically stated in biology tutorials, p53 arrests the cell cycle
and launches DNA repair or apoptosis [97], subsequently relating by complementary equa-
tions thedi to theKi→i+1, i.e., how should cell death launch be represented when cells
have spent “too much time” blocked at checkpoints? This is a task that to our knowledge
has not been done thus far, essentially because of lacking physiological knowledge on the
timing in this sequence of events. Likely, cell energetic considerations (e.g., on ATP con-
sumption) could be helpful. Nevertheless, cell death at check points can be mimicked in a
coarse way in numeric simulations by imposing an arbitrary maximum number of runs of
the division cycle for a given cell until it passes to next phase.

Furthermore, enzymatic repair mechanisms (nucleotide excision repair, NER, after dam-
age to the DNA) are important to consider since resistance toanti-cancer drugs may be due
to their over-expression (and it is also the only way to explain resistance to radiotherapy).
Thus they should also be included in a model of control of proliferation to complete the
representation of this p53-related missing link between DNA damage induced by cytotoxic
drugs and its consequences on death rates at the cell population level. This also remains to
be done, to our knowledge.

2.4.3. Proliferation terms: birth rate or ageing speed.Effects of cytostatic drugs, that
slow down proliferation without destroying cells, may be represented in simple models by
a decrease in a multiplicative growth factor affecting the cell population variable, e.g., by
introducing a drug effectf in an equation of the form

dn

dt
=

r(n).n

1 + f(t)
− d.n, (2)

which obviously does not distinguish them, in this simple form, from additive effects on
death rates. But they may be represented in different and richer ways in models of the
cell division cycle, such as constituted of copies of the McKendrick equation presented
above, and also below in a more detailed way, see Eq. (5), by an inhibiting action on the
speedvi with which phasei (mostlyG1 or G2) is scrolled through, or by introducing an

inhibiting factor before the boundary terms
∫

ξ≥0

Ki→i+1(t, ξ) ni(t, ξ) dξ, both ways to

mean a negative effect on the influence of growth factors, which usually is the result of the
action of cytostatic drugs.

2.4.4. Sending cells to quiescence.Another way to represent the effect of cytostatic drugs
is to use age-structured models in which cell cycle phases are not necessarily detailed,
keeping only one proliferative phase, but introducing exchanges of proliferating cells with
a quiescent phase in which cells do not grow. One may thus represent cytostatic effects
by a contrasted fate at mitosis, sending proliferating cells with densityp(t, x) either back
into the division cycle, or to a storage sidingQ representing a quiescent phase, as in [51],
depending on the cytostatic drug-controlled factorf (see below Eq. (6)). Such a model is
still linear and thus amenable to asymptotic analysis by investigating its first eigenvalue, or
Malthus exponent [84]. But it would be also possible to perform the same representation
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of drug effects on exchanges between proliferation and quiescence in non linear models in-
volving furthermore feedback from quiescence onto proliferating cell populations, follow-
ing models for stem cell populations as proposed by Mackey ina delay-differential form
in 1978 [66], and later by many others, in particular [23, 24, 46] in a PDE form with both
age and molecular structure, further studied with reduction to the only molecular (cyclin
D) structure in [32, 33]. It is also possible in these models to linearise the systemaround
stationary points (zero or infinite total cell population) to perform asymptotic analyses.

2.4.5. Differentiation terms.The same kind of models, applied to haematopoietic cell pop-
ulations, for which cell differentiation is relatively well known and in which it is completely
blocked at different maturation stages in acute myelobloblastic leukaemia (AML), in par-
ticular at the promyelocytic stage mentioned above about APL, has been studied by Adimy
et al. They proposed a model with continuous age and discrete maturity structure [1], for
which a stability analysis was performed and stability conditions involving both prolif-
eration and differentiation, are given [78, 79]. In its delay-differential version (obtained
by integration in age along characteristics [49, 84]), the model describes at each matura-
tion stagei the dynamics of both quiescent and proliferating cells, as in Mackey’s models
[49, 66], see below3.3.2.

2.4.6. Effects of anti-angiogenic drugs.There are a lot of models dedicated to specifically
represent the action of these anticancer agents, that do notact directly on the cancer cell
populations themselves, but on their vascular environment. They will not be considered as
such here, but in as much as their effects on cell populationsare by limiting their prolif-
eration, not by directly killing them, they may be considered as belonging to the class of
cytostatic drugs. The representation of their effects depends on the prior choice of a model.
Angiogenic drugs have been considered in particular in ODE models [57, 56] and in PDE
models, physiologically structured or not [31, 34, 50, 86, 87]. In these models, either they
act by decreasing the “carrying capacity” of the tumour, or they choke progression in the
cell cycle at theG1/S transition.

2.4.7. Other models.In a more abstract way, it is also possible to consider a very general
model for the action of drugs on cell populations, without neither molecular nor functional
targets, aiming at optimising the sequence of drug deliverytimes, as proposed in [3]; such
models lying not exactly within the scope of this study, which deals molecular and func-
tional targets for anticancer drugs in proliferating cell populations, we limit ourselves to
only mention this possibility.

3. Short review of cell population models with targets for drugeffects. In this section,
we present a brief review of various types of models that havebeen designed to investigate
drug efficacy on cancer cell populations. A lot of work has been performed in this domain
since the end of the 20th century, and we do not claim here to beexhaustive, but only sketch
the scenery by choosing examples. More can be found in [29], where the presentation is
focused on drug delivery optimisation, and in the synoptic [92] and in the references in
these articles. We focus here on the representation of drug targets in these models.

