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ABSTRACT. We review the main types of mathematical models that haee besigned
to represent and predict the evolution of a cell populatinden the action of anti-cancer
drugs that are in use in the clinic, with effects on healthgt eancer tissue growth, which
from a cell functional point of view are classically dividegtween “proliferation, death
and differentiation”. We focus here on the choices of thegdiargets in these models,
aiming at showing that they must be linked in each case toengiverapeutic application.
We recall some analytical results that have been obtainediing models of proliferation
in cell populations with control in recent years. We pressmthe simulations performed
when no theoretical result is available and we state some jpdlems. In view of clinical
applications, we propose possible ways to design optinebfieutic strategies by using
combinations of drugs, cytotoxic, cytostatic, or rediffetiating agents, depending on the
type of cancer considered, acting on different targetseatetel of cell populations.

1. Introduction. Mathematical models have been called for some time alrepdypibcer
biologists and clinical oncologists to help improve theazftly of anti-cancer treatments.
Indeed, understanding better the evolution of cancers amdth treat them in an opti-
mal way is still an open question, that might benefit from dbaotions of mathematics to
represent cell proliferation control by drugs.

Knowing that most anti-cancer treatments use combinatidndrugs with different
molecular targets and different functional effects on ifecdting cell populations, we ad-
vocate considering these effects not just as on inhibitioa global ‘birth minus death’
rate, but rather with a refined point of view, considering tiple targets, representing dif-
ferential drug effects on birth, death or differentiatibg,different control targets in math-
ematical models. The closer these model representatien® actual clinical questions,
the better.

The main two pitfalls of clinical oncology, that limit incasing drug doses, are un-
wanted toxic side effects on healthy cell populations armioence of resistance to drugs
in cancer cell populations. According to the medical questiat stake, one may consider
different models to represent the underlying biologicaépimena that are the object of
control by drugs. Spatial representations may be partigfbklin particular when tumour
neo-angiogenesis and anti-angiogenic drugs are presemveér, in as much as drug
effects are the tools of control considered here, and simeg act mostly by modifying
the physiology of cells, physiologically structured magdshould always be used, with or
without added spatial structure. In particular, focus Ww#l set here on models structured
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according to age in the cell cycle, or according to an evoh#ry phenotype if evolution
towards drug resistance is the main issue.

The paper is organised in the following way: firstly, we revithe main difficulties
inherent to cell population modelling for drug delivery ¢anh, and categories of drugs
used in the clinic, from a pharmacological point of view. \WWern present in an abstract
way, but with concrete instances, how anti-cancer drugetangay actually be represented
in cell proliferation dynamic models. Finally, we briefljwiew the main types of models
lately used in the scientific literature on drug control ialiey and cancer cell populations,
sketching some results recently obtained, either thegrentints to possible future results
coming from mere simulations, when proper mathematicdyara still seem out of reach.

2. Anticancer drug effects and their representation in mathenatical models. The types
of models used to predict cell population behaviour undetrobby drugs range from cel-
lular automata to ordinary and partial differential eqoasi (ODEs and PDES), PDEs being
amenable to transformation into delay differential equai(DDES) by integration of PDEs
along characteristics4p, 72]. Biological variability (physiological differences begen
cells) is easily taken into account by stochastic models, sorcalled individual-based
models (IBMs) are amenable to include any kind of rule ones puthe individual agents.
These models are hardly amenable to mathematical analygasticular to the study of
their asymptotics, given the intrinsically finite numbercedls they take into account, but
their simulation may give hints to possible properties efithehaviour, that need to be fur-
ther explored by mathematical analysis]. As regards physiologically structured PDEs,
their structure variables (e.g., age in cell cycle modd&tavely represent biological vari-
abilities considered as the most relevant for the questistalie, and their asymptotics can
be studied when the model is tractable, sometimes restiltittieorems - which is hardly
possible with agent-based models.

2.1. Modelling, what to do? Guidelines to design a model for an apjication. It should
be stressed that designing cell population models undeadtien of drugs puts from the
beginning modellers in a perspective completely diffefemin the one used to represent
the “natural history” of tumour growth under the influencenodéchanical or physiological
factors, but without built-in drug control. Moreover, givéhe complexity of biological
phenomena underlying tissue growth, i.e., proliferatibnistologically homogeneous cell
populations (notwithstanding some biological variapibetween individual cells), choos-
ing well delineated questions of therapeutics arising edlinic of cancers as a source of
inspiration helps designing practical models adapteddresent actual treatments, with the
aim to answer questions (about prediction of unwanted tsixie effects, drug resistance,
and optimal combinations of drugs) asked by clinicians.

Optimisation of drug delivery is always a concern for cliaits. This for mathemati-
cians implies defining an objective function, usually thentner or density of cancer cells
to be minimised, under constraints that may be limitationioxdcity to healthy cells or
avoidance of the thriving of a drug-resistant subpoputaiiocancer cells, or both. On-
cologists seldom use only one drug, but rather, combinatidrdrugs acting on different
molecular targets with the aim to potentiate their effe¢teane wants to accurately rep-
resent and study such combinations, it is necessary tordewiglels with built-in specific
targets for the drugs in us&1).

Anticancer drugs are most often known for theipleculareffects, i.e., effects that
involve blockade or re-establishment of an intracellulgnalling pathway, for instance
targeting a specific enzyme or a chain of molecular reactsaging with a membrane
or cytosol receptor. Nevertheless, such effects are nayaspecific, and even when a
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drug has been designed to block a given pathway by confasmetanalysis of known
molecules, unexpected other effects may be unravelled églipical and clinical trials,

and these effects may be deleterious on other pathways tr¢oaells. Furthermore, anti-
cancer drugs show their therapeutic effects in a measunabl@nly at the cell population
level by actuatell functionaleffects, i.e., on cell death, birth or differentiation.

This points out the multiscale nature of drug delivery peohé: drugs are given at the
whole body level (collection of communicating cell popidat), exert their effects at the
single cell level, but these effects, as far proliferat®nancerned, are actually measurable
at the cell population level only3pP]. The most relevant level to describe proliferation
and its control by drugs is clearly the cell population lewelt the single cell (molecular,
at which drugs chemically act) and whole body (at which draigdelivered) levels must
also be considered, at least if one aims at designing moolefgédctical applications, i.e.,
for therapeutic optimisation. Drug effects must be différi@ cancer and in healthy cell
populations if a therapeutic benefit is searched for, whiobsses the fact that identical
functional targets should be represented as behavingdiffly in cancer and in healthy
tissues.

Note that we will consider here onfyroliferating cell populations. In an extended rep-
resentation including applications to fast invading tumsoi@.g., gliomas) and their treat-
ments, a fourth fate for tumours beyond cell proliferatideath and differentiation that
should be considered is cell motion, which (“go or grow” alive) is, in a given time
lapse, incompatible with proliferatio2§].

2.2. A level gap between molecular and functional targets Anticancer drugs that are
designed for their effects at the molecular level are mastnoknown to block a specific
intracellular signalling pathway (a chain of molecularatans) that is assumed to end up
by being involved in “apoptosis, proliferation, differétton” all together, with seldom
further precisions, because of the entanglement of thewsrinolecular pathways partic-
ipating in these physiological cell functions. Moleculessdjned at the single cell level
thus need to be further studied at upper levels, by cell @ijoul dynamic studies in cell
cultures and in experimental animal models, to investigate differential way all these
physiological functions, plus drug resistance in diseasdihopulations.

Otherwise said, in the same way as silencing a gene may hiaatsedbn other pheno-
types than the targeted one, blocking a molecular pathwayélaom specific effects on
a functional target in a cell population, hence the inteoé#tvestigating combinations of
drugs by their functional more than by their molecular efeand at the cell population
rather than at the molecular level, from an experimentaitoafiview in cell cultures. Such
process obviously ought to be completed by further studiesguvhole body animal exper-
iments, to unravel possible unexpected toxic side effattstioer cell populations, possibly
resulting in prohibitive toxicities to healthy tissues.

The gap to bridge between these three levels of observatinglé¢ cell, cell popula-
tion, whole body) of this multiscale perspective is an mgic difficulty for which no mir-
acle solution is known in general. Specific ways to integthtan depend on the type
of model used at the cell population level, which is centnapioliferation. A common
suggestion31, 32] is to use compartmental ODEs for pharmacology (pharmaetids-
pharmacodynamics, PK-PD for short) of anti-cancer drugsctired PDEs for cell pop-
ulations in each compartment, and a simultaneous managervhéme cell populations
attacked by drugs by optimisation algorithms at the wholdytevel.
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2.3. Drugs used in cancer treatments considered at the single ¢dével. Tissue re-
newal, which at the cell population level is made of prokfgon, cell death and differen-
tiation, relies on physiological phenomena that are bdi#lementary molecular reaction
chains, and it is on these cell biochemical reactions thcamcer drugs act. In particular,
proliferation of cell populations relies at the single dellel on the cell division cycled0].

2.3.1. DNA damaging agentsAlso known as alkylating agents, these drugs act by directly
binding to the DNA and creating damages in it, such as doutded breaks, that are hard
to repair by the cell. They are in principle not cell cycle paapecific. However, the fact
that DNA is less protected i§ phase, when it is duplicated, makes them more active in
this phase. Commonly used alkylating agents are for instaisplatin, oxaliplatin and
cyclophosphamide. DNA damaging agents are cytotoxic dfsegs below).

2.3.2. Cell cycle phase-specific agentS.phase-specific drugs block DNA replication ei-
ther by acting as substrate substitutes in metabolic mac{antimetabolites) or by inhibit-
ing enzymes of these metabolic reactions, or both. Such-&ledouracil, a substitute for
normal uracil, that also acts by blocking the enzyme thylaidisynthase, and irinotecan,
that blocks topoisomerase I, an enzyme that is essentiBNA replication. M phase
specific drugs block mitosis either by destroying the mitspindle (spindle poisons, such
as vinca alkaloids, e.g., vincristine) or preventing itssdiciation, such as taxanes (e.g.,
docetaxel and taxotere). These drugs secondarily creatagis to the DNA (and thus are
cytotoxic) since it cannot be properly duplicatetighase-specific drugs) or they produce
cells that are unable to divide; in both cases, cells undaclaare short-lived due to cell
control mechanisms occurring at so-called checkpointsiggéowCell death).

2.3.3. Molecular targeted therapiesAlthough in principle all drugs have molecular tar-
gets, that are defined as specifically as possible, thistigckEsmominated category of drugs
was firstly restricted to chemicals shown to very specifjcadtestablish the normal func-
tioning of a molecular signalling pathway perturbed in am©ne of the first used molec-
ular targeted therapies was in 1986 all-transretinoic acflTRA, a molecule that corrects
the normal granulocyte differentiation process blockeddnte promyelocytic leukaemia
(APL, also known as type 3 acute myeloblastic leukaemiahkychimeric protein PML-
RAR«, ATRA destroying this protein45]. The term ‘molecular targeted therapy’ now
includes mostly monoclonal antibodies (associations ofcavth factor receptor antago-
nist with an antibody that is specific of the receptor, withaane usually ending in -mab)
and tyrosine kinase inhibitors (TKIls, that directly bloalogth factor receptors in kinases
at a tyrosine site, with a name usually ending in -nib). Thst ll@own success story in
molecular targeted therapies is that of imatinib mesylia, has completely transformed
the prognosis of chronic myelogenous leukaemia (CMLJJ.[| ATRA and imatinib actu-
ally cure most of APL (over 80%, by using it in combination kvé cytotoxic drug) and
CML (over 95%, in monotherapy) patients, respectivelyeljkbecause they are directed
against well identified chimeric (abnormal) proteins, PRAR« and BCR-ADbI, respec-
tively. However, in cases where other protein targets armabbut only abnormally over-
expressed, molecular targeted therapies are not so géeamnd sometimes highly toxic.
Other recent molecular targeted therapies include histeaeetylase (HDAC) inhibitors,
drugs that block the effects of HDACs, electively in canaais; since healthy cells seem
to be more protected against their effects. Since thesensgmare involved in most cell
processes (proliferation, cell differentiation and dgatiey may be molecule-specific, but
not functionally specific, as are for instance imatinib ooliferation or ATRA on differen-
tiation; however, tentative functional distinctions betm them have been proposé&d][
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Molecular targeted therapies are usually cytostatic (sd@A) but may become cytotoxic
at high doses.