3.1. Cellular Automata. A popular way among physicists, chemists and biologists to rep-
resent the cell division cycle is to consider this cycle as a set of prescribed biological rules
that govern cell evolution. In this way, cellular automata enable to describe individual cell
evolution within a cell population and to investigate drug efficacy.

Alarcón et al. [5] used a cellular automaton model to represent tumour growthin a
vascular environment, opening the way to the possible representation of anti-angiogenic
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therapies. Tumour growth at the vascular stage was further studied by means of an ODE
model [6] and later on with the addition of a PDE model [7] (see below).

Altinok and Goldbeter developed a cellular automaton for the cell cycle [8, 9, 10, 11].
Transition between two states of the automaton, that represent phases of the cell cycle,
correspond to cell progression through, or exit from, the cell cycle, and are assumed to
respect some prescribed rules. For instance each phase of the cell cycle is assumed to be
characterised by a mean duration and a variability in order to take into account inter-cell
variability that can appear within a population. This cellular automaton was coupled with a
model of the circadian clock in order to investigate the cytotoxic effects of time-scheduled
(delivered according to a periodic schedule) infusions of 5-fluorouracil (5-FU) [9, 10]. The
authors modelled the effects of 5-FU on the cell cycle by increasing the probability that
cells submitted to this drug while inS phase exit from the cell cycle at the nextG2/M
transition. Altinoket al. also investigated the effects of oxaliplatin time-scheduled thera-
pies on cancer cells [11]. Contrary to 5-FU, oxaliplatin is an anti-cancer agent that is not
phase-specific. Therefore the authors modelled the effectsof oxaliplatin on the cell cycle
progression by increasing the probability for exposed cells of exiting the cycle at the next
checkpoint (G1/S orG2/M transitions).

3.2. Ordinary Differential Equations. The most popular models that formed the basis
of the development of models to investigate drug efficacy areprimarily the exponential

model (
dn

dt
= λn), the logistic (

dn

dt
= λn

(

1−
n

K

)

, whereK is the maximum tumour

size, or “carrying capacity” of the environment), and the Gompertz (
dn

dt
= λn ln

(
K

n

)

,

where againK is the carrying capacity). A lot of studies on drug control are based on these
models [16, 17, 37, 67, 68, 69, 72, 73, 74]. To model the action of cytotoxic drugs, these
models integrate a cell loss term that depends on the drug concentration and that can be
generically written as:

dn

dt
= λn ln

(
K

n

)

− L(n,D) (3)

whereL : R2 → R is a function, not necessarily linear, of the density of cells N and of
the drug concentrationD. The drug concentrationD is usually given as the solution of an
ODE that depends on the drug infusion rate and that can be seenas the output of a more
or less complicated PK-PD model. For instance, Martin [67] developed such a model with
a functionL linear inn andD to optimise chemotherapy schedules under constraints of
maximal tolerated doses. In a more mechanistic way, Barbolosi and Illiadis [16] defined
the drug concentration thanks to a two-compartment model ofthe chemotherapy PK.

These models consider only one cell population, whereas others integrate several kinds
of cell populations. Distinguishing between tumour cell and healthy cell populations en-
ables to take into account possible side-effects of the treatment on the population of normal
cells [17, 37, 72, 73]. For instance, in [17] Basdevantet al. proposed two optimisation
problems. The first one consisted in determining the drug infusion scheme that would min-
imise the number of tumour cells while kipping the number of healthy cells above a given
threshold. The second one consisted in finding a quasi-periodic drug infusion scheme that
would maintain the tumour cell population at the lowest possible level while preserving
the healthy cell population. As tumour cell resistance can be responsible for the failure of
chemotherapy, Martinet al. [69] considered two tumour cell subpopulations: one sensitive
to treatment and the other one insensitive to treatment. They assumed that sensitive tumour
cells could spontaneously become insensitive and that chemotherapy had a cytotoxic effect
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only on sensitive cells. In another work [68], the same authors studied the effect of a combi-
nation of two chemotherapies and thus considered three cellsubpopulations, differentiating
cells being insensitive to one of the two chemotherapies or to both chemotherapies.

To design a more realistic model of tumour growth, in particular to study the effects
of anti-angiogenic agents on tumour growth, Hahnfeldtet al. [57] considered, in a Gom-
pertz model, the carrying capacityK as a variable. The variations of this carrying ca-
pacity were given by an ODE integrating the spontaneous, thetumour-induced and the
anti-angiogenic drug-induced vasculature loss. More recently, some authors based them-
selves on this approach to study other kinds of variations for the carrying capacityK and to
analyse the effect of anti-angiogenic therapies combined with chemotherapies or radiother-
apies [48, 63, 75, 76, 77]. For instance, in [63], Ledzewiczet al. analysed an optimisation
problem that consisted in minimising the final volume of a tumour submitted to a combi-
nation of an anti-angiogenic and a cytotoxic anti-cancer treatment, under constraints on the
total amounts of the two drugs. This study enabled the authors to propose optimal infusion
schemes for such combination of anti-cancer agents.