2.4. Drug effects and targets at the cell population levelIndeed, since the aimed-at and
clinically measurable effects of drugs are functional (ooliferation, cell differentiation
or death) at the cell population level, it is at least as #géng to consider such drug effects
as acting on functional terms in model equations represgtigsue growth. As mentioned
above, bridging the gap between the molecular and fundteffects of anti-cancer drugs
remains in general an open question. Another issue in thesuneaent of drug effects
in cell populations comes from technological limitationgedo the tools used to identify
model parameters, that seldom can be all highlighted, anlesmodel is very simplified.
Such identification relies in particular on flow cytometeramgrements/9, 80] and, more
recently, on fluorescence-based methods investigatihgygekll a whole populationZ3,
74,75].

2.4.1. Cytotoxics and cytostatic€ytotoxic drugs are those that are aimed at killing cells
- usually killing not only cancer cells -, sending them to tilegither by directly launching
apoptosis (i.e., ‘clean’ cell death), or blocking them inimaversible phase of the division
cycle where long-term survival is impossible. On the camntreytostatic drugs may kill not
even a single cell, being not directed at creating damagteetoells, but rather slow down
the growth of the cell population as a whole, which may be arpentally evidenced by a
lengthening of the cell population doubling time. It is knohowever that, depending on
the drug dose, various cytostatics may become cytotoxitftais has been represented in
a model dealing with lapatinibi[7].

2.4.2. Cell death. A direct enhancement of death rates by drugs is the simplagtta/
represent the effect of cytotoxics, and it is the only oneilabke in the simplest ODE
models where &birth minus death” term is the only possible target in the equations

(i.e., dn = r(n).n — d.n). Although apoptosis pathways, involving at the molecidsel

members of the Bcl2 family, have been explored with the airfird targets for drugs
that would be specific of apoptosis launching, it does notnstiat specific proapoptotic
drugs are already routinely available in the clinic. Howeifeone wants to oppose drug
effects that are clearly cytotoxic to others that are onlpstatic, it is licit, provided that
the model allows separate identifiability of cytotoxic andostatic effects, to represent
cytotoxic effects on death rates, as opposed to cytostaéis on proliferation rates.

In age-structured models of the cell division cycle, whezk ©ycle phases are distinct,
separated by transition rates between them, it is alsolgesginowing that these transi-
tions are under the control of protein p53 - “the guardiarhefgenome” -, itself triggered
by DNA damage, to represent cytotoxic effects, rather thiaectly on death rates, by
p53-mediated blockade of the cell cycle at these transitiea-called checkpoints, mainly
betweeny; andS, and betweeitr, and M phases). We allude here at McKendrick-like
PDE models for the density; (¢, ) > 0 of cells with ager in cell cycle phaseé=1,...,T
at timet, in which inputs of drug may be considered as impacting deathsd; (¢, z) in
phases or boundary terms, p53-controlled transition thtes 1 (¢, =) between phases in
transport equations for cell division cycle phases

9

ot

with boundary terms; (t,z = 0) = / K 15i(t, &) ni—1(t, &) d€. (See below Eq.5)
£20

for a more complete description.)

ni(t,z) + %{vi(x)ni(t, )} 4+ {di(t,x) + Ki—it1(t, ) ni(t, ) =0 (1)
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But then one would have to describe in equations the actgqakseing of physiological
mechanisms by which, as classically stated in biology talksrp53 arrests the cell cycle
and launches DNA repair or apoptosid], subsequently relating by complementary equa-
tions thed; to the K;_,; 11, i.e., how should cell death launch be represented whes cell
have spent “too much time” blocked at checkpoints? This &sk that to our knowledge
has not been done thus far, essentially because of lackiygigdtgical knowledge on the
timing in this sequence of events. Likely, cell energetingiderations (e.g., on ATP con-
sumption) could be helpful. Nevertheless, cell death atklpeints can be mimicked in a
coarse way in numeric simulations by imposing an arbitraaximum number of runs of
the division cycle for a given cell until it passes to next gha

Furthermore, enzymatic repair mechanisms (nucleotidisiexcrepair, NER, after dam-
age to the DNA) are important to consider since resistanaatiecancer drugs may be due
their over-expression (and it is also the only way to explaisistance to radiotherapy).
Thus they should also be included in a model of control ofife@tion to complete the
representation of this p53-related missing link betweeRIdmage induced by cytotoxic
drugs and its consequences on death rates at the cell popuéatel. This also remains to
be done, to our knowledge.

2.4.3. Proliferation terms: birth rate or ageing speedtffects of cytostatic drugs, that
slow down proliferation without destroying cells, may benesented in simple models by
a decrease in a multiplicative growth factor affecting te# population variable, e.g., by
introducing a drug effecf in an equation of the form

dn r(n).n

a1 @
which obviously does not distinguish them, in this simplaripfrom additive effects on
death rates. But they may be represented in different amemriways in models of the
cell division cycle, such as constituted of copies of the Mo#rick equation presented
above, and also below in a more detailed way, see By.by an inhibiting action on the
speedv; with which phase (mostly Gy or G») is scrolled through, or by introducing an

inhibiting factor before the boundary terr?é Kiiv1(t,€) ni(t,€) d€, both ways to
§20
mean a negative effect on the influence of growth factorsclvbhsually is the result of the

action of cytostatic drugs.

2.4.4. Sending cells to quiescenc@nother way to represent the effect of cytostatic drugs
is to use age-structured models in which cell cycle phasesiar necessarily detailed,
keeping only one proliferative phase, but introducing exaes of proliferating cells with
a quiescent phase in which cells do not grow. One may thugsept cytostatic effects
by a contrasted fate at mitosis, sending proliferatingsoeith densityp(¢, ) either back
into the division cycle, or to a storage sidiggrepresenting a quiescent phase, asiis), [
depending on the cytostatic drug-controlled factqsee below Eq.q)). Such a model is
still linear and thus amenable to asymptotic analysis bgstigating its first eigenvalue, or
Malthus exponentq2]. But it would be also possible to perform the same reprediemt
of drug effects on exchanges between proliferation andsgeigce in non linear models in-
volving furthermore feedback from quiescence onto pradifiag cell populations, follow-
ing models for stem cell populations as proposed by Mackey delay-differential form
in 1978 b5, and later by many others, in particuldrd 20, 39] in a PDE form with both
age and molecular structure, further studied with redadtiothe only molecular (cyclin
D) structure in P5, 2€]. Itis also possible in these models to linearise the systeaund
stationary points (zero or infinite total cell populatioa)terform asymptotic analyses.
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2.4.5. Differentiation terms.The same kind of models, applied to haematopoietic cell pop-
ulations, for which cell differentiation is relatively wénown and in which it is completely
blocked at different maturation stages in acute myeloblstid leukaemia (AML), in par-
ticular at the promyelocytic stage mentioned above abolt, ABs been studied by Adimy

et al. They proposed a model with continuous age and discrete ityattructure [,

for which a stability analysis was performed and stabiliyditions involving both pro-
liferation and differentiation, are give®y, 68]. In its delay-differential version (obtained
by integration in age along characteristid®,[72]), the model describes at each matura-
tion stagel the dynamics of both quiescent and proliferating cellspadackey’s models
[42, 55], see below ‘Extension to delay differential models’.

2.4.6. Exploring alternative waysRepresenting drug effects in cell populations yielding
acquired resistance by Darwinian-like phenomena makeonsider populations struc-
tured according to a continuous resistance phenatypgher than to an age variable. Such
models, that are widespread in the ecological modellingroanity, are only beginning to
diffuse in the cancer biological modelling world. They maydlve mutations, competition
and feedback from the environment, as presented in a gemayah [54].

Furthermore, these models are also well adapted to refrésensing environmental
variables such as pH and intercellular signalling moles(¢eg., cytokines), the influence
of energetic and metabolic settings, that are assumedy@ptde in pharmacotherapeutics,
in particular when one considers involvement of the immuyrstesn, as in37).

3. Short review of cell population models with targets for drugeffects. In this section,
we present a brief review of various types of models that e designed to investigate
drug efficacy on cancer cell populations. A lot of work hasrbgerformed in this domain
since the end of the 20th century, and we do not claim here éxlaustive, but only sketch
the scenery by choosing examples. More can be foundZf where the presentation is
focused on drug delivery optimisation, and in the synopfig pnd in the references in
these articles. We focus here on the representation of drggts in these models.

3.1. Cellular Automata. A popular way among physicists, chemists and biologistsye r
resent the cell division cycle is to consider this cycle asta§prescribed biological rules
that govern cell evolution. In this way, cellular automatalele to describe individual cell
evolution within a cell population and to investigate drdficacy.

Altinok and Goldbeter developed a cellular automaton far ¢kll cycle §, 5, 6, 7].
Transition between two states of the automaton, that reptgshases of the cell cycle,
correspond to cell progression through, or exit from, thié @ele, and are assumed to
respect some prescribed rules. For instance each phase céltlcycle is assumed to be
characterised by a mean duration and a variability in ordéale into account inter-cell
variability that can appear within a population. This cllhautomaton was coupled with a
model of the circadian clock in order to investigate the tyta effects of time-scheduled
(delivered according to a periodic schedule) infusions-tibrouracil (5-FU) b, 6]. The
authors modelled the effects of 5-FU on the cell cycle byéaasing the probability that
cells submitted to this drug while if phase exit from the cell cycle at the neXt /M
transition. Altinoket al. also investigated the effects of oxaliplatin time-scheduhera-
pies on cancer cells/[. Contrary to 5-FU, oxaliplatin is an anti-cancer agent tkkanot
phase-specific. Therefore the authors modelled the eftéaizaliplatin on the cell cycle
progression by increasing the probability for exposedsagfilexiting the cycle at the next
checkpoint ;1 /S or G2 /M transitions).
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3.2. Ordinary Differential Equations. The most popular models that formed the basis of

. . i . d
the development of models to investigate drug efficacy azeeponential model—(g =
An), the logistic % =n (1 — %) , whereK is the maximum tumour size, or “carrying

. . d K S
capacity” of the environment), and the Gomperf[%(: Anln [ — |, where againk is
n

the carrying capacity). A lot of studies on drug control aasdd on these models7 13,
30, 56, 57, 58, 61, 62, 63]. To model the action of cytotoxic drugs, these models iraty
a cell loss term that depends on the drug concentration aad#m be generically written
as:

Cfl—?z = nln (%) — L(n, D) 3)

whereL : R? — R is a function, not necessarily linear, of the density ofsall and of

the drug concentratio®. The drug concentratioP is usually given as the solution of an
ODE that depends on the drug infusion rate and that can beasetive output of a more

or less complicated PK-PD model. For instance, Maigit] fleveloped such a model with

a functionL linear inn and D to optimise chemotherapy schedules under constraints of
maximal tolerated doses. In a more mechanistic way, Basbalad Illiadis [L2] defined

the drug concentration thanks to a two-compartment modileo€hemotherapy PK.

These models consider only one cell population, whereas®thtegrate several kinds
of cell populations. Distinguishing between tumour celtl drealthy cell populations en-
ables to take into account possible side-effects of thérresat on the population of normal
cells [13, 30, 61, 62]. For instance, in ]3] Basdevanet al. proposed two optimisation
problems. The first one consisted in determining the drugsioh scheme that would min-
imise the number of tumour cells while kipping the number edlthy cells above a given
threshold. The second one consisted in finding a quasiieritvug infusion scheme that
would maintain the tumour cell population at the lowest fasslevel while preserving
the healthy cell population. As tumour cell resistance candsponsible for the failure of
chemotherapy, Martiet al. [58] considered two tumour cell subpopulations: one sensitive
to treatment and the other one insensitive to treatmenty agsumed that sensitive tumour
cells could spontaneously become insensitive and that atierapy had a cytotoxic effect
only on sensitive cells. In another work{], the same authors studied the effect of a combi-
nation of two chemotherapies and thus considered thresudgtlopulations, differentiating
cells being insensitive to one of the two chemotherapies both chemotherapies.