Most anti-cancer agents are phase-specific, which means that they target only cells that
are in a specific phase of the cell division cycle. To analyse the effect of such chemother-
apies on cancer cell populations, models that integrate twoor more compartments repre-
senting the phases or additions of the phases of the cell cycle have been developed. The
simplest ones distinguish between cycling and non-cyclingcells and suppose that only cy-
cling cells are sensitive to chemotherapy through a death term [80, 81, 99, 100]. Other
more detailed models combine for instanceG1 andS phases in one compartment andG2

andM in another one [61, 93], or consider the phasesG0 and/orS in separate compart-
ments [6, 82]. These models aim at accounting for the effects on cancer cell populations
of phase-specific chemotherapies, that can be cytotoxic or cytostatic. Alarcónet al. [6] for
instance established by a linear stability analysis that a minimal oxygen concentration is
necessary for the tumour to actually grow, instead of being stabilised at a maximum size
level. Independently, Kozuskoet al. [61] analysed the effects on cell cycle progression and
cell viability of several doses of curacin A by representingits effects on the transition rates
between phasesG1 andS, and betweenG2 andM of the cell division cycle, and on cell
apoptosis rate, cells being distinguished between sensitive and resistant cells. Panettaet al.
[82] then completed this model by separating the phasesG1 andS in order to investigate
the effects of 6-mercaptopurine, anS phase-specific drug, on the dynamics of the cell cycle
in populations of cells that were more or less resistant to the treatment. Swierniaket al.
[93, 94] distinguished betweenG0, G1, andS/G2/M to analyse the effects of a cytotoxic
chemotherapy combined with ‘recruiting’ agents such as cytokines, that enable the global
cell population to recruit cells from the quiescent phaseG0 into the proliferating phase,
which is assumed to make then sensitive to the cytotoxic treatment, i.e., to subsequently
kill them when they are definitely committed in the cell cycle.

3.3. Partial Differential Equations: physiologically structu red transport equations.
Cell population growth also depends on the physiological properties of cells. Such physio-
logical properties can be age of the cells (i.e., the time elapsed since the last cell division),
mass or volume of the cells, their degree of resistance to treatment, their DNA content, the
size of the induced metastases, etc. To take into account in apopulation of cells between-
individual variability linked to these physiological parameters, the McKendrick (or Von
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Foerster-McKendrick) PDE framework is particularly well suited:






∂n

∂t
(x, t) +

∂

∂x
{v(x)n(x, t)} + d(x)n(x, t) = 0 (t > 0, x > xmin) ,

n(xmin, t) =

∫ ∞

xmin

β(ξ)n(ξ, t) dξ (t > 0) ,

n(x, 0) = n0(x) (x > xmin) ,

(4)

wheren(x, t) is the density of proliferating cells with characteristicx (age, mass, volume,
DNA content, etc.) at timet, v is the cell growth rate (a velocity relating physiological
characteristicx to timet), d is the death rate,β is the birth rate,xmin ≥ 0 is the minimum
value ofx for a cell to actually proceed in the cycle. Note thatv, d, β depend onx.

The McKendrick model is positive and linear, and as such its asymptotics is governed by
a first eigenvalueλ, also calledMalthus exponent. It can be proved indeed (using the Krein-
Rutman theorem and a generalised relative entropy - GRE - principle, see, e.g., [84]) that
its solution may be represented for large timest by a bounded function timesexp(−λt).

Physiologically structured cell population dynamics models have been extensively stud-
ied in the last 25 years, see e.g., [12, 13, 14, 15, 21, 22, 28, 30, 40, 41, 54, 58, 59, 60, 70,
86, 98]. We focus here, as mentioned earlier, on those that explicitly include a target for
the representation of drug effects to control their dynamics.

3.3.1. Age-structured models for the cell division cycle.Age of cells in the cell cycle is
one of the the most used physiological characteristics in the literature on physiologically
structured models. The main interest of considering an age-structured model is in distin-
guishing, in a representation of the cell division cycle, between physiological time (age)
and external time, in the perspective of controlling the cycle by drugs that act on it, as do
most anti-cancer drugs.

In the McKendrick model, the variablea corresponds to the age of the cells in the cell
division cycle for a one-compartmental model (cf Eq. (4)), or more generally to the age of
the cells in each of theI phases (or addition of phases, e.g.,S andG2, or G2 andM ) of
the cell cycle:






∂

∂t
ni(t, x) +

∂

∂x
{vi(x) ni(t, x)} + {di(t, x) +Ki→i+1(t, x)} ni(t, x) = 0 ,

ni(t, x = 0) =

∫

ξ≥0

Ki−1→i(t, ξ) ni−1(t, ξ) dξ 2 ≤ i ≤ I ,

n1(t, x = 0) = 2

∫

ξ≥0

KI→1(t, ξ) nI(t, ξ) dξ ,

(5)

in which protein p53 is assumed to control phase transition kernelsKi→i+1 between phases
i andi+ 1, e.g.,G1 andS.

As in the case of ODE models, the simplest way to represent theaction of a cytotoxic
treatment is to enhance the death rate of the cell populationaccording to the treatment ac-
tivity. Thus Kheifetzet al. [60] used a one-compartment age-structured cell cycle model
where the death rate integrates the drug activity through anexponentially decreasing mul-
tiplicative function.

As mentioned earlier, age-structured models have also beenused to represent the action
of cytotoxic agents by their effects, not directly on death rates, but primarily on phase tran-
sition rates, death occurring only secondarily, when cellshave been blocked long enough
at phase transition checkpoints. In [30, 40, 41], the authors consider a multiphase age-
structured PDE model of the cell cycle in which is introduceda time dependency of the
parameters (death rate, transition rate from one phase of the cell cycle to the next one) to
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analyse the effects of a circadian control (a biologically known physiological control with
period 24 hours) on tissue proliferation, in particular tumour growth, with or without ther-
apy. Thus in [40, 41], the authors compare the growth rate (Malthus exponent) ofa cell
population submitted to different time-periodic controlsbetween them, including the case
of a no control (i.e., a control function being replaced by a multiplicative constant set to an
average of the control function it is compared to).