To design a more realistic model of tumour growth, in patticto study the effects of
anti-angiogenic agents on tumour growth, Hahnfelé} Eonsidered, in a Gompertz model,
the carrying capacitys as a variable. The variations of this carrying capacity vggven
by an ODE integrating the spontaneous, the tumour-inducedtee anti-angiogenic drug-
induced vasculature loss. More recently, some authorsittheenselves on this approach
to study other kinds of variations for the carrying capadifyand to analyse the effect
of anti-angiogenic therapies combined with chemothesapigadiotherapiesif, 52, 64,
65, 66]. For instance, in%2], Ledzewiczet al. analysed an optimisation problem that
consisted in minimising the final volume of a tumour subnditiea combination of an anti-
angiogenic and a cytotoxic anti-cancer treatment, undestcaints on the total amounts of
the two drugs. This study enabled the authors to proposmapitifusion schemes for such
combination of anti-cancer agents.
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Most anti-cancer agents are phase-specific, which meanththatarget only cells that
are in a specific phase of the cell division cycle. To analiiseetfect of such chemother-
apies on cancer cell populations, models that integrateotwoore compartments repre-
senting the phases or additions of the phases of the cek tyle been developed. The
simplest ones distinguish between cycling and non-cydgits and suppose that only cy-
cling cells are sensitive to chemotherapy through a death[9, 70, 83, 84]. Other more
detailed models combine for instanGe andS phases in one compartment adg and M
in another oneq0, 77], or consider the phas&g, and/orS in separate compartmentsl].
These models aim at accounting for the effects on cancepapililations of phase-specific
chemotherapies, that can be cytotoxic or cytostatic. Fsiaimce, Kozusko et al5(] anal-
ysed the effects on cell cycle progression and cell vigbditseveral doses of curacin A
by representing its effects on the transition rates betvpdasess; andS, and between
G- and M of the cell division cycle, and on cell apoptosis rate, cb#ng distinguished
between sensitive and resistant cells. Parettal. [71] then completed this model by
separating the phasés andsS in order to investigate the effects of 6-mercaptopurine, an
S phase-specific drug, on the dynamics of the cell cycle in fagjouns of cells that were
more or less resistant to the treatment. Swierrgkl. [77, 78 distinguished between
Go, G1, andS/G2/M to analyse the effects of a cytotoxic chemotherapy combivigd
‘recruiting’ agents such as cytokines, that enable theajloll population to recruit cells
from the quiescent phage, into the proliferating phase, which is assumed to make then
sensitive to the cytotoxic treatment, i.e., to subseqyéitithem when they are definitely
committed in the cell cycle.

3.3. Partial Differential Equations: physiologically structured transport equations.
Cell population growth also depends on the physiologicapprties of cells. Such physio-
logical properties can be age of the cells (i.e., the timpsad since the last cell division),
mass or volume of the cells, their degree of resistance &brtrent, their DNA content, the
size of the induced metastases, etc. To take into accourpi@palation of cells between-
individual variability linked to these physiological panaters, the McKendrick (or Von
Foerster-McKendrick) PDE framework is particularly welited:

on 0

E(z, t) + %{v(z)n(:c,t)} +d(x)n(x,t) =0 (t>0,2> Tmin) »
nmins )= [ BE(ED) de (t>0) )
n(z,0) = no(x) (T > Tmin)

wheren(z, t) is the density of proliferating cells with characteristi¢age, mass, volume,
DNA content, etc.) at time, v is the cell growth rate (a velocity relating physiological
characteristia: to timet), d is the death ratej is the birth rateg,,,;,, > 0 is the minimum
value ofz for a cell to actually proceed in the cycle. Note that/, 3 depend orx.

The McKendrick model is positive and linear, and as suchsiysrgtotics is governed by
afirst eigenvalue, also calledMalthus exponentt can be proved indeed (using the Krein-
Rutman theorem and a generalised relative entropy - GREeipie, see, e.g.,/p]) that
its solution may be represented for large timéy a bounded function timesep(—At).

Physiologically structured cell population dynamics misdeave been extensively stud-
ied in the last 25 years, see e.®, 9, 10, 11, 17, 18, 21, 23, 33, 34, 44, 47, 48, 49,59, 73,
82]. We focus here, as mentioned earlier, on those that eflplioiclude a target for the
representation of drug effects to control their dynamics.
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3.3.1. Age-structured models for the cell division cycksge of cells in the cell cycle is

one of the the most used physiological characteristicsénitarature on physiologically

structured models. The main interest of considering ansagetured model is in distin-

guishing, in a representation of the cell division cycletwmen physiological time (age)
and external time, in the perspective of controlling theleyay drugs that act on it, as do
most anti-cancer drugs.

In the McKendrick model, the variablecorresponds to the age of the cells in the cell
division cycle for a one-compartmental model (cf E4))(or more generally to the age of
the cells in each of thé phases (or addition of phases, eg§andGs, or Gy and M) of
the cell cycle:

%ni(t,x) + %{Uz(x) ni(t,x)} + {di(t,x) + Kimix1(t, )} ni(t,2) =0

ni(t,x = 0) = /E Kbt dg 2<i<T 5)

nl(t,(E:O):Q KI—>1(t7§) n;(tf) dé- B
£20

in which protein p53 is assumed to control phase transit@ndisi’; .;; between phases
i1andi + 1, e.g.,G1 andS.

As in the case of ODE models, the simplest way to represerddtien of a cytotoxic
treatment is to enhance the death rate of the cell populatioarding to the treatment ac-
tivity. Thus Kheifetzet al. [49] used a one-compartment age-structured cell cycle model
where the death rate integrates the drug activity througéxaonentially decreasing mul-
tiplicative function.

As mentioned earlier, age-structured models have alsoumahto represent the action
of cytotoxic agents by their effects, not directly on deates, but primarily on phase tran-
sition rates, death occurring only secondarily, when dedlge been blocked long enough
at phase transition checkpoints. B3] 33, 34], the authors consider a multiphase age-
structured PDE model of the cell cycle in which is introdueetime dependency of the
parameters (death rate, transition rate from one phaseafeth cycle to the next one) to
analyse the effects of a circadian control (a biologicatpwn physiological control with
period 24 hours) on tissue proliferation, in particular tnmgrowth, with or without ther-
apy. Thus in B3, 34], the authors compare the growth rate (Malthus exponend) al|
population submitted to different time-periodic contrbitween them, including the case
of a no control (i.e., a control function being replaced byutiplicative constant set to an
average of the control function it is compared to).

In [23], it is proved that when transition ratés;_,; 1 (¢, «) are time-independent, the
stiffer these rates behave as a function of agie lower is the Malthus exponekt More
precisely, if the cycle phase duration probability densityction (p.d.f.) K (z)e~ Jo K (&) d¢

—+oo

(which is indeed a p.d.f., oR . provided that/ K (&) d¢ = +00) is taken in a family
0

of laws with fixed mean: and varying variance?, then) is an increasing function of?.

In other words, the higher the incertitude on the phase urahe higher the growth ex-
ponent. This result is not completely original, and it cepends to the intuitive notion that
healthy cell populations are well synchronised with respecell cycle timing, passing
from one phase to the following one in good order, whereasaratells are more loosely
coordinated, resulting in a higher growth rate for a cane#ipopulation.



CELL POPULATION MODELS WITH DRUG TARGETS 11

This being settled, the question of a target for periodidrdiy physiological or phar-
macological inputs may be assessed in the McKendrick modlehther unexpected re-
sult proved in B6] (Theorem 2.1) is that when a time-periodjating control is exerted
only on death rates, then the Malthus exponeitt always higher than its counterpart for
an uncontrolled time-stationary model designed with theesime-averaged coefficients.
Otherwise said, periodic gating control exerted on dea#sranhances proliferation. But
if the same periodic control is exerted only on transitiolesathen no clear hierarchy can
be found between the periodic and the stationesy33, 34, 35]. This theoretical finding,
combined with the fact that protein p53 is known to exhibitipéic oscillations in case
of DNA damage exerted by a cytotoxic dru¢p{] 53], see also a recent review and new
model for p53 oscillations in38]), together with the fact that cytotoxic drugs themselves
often show variations in their concentrations that are utitedependence of periodically
controlled enzymes of the cell metabolism, induces to amrsas more likely an action of
cytotoxic drugs on cell cycle phase transition rates ratfan only directly on death rates.

In [23], an optimisation problem is considered, consisting inimising the exponen-
tial growth rate\- of a population of tumour cells submitted to a phase-spegytiatoxic
therapy under a toxicity constraint on the population ofitgecells. This constraint is also
represented by an exponential grovith to be maintained over a (tunable) constant value
A. The phase-specific chronotherapy results in the blockirgglts at theG /M check-
point, and subsequent cell death when too much time has peahia such blocked status,
for cells that are committed in the division cycle. As menéd earlier, in the absence of
physiological knowledge on how cell death occurs after cgtle arrest, subsequent cell
death is coarsely represented in numeric simulationg3pdy a maximum number of runs
of the division cycle, i.e., a limited number of loops on agéor transition rates. It re-
sults after this number is passed in a null transition ¥#gte; ., (¢, a) and null boundary

term/ K 15i(t, &) ni—1(t, &) d€ for all phases. The model in a 2-phase form has
£>0

been partly (i.e., without drug control) identified on bigical data (an NIH-3T3 cell line,
mouse embryonic fibroblasts in culture) by using the FUCQIrfiscence method4, 75].
Only simulations have been performed, and the model hasdrdgmartly identified, but
optimal control strategies for a periodic drug delivery preposed in23] , that success-
fully solve the problem, decreasing the cancer growth rdidewnaintaining the healthy
cell population growth rate over a given threshold.

Other works model cytostatic, rather than cytotoxic, €ffdzy an action on the age-
ing velocity v in Egq. (4). Thus, Hinowet al. [47] investigated the effect of lapatinib
(a cytostatic drug that is known to become cytotoxic at higbes) on proliferating and
non-proliferating cells. To be consistent with experinatigiata the authors considered a
slowing (cytostatic) effect of the drug on the velocity ofeatg in the proliferative cell
population inG; (i.e., with the notations of Eq.4J), they tookv(a) = 1 — §(a, t) where
the functiond also depended on the drug dose), and simultaneously, athigidoses, a
cytotoxic effect (death term) on the two cell populations.

Another way to represent cell population growth control Bpstatics is to send (and to
maintain) proliferating cells in a quiescent phase wheeg tho not proliferate. Gabrieit
al. [43] investigated the effect of erlotinib, another cytostaliag, on cancer cells, using an
age-structured model that includes a proliferative cortmpant and a quiescent one. They
assumed that the rate of proliferating cells that becomesgeint is an increasing function
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of the cytostatic drug dose. This simple linear McKendriabdel is written as

O ptta) 4 Zoplt,a) + e+ K@)} plt) =0

ot
p(t,x =0)=2(1-f) §>OK(£) p(t, &) d§
pt,x=0)=po(z) , (6)

%Q(t) ) K(8) p(t,§) d€ —vQ(t) ,
£>0
Q(0) = Qo ,

and the drug target here 5 rate of escape at mitosis towards the siding pl@aség to

be enhanced by a cytostatic drug. The model was identified@human Non Small Cell
Lung Cancer (NSCLC) cell line PC-9 submitted to erlotinib.

3.3.2. Extension to delay differential modelBollowing a 30 year-old tradition of mod-
els for haematopoiesis that date back38][ using a distinction between proliferating and
nonproliferating (i.e., quiescent) cell compartmentsimylet al. designed a model with
continuous age and discrete maturity structude [In its delay-differential version (ob-
tained by integration of an age-structured PDE model aldragacteristics42, 72]), the
model describes at each maturation statiee dynamics of both quiescent cells with den-
sity 2; and proliferating cellg;. It may be written as

ii(t) = —(Si.%'i(t) — wi(t) + 2(1 — Kz) /Ti e*'Yiafi(a)wi(t — a) da
710
+ 2Ki—1/ e fii(a)wi1(t —a) da ,  (7)
0