In [30], it is proved that when transition ratesKi→i+1(t, x) are time-independent, the
stiffer these rates behave as a function of agex, the lower is the Malthus exponentλ. More
precisely, if the cycle phase duration probability densityfunction (p.d.f.)K(x)e−

∫
x

0
K(ξ) dξ

(which is indeed a p.d.f., onR+ provided that
∫ +∞

0

K(ξ) dξ = +∞) is taken in a family

of laws with fixed meanµ and varying varianceσ2, thenλ is an increasing function ofσ2.
In other words, the higher the incertitude on the phase duration, the higher the growth ex-
ponent. This result is not completely original, and it corresponds to the intuitive notion that
healthy cell populations are well synchronised with respect to cell cycle timing, passing
from one phase to the following one in good order, whereas cancer cells are more loosely
coordinated, resulting in a higher growth rate for a cancer cell population.

This being settled, the question of a target for periodic control by physiological or phar-
macological inputs may be assessed in the McKendrick model.A rather unexpected re-
sult proved in [43] (Theorem 2.1) is that when atime-periodic controlis exerted only on
death rates, then the Malthus exponentλ is always higher than its counterpart for an un-
controlled time-stationary model designed with the same time-averaged coefficients (death
rates). Otherwise said, periodic gating control exerted ondeath rates enhances proliferation.
But if the same periodic control is exerted only on transition rates instead of death rates,
then no clear hierarchy can be found between the periodic andthe stationaryλs [40, 41, 42].
This theoretical finding, combined with the fact that protein p53 is known to exhibit peri-
odic oscillations in case of DNA damage exerted by a cytotoxic drug ([62, 64], see also
recent reviews and new physiologically based models for p53oscillations in [45, 90, 91]),
together with the fact that cytotoxic drugs themselves often show variations in their con-
centrations that are under the dependence of periodically controlled enzymes of the cell
metabolism, induces to consider as more likely an action of cytotoxic drugs on cell cycle
phase transition rates rather than only directly on death rates.

In [30], an optimisation problem is considered, consisting in minimising the exponen-
tial growth rateλC of a population of tumour cells submitted to a phase-specificcytotoxic
therapy under a toxicity constraint on the population of healthy cells. This constraint is also
represented by an exponential growthλH to be maintained over a (tunable) constant value
Λ. The phase-specific chronotherapy results in the blocking of cells at theG2/M check-
point, and subsequent cell death when too much time has been spent in such blocked status,
for cells that are committed in the division cycle. As mentioned earlier, in the absence of
physiological knowledge on how cell death occurs after cellcycle arrest, subsequent cell
death is coarsely represented in numeric simulations in [30] by a maximum number of runs
of the division cycle, i.e., a limited number of loops on agex for transition rates. It re-
sults after this number is passed in a null transition rateKi−1→i(t, a) and null boundary

term
∫

ξ≥0

Ki−1→i(t, ξ) ni−1(t, ξ) dξ for all phasesi. The model in a 2-phase form has

been partly (i.e., without drug control) identified on biological data (an NIH-3T3 cell line,
mouse embryonic fibroblasts in culture) by using the FUCCI fluorescence method [88, 89].
Only simulations have been performed, and the model has beenonly partly identified, but
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optimal control strategies for a periodic drug delivery areproposed in [30] , that success-
fully solve the problem, decreasing the cancer growth rate while maintaining the healthy
cell population growth rate over a given threshold.

Other works model cytostatic, rather than cytotoxic, effects by an action on the age-
ing velocity v in Eq. (4). Thus, Hinowet al. [58] investigated the effect of lapatinib
(a cytostatic drug that is known to become cytotoxic at high doses) on proliferating and
non-proliferating cells. To be consistent with experimental data the authors considered a
slowing (cytostatic) effect of the drug on the velocity of ageing in the proliferative cell
population inG1 (i.e., with the notations of Eq. (4)), they tookv(a) = 1 − δ(a, t) where
the functionδ also depended on the drug dose), and simultaneously, at highdrug doses, a
cytotoxic effect (death term) on the two cell populations.

Another way to represent cell population growth control by cytostatics in age-structured
models is to send (and to maintain) proliferating cells in a quiescent phase where they do not
proliferate. Gabrielet al. [51] investigated the effect of erlotinib, another cytostaticdrug,
on cancer cells, using an age-structured model that includes a proliferative compartment
and a quiescent one. They assumed that the rate of proliferating cells that become quiescent
is an increasing function of the cytostatic drug dose. This simple linear McKendrick model
is written as







∂

∂t
p(t, x) +

∂

∂x
p(t, x) + {µ+K(x)} p(t, x) = 0 ,

p(t, x = 0) = 2(1− f)

∫

ξ≥0

K(ξ) p(t, ξ) dξ ,

p(t, x = 0) = p0(x) ,

d

dt
Q(t) = 2f

∫

ξ≥0

K(ξ) p(t, ξ) dξ − νQ(t) ,

Q(0) = Q0 ,

(6)

and the drug target here isf , rate of escape at mitosis towards the siding phaseQ, f to
be enhanced by a cytostatic drug. The model was identified on the human Non Small Cell
Lung Cancer (NSCLC) cell line PC-9 submitted to erlotinib.

3.3.2. Extension to delay differential models.Following a 30 year-old tradition of mod-
els for haematopoiesis that date back to [66], using a distinction between proliferating and
nonproliferating (i.e., quiescent) cell compartments, Adimy et al. designed a model with
continuous age and discrete maturity structure [1]. In its delay-differential version (ob-
tained by integration of an age-structured PDE model along characteristics [49, 84]), the
model describes at each maturation stagei the dynamics of both quiescent cells with den-
sity xi and proliferating cellsyi. It may be written as






ẋi(t) = −δixi(t)− wi(t) + 2(1−Ki)

∫ τi

0

e−γiafi(a)wi(t− a) da

+ 2Ki−1

∫ τi−1

0

e−γi−1afi−1(a)wi−1(t− a) da ,

ẏi(t) = −γi yi(t) + wi(t)−

∫ τi

0

e−γiafi(a)wi(t− a) da ,

(7)

whereKi, with K0 = 0 (i = 0 representing the stem cell state), is the rate of cells that
differentiate to the next maturation stage(i + 1), γi andδi are death rates at stagei in
the proliferating and quiescent states respectively,wi(t) := βi(xi(t))xi(t), whereβi is
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a nonlinear feedback (“reintroduction function”, often taken as a decreasing Hill function
with limit zero at infinity, following [66]) from the ith quiescent to theith proliferating
phase. The introduction of the discrete maturity state (i = 1 . . . I) allows to represent
the action of redifferentiating agents such as ATRA on the differentiation ratesKi, that
in AML are zero at some stagei, e.g., at the promyelocyte stage in APL. In this setting,
one can also represent the action of cytotoxic drugs by an increase in the death ratesγi
in the proliferating phase, and of cytostatic drugs by a decrease in the feedback functions
βi, considered here as representing (formerly in the boundaryterms in the original PDE)
the dependence on growth factor receptors that is negatively impacted by cytostatic drugs.
Stability analyses were performed and theoretical drug targets, involving both proliferation
and differentiation, were proposed onβ functions and ratesK (see [2, 78, 79] and refer-
ences therein). They involve an inequality on model parameters at a non trivial equiibrium
point, the existence of which is proven under conditions in [78]. Such stability conditions
can be guidelines in the future to use such models as a rationale for the delivery of drugs in
combined therapies mixing cytotoxic (acting on death ratesγ andδ), cytostatic (acting on
the feedback functionβ) and redifferentiating (acting on differentiation rateK) molecules,
aiming at re-establishing a lost equilibrium. For the time being, the focus in modelling has
been set on combinations between cytotoxics and cytostatics. This is in particular the case
of AML with a mutation of the Flt-3 growth factor receptor (Flt3-ITD gene duplication, re-
sulting in an abnormal tyrosine kinase, that does not need its normal ligand to be activated),
which is present in about 30% of all AMLs, generally resulting in poor prognosis [55].

3.3.3. Other physiologically structured transport equations.Physiologically structured mod-
els have also been used to study the dynamics of metastatic cell population. Instead of
considering age of cells in the cell cycle as the main structure variable, these models con-
sider the size of the metastatic colony [15, 28, 59]. Thus, denoting byx the tumour size,
Iwataet al. [59] assumed that a primary tumour was generated from a single cell at time
t = 0, grew at ratev(x) and emitted at rateβ(x) metastatic single cells that developed as
the primary tumour. The growth ratev(x) was assumed to follow a Gompertz model:

v(x) = αx log
( b

x

)
(8)

and the evolution of the colony size distribution of metastatic tumours with cell numberx at
timet was assumed to be governed by a McKendrick model (cf Eq. (4)). So that this model
is a combination of a Gompertz model and of an age-structuredone. In [15] Barbolosiet
al. proposed a mathematical analysis of this model. Later, Benzekryet al. [28] introduced
in this model the effect of docetaxel, anM phase-specific cytotoxic drug, using a PK-PD
three-compartmental model and an interface model to determine the drug exposure. The
effect of this drug was modeled via a death term in the growth velocity. In the same work,
they also analysed the effect of several infusion schedulesof an anti-angiogenic agent. To
do this, they considered an additional equation (ODE) for the time evolution of the carrying
capacity, just as done by Hahnfeldtet al. in [57] (cf Section3.2), in which they introduced
a death term as a function of the concentration in the anti-angiogenic agent. These authors
accounted for the experimentally observed phenomenon of metastatic acceleration after
anti-angiogenic therapy (using endostatin) and analysed the influence of several infusion
schedules on this phenomenon. Finally, they compared the effect both on the primary
tumour and on the number of metastases of several infusion schemes of combination of
etoposide (cytotoxic drug) and bevacizumab (anti-angiogenic agent).

Transitions between the phases of the cell cycle are accompanied by changes in DNA
content, from2n to 4n DNA content duringS phase, so that models structured by DNA
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content have also been developed. Basseet al. [18] proposed a model for the four phases
of the cell cycle in which obviously only cells inS phase undergo DNA changes. To
account for DNA variability induced by flow cytometry, the authors also introduced in the
equation on the density of cells inS phase with DNA contentx at timet a dispersion term.
This model enabled them to compare calculated flow cytometryprofiles with experimental
ones. Later, Basseet al. [19, 20] extended this model by adding an apoptosis phase that
could be reached via transition from the mitotic phase. The authors also introduced an age
structure in theM phase of the cell cycle, so that this phase is included in thismodel. They
use a model structured in both age and DNA content. This extended model enabled them to
analyse the effects on tumour cell lines of paclitaxel, anM phase-specific anti-cancer agent
known to induce mitotic cell cycle arrest and cell death via atransition from the mitotic
phase to the apoptotic one blocks mitotic spindle dissociation, thus preventing cytokinesis,
the last part of mitotic phase, during which a dividing cell actually becomes two). The
model parameters were determined by fitting them to experimental profiles obtained by
cytometry.