Git) = v ui(t) + wi(t) — /0 e f (@it — ) da |

where K;, with Ky = 0 (i = 0 representing the stem cell state), is the rate of cells that
differentiate to the next maturation stage+ 1), v; and; are death rates at stagen
the proliferating and quiescent states respectively;) := 3;(x;(t))x;(t), whereg; is

a nonlinear feedback (“reintroduction function”, oftelkéa as a decreasing Hill function
with limit zero at infinity, following [5]) from the ith quiescent to théth proliferating
phase. The introduction of the discrete maturity state=(1... ) allows to represent
the action of redifferentiating agents such as ATRA on tHeedintiation ratess;, that

in AML are zero at some stage e.g., at the promyelocyte stage in APL. In this setting,
one can also represent the action of cytotoxic drugs by aease in the death rates

in the proliferating phase, and of cytostatic drugs by a e@se in the feedback functions
5i, considered here as representing (formerly in the boun@anys in the original PDE)
the dependence on growth factor receptors that is negatimplacted by cytostatic drugs.
Stability analyses were performed and theoretical druggtar involving both proliferation
and differentiation, were proposed @rfunctions and rate& (see P, 67, 68 and refer-
ences therein). They involve an inequality on model pararsett a non trivial equiibrium
point, the existence of which is proven under conditionsir].[ Such stability conditions
can be guidelines in the future to use such models as a riitorahe delivery of drugs in
combined therapies mixing cytotoxic (acting on death ragtasdd), cytostatic (acting on
the feedback functioft) and redifferentiating (acting on differentiation rdt§ molecules,
aiming at re-establishing a lost equilibrium. For the tinedénlg, the focus in modelling has
been set on combinations between cytotoxics and cytostathas is in particular the case
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of AML with a mutation of the FIt-3 growth factor receptor {8ITD gene duplication, re-
sulting in an abnormal tyrosine kinase, that does not neatbitmal ligand to be activated),
which is present in about 30% of all AMLs, generally resugtin poor prognosis49).

3.3.3. Other physiologically structured transport equatiordhysiologically structured mod-
els have also been used to study the dynamics of metastdtigopilation. Instead of
considering age of cells in the cell cycle as the main strectariable, these models con-
sider the size of the metastatic coloyi] 21, 48]. Thus, denoting by: the tumour size,
Iwataet al. [48] assumed that a primary tumour was generated from a sintjlatdeme

t = 0, grew at ratey(z:) and emitted at ratg(z) metastatic single cells that developed as
the primary tumour. The growth raté¢z) was assumed to follow a Gompertz model:

v(x) = axlog (g) (8)

and the evolution of the colony size distribution of metastumours with cell number.

at timet was assumed to be governed by a McKendrick model (cf Bj- $o this model
is a combination of a Gompertz model and of an age-structomed In [L1] Barbolosiet
al. proposed a mathematical analysis of this model. Later, 8ayzt al. [21] introduced

in this model the effect of docetaxel, & phase-specific cytotoxic drug, using a PK-PD
three-compartmental model and an interface model to déterthe drug exposure. The
effect of this drug was modeled via a death term in the growthaity. In the same work,
they also analysed the effect of several infusion schediflas anti-angiogenic agent. To
do this, they considered an additional equation (ODE) fetittne evolution of the carrying
capacity, just as done by Hahnfetttal. in [46] (cf Section3.2), in which they introduced
a death term as a function of the concentration in the argfiegyenic agent. These authors
accounted for the experimentally observed phenomenon tdstatic acceleration after
anti-angiogenic therapy (using endostatin) and analyisednfluence of several infusion
schedules on this phenomenon. Finally, they compared feetdfoth on the primary
tumour and on the number of metastases of several infustwenses of combination of
etoposide (cytotoxic drug) and bevacizumab (anti-angiagagent).

Transitions between the phases of the cell cycle are acauieghy changes in DNA
content, from 2n to 4n DNA content during phase, so that models structured by DNA
content have also been developed. Batsa. [14] proposed a model for the four phases
of the cell cycle in which obviously only cells i§ phase undergo DNA changes. To
account for DNA variability induced by flow cytometry, thethars also introduced in the
equation on the density of cells Fiphase with DNA content at timet a dispersion term.
This model enabled them to compare calculated flow cytonpetifjles with experimental
ones. Later, Basset al. [15, 16] extended this model by adding an apoptosis phase that
could be reached via transition from the mitotic phase. Tuibas also introduced an age
structure in thel/ phase of the cell cycle, so that this phase is in this modey Thelve
structured in both age and DNA content. This extended maouhled them to analyse
the effects on tumour cell lines of paclitaxel, &hphase-specific anti-cancer agent known
to induce mitotic cell cycle arrest and cell death via a titaors from the mitotic phase
to the apoptotic one blocks mitotic spindle dissociatidnst preventing cytokinesis, the
last part of mitotic phase, during which a dividing cell alty becomes two). The model
parameters were determined by fitting them to experimentéil@s obtained by cytometry.

Other models consider several physiological variabletrastsire variables. Thus Bekkal
Brikci et al. [19, 20] developed an age-structured model that was also struthyehe
amount of the complex cyclin D/(Cdk4 or 6), known to be the maigulator of the cell
cycle at the restriction point R in lat@; phase, an age after which cells are irreversibly
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committed to proceed towards divisioB(J. The model considers a global proliferative
phase that is age- and cyclin D/(Cdk4 or 6)-structured andesgent one that is not phys-
iologically structured. The exchanges of cells betweerptiodiferative compartment and
the quiescent one depend on Hill functions of the total agtiidation, as in Mackey’s mod-
els [65]. Although the inclusion of drug control has been #t]] postponed to ‘the future’,
the model is adapted to represent targets for cytostatibedevel of these exchanges and
for cytotoxics either on death rates or on boundary termshfeproliferating population.
More recently, Borgest al. [25, 26] considered the age-independent version of this model,
i.e., a cyclin-structured model, still without drug targjet

3.3.4. Models integrating space and age-structufes mentioned earlier, the most rele-
vant level to describe proliferation and its control by dsug clearly the cell population
level, but the level of local surrounding cell populationsshalso be considered, in par-
ticular to account for the interactions between the tumawr igs environment. Bresoét
al. [27] developed a tumour growth model in which cell cycle regolatalso depends
on the tumour environment, typically cell density and oxydmvel. The authors consid-
ered two proliferative phasdd andP;, representing respectively; before the restriction
point [60], and the rest of the cell cycle (remainder®f and.S/ G, /M), two proliferative
phases to which a quiescent phéses added. They assumed that only proliferative phases
were age-structured and they added an advection term tolrnfmpassive transport of
tumour cells induced by cell division:

orP, 0P

— t o TV (ve ) =0,

%—‘r%—FV'(VPgPQ):O )