Other models consider several physiological variables as structure variables. Thus Bekkal
Brikci et al. [23, 24] developed an age-structured model that was also structured by the
amount of the complex cyclin D/(Cdk4 or 6), known to be the main regulator of the cell
cycle at the restriction point R in lateG1 phase, an age after which cells are irreversibly
committed to proceed towards division [71]. The model considers a global proliferative
phase that is age- and cyclin D/(Cdk4 or 6)-structured and a quiescent one that is not phys-
iologically structured. The exchanges of cells between theproliferative compartment and
the quiescent one depend on Hill functions of the total cell population, as in Mackey’s mod-
els [66]. Although the inclusion of drug control has been in [24] postponed to ‘the future’,
the model is adapted to represent targets for cytostatics atthe level of these exchanges and
for cytotoxics either on death rates or on boundary terms forthe proliferating population.
More recently, Borgeset al. [32, 33] considered the age-independent version of this model,
i.e., a cyclin-structured model, still without drug targets.

Also Frieboeset al. [50] developed a spatial transport equation model of tumour growth
to predict the response to a drug that also takes into accountcell phenotype, i.e., that distin-
guished between drug sensitive and drug resistant viable tumour cells. In this model, cell
proliferation and death depend on the intratumoral concentrations of oxygen, nutrients and
a cytotoxic drug (additionally represented by spatial reaction-diffusion equations).

3.3.4. Models integrating space and age-structure.As mentioned earlier, the most rele-
vant level to describe proliferation and its control by drugs is clearly the cell population
level, but the level of local surrounding cell populations must also be considered, in par-
ticular to account for the interactions between the tumour and its environment. Breschet
al. [34] developed a tumour growth model in which cell cycle regulation also depends
on the tumour environment, typically cell density and oxygen level. The authors consid-
ered two proliferative phasesP1 andP2, representing respectivelyG1 before the restriction
point [71], and the rest of the cell cycle (remainder ofG1 andS/G2/M ), two proliferative
phases to which a quiescent phaseQ is added. They assumed that only proliferative phases
were age-structured and they added an advection term to model the passive transport of
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tumour cells induced by cell division:







∂P1

∂t
+

∂P1
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+∇ · (vP1
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∂P2

∂t
+
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∂f
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]+

Q(t−) ,

(9)

wherePi = Pi(t, x, y, z, a), (i = 1, 2), Q = Q(t, x, y, z), a representing the age of cells
in each proliferative phase,∇ denotes the derivative with respect to the 3d-space variable
x = (x, y, z), vP1

, vP2
, vQ are the velocities (in 3d-space with respect to timet) in the

phasesP1, P2, Q respectively,amax,P1
andamax,P2

the maximal age a cell can spend in
P1 andP2 respectively,[·]+ the positive part. The functionf is a boolean function that
depends on time and space, equal to one if there is no overpopulation and no hypoxia at
space locationx = (x, y, z) and timet, equal to zero otherwise. Assuming that the three
velocities were equal and that the total number of tumour andhealthy cells was constant
yielded an additional equation to compute the velocity. Breschet al. [34] analysed the
influence on tumour growth of a membrane surrounding this tumour. Ribbaet al. [86]
considered a simplified version of this model as they did not account for the oxygen but they
considered the action of matrix metalloproteinases (MMPs). MMPs are enzymes secreted
by tumour cells, known to digest the extracellular matrix soas to facilitate local invasion
by tumour cells. Using this model, Ribbaet al. analysed the effect of MMP inhibitors
(MMPIs), anti-cancer agents known to reduce cancer growth in animal models but whose
clinical development was not as successful as expected (they were too toxic). In this model,
MMPIs were assumed to promote the passage of proliferative cells into the quiescent phase
at the restriction point. They assessed the therapeutic benefit of MMPIs via a parameter
that compared the proportion of quiescent cells in a population submitted to treatment with
the one in the same population without treatment. Later, Billy et al. [31], based on the
model developed by Breschet al. [34], investigated the effects on tumour growth of an
anti-angiogenic therapy. They coupled, via oxygen concentration, the model developed by
Breschet al. with a continuous PDE model of angiogenesis that accounts for the density of
endothelial cells (ECs, cells that constitute blood vessels), oxygen and some pro- and anti-
angiogenic substances. The authors investigated the effect of an anti-VEGF therapy (VEGF
being the main pro-angiogenic factor) that consisted in increasing the local concentration of
endostatin, an anti-angiogenic factor that competes with VEGF for binding to EC receptors.
This therapy was modelled through an endostatin oversecretion since endostatin was known
to be endogenously secreted by tumour cells. Thus, in this model, endostatin is assumed to
directly target VEGF binding to ECs since an increase of endostatin concentration induces a
decrease of the VEGF binding rate to ECs, which leads to loweractivation of ECs by VEGF,
i.e., lower proliferation and migration rates of ECs and even EC death for high endostatin
concentrations (more details can be found in [31] Sections 3 and 4). Such therapy can lead
to regression of the vascular network and thus induce hypoxia or even death of tumour
cells. Several infusion schedules were studied and their efficacies on the tumour volume
were compared. The authors highlighted the existence of a critical local concentration of
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endostatin below which it was more efficacious on tumour growth to increase the rate of
oversecretion of endostatin instead of its duration and above which the opposite was true.

Following the line of previous articles [5, 6], Alarcónet al. proposed in [7] a multiscale
model using a cellular automaton (for the vascular network), ODEs (for the cell cycle) and
PDEs (for oxygen and VEGF diffusion). Ribbaet al., following the line of their 2006 article
[86] published in 2009 another multiscale model to study the effects of cell cycle specific
drugs by introducing pharmacokinetic-pharmacodynamic representation of the drug fate
[87]. In a more recent model, Powathilet al. [85] used in a way close to the Alarcón
models a multiscale model of a hybrid nature, integrating the cell cycle and the vascular
environment by an ODE system and a cellular automaton, and the diffusion of both oxygen
and anticancer drugs by spatial PDEs. This allowed these last authors to study and optimise
theoretical combinations of various cell cycle phase specific drugs acting on a tumour cell
population.

3.4. Cell Darwinism, adaptive dynamics and kinetic models.

3.4.1. Cancer as an evolutionary disease.The idea that cancer is an evolutionary disease
is not new, but strangely enough, not many articles on this theme, let alone on mathematical
models on Darwinism in cancer cell populations, have been published so far, according to a
recent review [4], even though the necessity to consider cancer evolution asamenable to a
Darwinian selection principle is becoming popular [52, 53]. The idea promoted by Gatenby
et al. in these recent articles is that tumour eradication is a difficult goal to achieve, and
that it can even have adverse consequences, inducing resistant cell subpopulations that will
be impossible to control, so that stabilising the tumour (obtaing “dormancy”, i.e., a non-
proliferative state) rather than trying to eradicate it should be more reasonable and more
successful in terms of life expectancy for cancer patients.Towards this aim, metronomic
chemotherapy that consists in chronic administration of low chemotherapeutic drug doses,
as advocated for instance in [83] et al., and studied from a modelling point of view in [56],
might contribute to some extent.

Note that it is a resistance phenotype, not a genotype, that is taken into account in such
models. Whereas the genetic paradigm, i.e., cancer due to a single “renegade” mutated cell
developing in a malignant clone, has most often been considered as the only explanation
of evolution towards cancer, with little attention broughtso far to (possibly reversible) en-
vironmental effects exerted at the level of cell populations, and this may partly explain the
present state of publications regarding cancer as an evolutionary disease. In the perspec-
tive of cell Darwinism, which always concerns populations of individual cells, considering
drug effects as part of an environmental pressure resultingin selection and possibly spe-
ciation (emergence of ageneticallyresistant species) is a rather new idea in mathematical
modelling to account for evolution towards drug resistancein a cancer cell population.

3.4.2. Kinetic models.These models, that are widespread in the ecological modelling
community, are only beginning to diffuse in the cancer biological modelling world. Pre-
sented in a general setting in [25, 26, 27], they are concerned with the description of differ-
ent cell populations in interaction, healthy or tumour, with the addition of environmental
variables such as nutrients, natural molecules linked to the influence of energetic and meta-
bolic settings, that are assumed to play a role in pharmacotherapeutics, of the immune
system (cytokines, see [44]), and drugs. Physiologically structured, usually without space
variables - but nothing can be opposed in principle to the introduction of a spatial variable
if it is relevant to the question at stake -, they consist of integro-differential equations to
take into account the existence of nonlocal interactions, leading for instance to mutations
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in cell populations. An exemple is [44], and another one, focusing on the problem of drug
resistance is [65], presented below.

3.4.3. Kinetic model for drug resistance, general form.This kinetic model relies on equa-
tions with a continuous structure variable representing, rather than age or any relevant
molecule, a resistant phenotype (x = 0, no resistance;x = 1, completely resistant pop-
ulation), which may be reversible (if resistance is due to anepigenetic rather than genetic
phenomenon) or not. In models of the type presented below (Eq. (10)), evolution towards
acquired drug resistance, i.e., the development of a subpopulation bearing a resistant phe-
notype, close tox = 1, may be the result of mutations, but it may also be the result of
exchanges with the environment, without mutations, thus representing in the latter case
possibly reversible acquired resistance [65]:

∂

∂t
n(x, t) =

mutations and renewal
︷ ︸︸ ︷

θ

1 + αc2(t)

(∫

r(y)M(y, x)n(y, t)dy − r(x)n(x, t)

)

+

(
r(x)

1 + αc2(t)
− d(x)I(t)

)

n(x, t)

︸ ︷︷ ︸

growth with cytostatic therapies and death

− c1(t)µ(x)n(x, t).
︸ ︷︷ ︸

effect of cytotoxic therapies

(10)

HereM is a mutation kernel, with radiusa priori larger in the cancer than in the healthy cell
population,θ is the proportion of cells that undergo mutations at mitosis, and, introducing
subscriptsH andC for healthy and cancer cellsnH andnC , competition in the environment
is represented by variablesIH andIC that may be only fixed linear combinations of the

total healthy and cancer cell populations
∫

x≥0

nH(x, t) dx and
∫

x≥0

nC(x, t) dx, but may

also be variables in interaction with the environment, e.g., with cytokines.

3.4.4. Mutations only.The main interest of including a drug target on mutation rates is to
represent genomic instability in cancer cells by a higher probability of mutation under the
influence of a drug. This is presented in the frame of model equation (10) whenθ 6= 0.
Nevertheless, at least in this setting, mutations do not seem to play the main part in the es-
tablishment of a resistant phenotype, yielding only diffusion around a Diracδ distribution
for the dominant phenotype. This rules out the possibility of representing in this model
acquired drug resistances only due to mutations of the target, as for instance imatinib re-
sistance, for which mutations of the target, BCR-Abl protein, have been evidenced. Likely,
other versions, focusing on mutations, of the same model, should be used in this case.

3.4.5. Competition for resources and exchanges with the environment. In this type of model,
it is easy to obtain evolution towards resistance without mutations (i.e., settingθ = 0). In
fact, the theorems demonstrated in [65] (Theorems 3.1, 3.2, 3.3) state asymptotic conver-
gence towards a single Dirac mass concentrated around a unique value of the phenotypic
trait, and these theorems hold with or without mutations. The healthy cell population case

is characterised by a homeostatic factor of the form
1

1 + I(t)
before the proliferation term

r(x, y), whereI(t) represents the total (healthy and cancer) cell population,preventing the
healthy cell population from exploding, whereas in the cancer population case, no such
homeostasis has been put in the evolution equation.The theorems in [65] show that under
a cytotoxic therapy, the convergence occurs towards a single Dirac mass (monomorphism
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of the fittest population) , concentrated aroundx = 0 in the healthy case, and concentrated
around a fittest traitxC 6= 0, i.e., a resistant phenotype, in the cancer case.

3.4.6. Combining cytotoxic and cytostatic effects.With settings close to those shown in
Eq. (10), neglecting mutations, but representing the action of twodifferent drugsand a
2-dimensional resistance phenotype(x, y), one corresponding to a cytostatic drug that acts
on proliferation, and another one corresponding to a cytotoxic drug that acts on a death
term, it is possible to obtain numerically dimorphism of asymptotic traits in the cancer cell
population, one fittest subpopulation concentrated around(1, 0) and the other around(0, 1)
(Fig. 2), i.e., asymptotic coexistence of two different subpopulations, one resistant to the
cytostatic, the other resistant to the cytotoxic drug. The 2-drug model for tumour cells runs

∂tn(t, x, y) =

[
r(x, y)

1 + µ2(x, y)c2(t)
− d(x, y)I(t) − µ1(x, y)c1(t)

]

n(t, x, y), (11)

wherec1 andc2 represent the effects of a cytotoxic and of a cytostatic drug, respectively,
andI(t) is again the total (weighted) population of all cells, healthy and tumour, the term
d(x, y) thus representing competition for space and nutrients, while µ1 andµ2 represent
the targets for cytotoxic and cytostatic drugs, respectively.

Simulation results, with particular choices for the targetfunctions (not shown), taking
into account the fact that developing resistance hinders proliferation capacities, and with
initial conditions centered around mean values(x, y) = (0.5, 0.5) show the possibility
of evolution towards a dimorphic cell population in cancer cells, whereas the healthy cell
population, with a homeostatic factor multiplying its proliferation term (see above), on the
contrary evolves towards total sensitivity, as illustrated on Fig.1 and2.
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FIGURE 1. Healthy cells. Starting (t=0, left) from an average 2d phe-
notype [(x, y) = (0.5, 0.5)], evolution towards total sensitivity (t=80,
right): no resistance. Model, simulation and figure by Tommaso Lorenzi.

It is also possible, as numerically shown in [65], Fig. 6.6, to obtain different asymptotic
behaviours, in particular evolution towards resistance orextinction of the cancer cell pop-
ulation while keeping healthy cells alive, only by varying constant doses of the two drugs.
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FIGURE 2. Cancer cells. Starting (t=0, left) from the same average 2d
phenotype [(x, y) = (0.5, 0.5)], evolution towards two separate resistant
clones (t=80, right), one resistant to the cytotoxic drug, the other one to
the cytostatic drug. Model, simulation and figure by TommasoLorenzi.

This may be considered as a step towards drug delivery optimisation with respect to the
question of avoiding drug resistance, by combining cytotoxic and cytostatic drugs.

Note that one can also (work underway in the line of [65]) represent simultaneously
space and an evolutionary phenotype in integro-differential models accounting for the evo-
lution of tumour spheroids submitted to an externally delivered therapy. In this case, a
1d radial spatial coordinate is a relevant complementary variable that must be considered
together with the cell phenotype responsible for drug resistance.

4. Conclusion. We have reviewed in this article some old and more recent models of pro-
liferating cell population dynamics designed to theoretically solve problems of therapeutic
optimisation encountered in the clinic of cancers, always considering them from the point
of view of drug target representation. Polychemotherapy isusually the rule in oncology -
with a few known exceptions such as imatinib in chronic myelogenous leukaemia -, so that
designing a rationale to optimally combine treatments acting on different functional tar-
gets in the physiological mechanisms that control proliferation in cell populations should
eventually be a help in the clinic. This involves taking intoaccount in multiscale mathe-
matical models the moving physiological knowledge of thesemechanisms, of how old and
new drugs can modify them, and of how they can be investigatedat the different levels of
observation: single cell, cell population, and whole body as a collection of interacting cell
populations. We stress that this program implies frequent interactions, going far beyond an
attitude of sort of ‘scientific service providers’, betweenteams of mathematicians, biolo-
gists and clinicians, involving in a much more committed waymutual efforts to understand
how each discipline can benefit of each others’ representations and findings. We hope that
this review of models and results, seen from the point of viewof drug targets, can be helpful
to this aim.
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