2 1V (vaQ) = (1~ NP1 = ) - {%T@(t) O
Pi(a=0)=2 Pya=amaz.p,) ,

Py(a=0) = fPi(a = amaz,p,) + {%} ' Q™)

wherea represents the age of cells in each proliferative phage, vp,, vq the veloc-
ities in the phase®;, P, ) respectivelya,,q., p, aNda.q.,p, the maximal age a cell
can spend inP; and P, respectively[-]™ the positive part. The functiofi is a boolean
function that depends on time and space, equal to one if ith@@ overpopulation and no
hypoxia at space location and timet, equal to zero else. Assuming that the three veloc-
ities were equal and that the total number of tumour and Imeaklls was constant gave
an additional equation to compute the velocity. Bresthl. [27] analysed the influence
on tumour growth of a membrane surrounding this tumour. Réital. [73] considered a
simplified version of this model as they did not account fer ¢ixygen but they considered
the action of matrix metalloproteinases (MMPs). MMPs areyemes secreted by tumour
cells, known to digest the extracellular matrix so as tolifaté local invasion by tumour
cells. Using this model, Ribbat al. analysed the effect of MMP inhibitors (MMPIS),
anti-cancer agents known to reduce cancer growth in anirekts but whose clinical de-
velopment was not as successful as expected (they werexio). tm this model, MMPIs
were assumed to promote the passage of proliferative cétighe quiescent phase at the
restriction point. They assessed the therapeutic beneMMPIs via a parameter that



CELL POPULATION MODELS WITH DRUG TARGETS 15

compared the proportion of quiescent cells in a populatidimstted to treatment with
the one in the same population without treatment. Latety Bt al. [24], based on the
model developed by Bresat al. [27], investigated the effects on tumour growth of an
anti-angiogenic therapy. They coupled, via oxygen conma#ion, the model developed by
Breschet al. with a continuous PDE model of angiogenesis that accounthé&density
of endothelial cells (ECs, cells that constitute blood eégs oxygen and some pro- and
anti-angiogenic substances. The authors investigateeftéet of an anti-VEGF therapy
(VEGF being the main pro-angiogenic factor) that consigtedcreasing the local concen-
tration of endostatin, an anti-angiogenic factor that cetap with VEGF for binding to EC
receptors. This therapy was modelled through an endostegirsecretion since endostatin
was known to be endogenously secreted by tumour cells. Trintigs model, endostatin is
assumed to directly target VEGF binding to ECs since an asg®f endostatin concentra-
tion induces a decrease of the VEGF binding rate to ECs, whkiths to lower activation
of ECs by VEGHF, i.e., lower proliferation and migration atef ECs and even EC death
for high endostatin concentrations (more details can badan [24] Sections 3 and 4).
Such therapy can lead to regression of the vascular netwatktaus induce hypoxia or
even death of tumour cells. Several infusion schedules ateidied and their efficacies
on the tumour volume were compared. The authors highligthte@xistence of a critical
local concentration of endostatin below which it was mofieatious on tumour growth to
increase the rate of oversecretion of endostatin instead diiration and above which the
opposite was true.

3.4. Equations for adaptive dynamics models: cell Darwinism.The idea that cancer is
an evolutionary disease is not new, but strangely enoughmaay articles on this theme,
let alone on mathematical models on Darwinism in cancepogllations, have been pub-
lished so far, according to a recent revie®]. [The genetic paradigm, i.e., cancer due to a
single “renegade” mutated cell developing in a malignamte| is most often considered as
the only explanation of evolution towards cancer, withditittention brought so far to (pos-
sibly reversible) environmental effects exerted at thell@f cell populations, which may
partly explain the present situation. In the perspectiveadf Darwinism, which always
concerns populations of individual cells, consideringgdaffects as part of an environ-
mental pressure resulting in selection and possibly speriéemergence of genetically
resistant species) is a rather new idea in mathematical limad® account for evolution
towards drug resistance in a cancer cell population. Thissren equations with a con-
tinuous structure variable representing a resistant gipadx = 0, no resistance; = 1,
completely resistant population), which may be reverdiibiesistance is due to an epige-
netic rather than genetic phenomenon) or not. In modelseofythe presented below (Eq.
(10)), evolution towards acquired drug resistance, i.e., tnebbpment of a subpopulation
bearing a resistant phenotype, closerte- 1, may be the result of mutations, but it may
also be the result of exchanges with the environment, withmutations, thus representing
in the latter case possibly reversible acquired resistfive

mutations and renewal

gnet) = o ([ Mty (o)
@)
(s a0 ne - a@u@nn, G0

) . ) effect of cytotoxic therapies
growth with cytostatic therapies and death y P
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HereM is a mutation kernel, with radiwspriori larger in the cancer than in the healthy cell
population g is the proportion of cells that undergo mutations at mitceml, introducing
subscriptd? andC for healthy and cancer cellsy andn, competition in the environment
is represented by variabldg and - that may be only fixed linear combinations of the

total healthy and cancer cell populatioy{s ny(z,t) de and no(x,t) de, but may
x>0 x>0
also be variables in interaction with the environment, evith cytokines.

3.4.1. Mutations only. The main interest of including a drug target on mutationg&eo
represent genomic instability in cancer cells by a highebpbility of mutation under the
influence of a drug. This is presented in the frame of modehtqgu (LO) whené # 0.
Nevertheless, at least in this setting, mutations do nahdeglay the main part in the es-
tablishment of a resistant phenotype, yielding only difftasaround a Dira@ distribution
for the dominant phenotype. This rules out the possibilityepresenting in this model
acquired drug resistances only due to mutations of the tiaageor instance imatinib re-
sistance, for which mutations of the target, BCR-Abl pnotbiave been evidenced. Likely,
other versions, focusing on mutations, of the same modeuldibe used in this case.

3.4.2. Competition for resources and exchanges with the enviratnie this type of model,

it is easy to obtain evolution towards resistance withoutations (i.e., setting = 0). In
fact, the theorems demonstrated 5[ (Theorems 3.1, 3.2, 3.3) state asymptotic conver-
gence towards a single Dirac mass concentrated around aeuwidue of the phenotypic
trait, and these theorems hold with or without mutationse fbalthy cell population case

is characterised by a homeostatic factor of the f% before the proliferation term
r(x,y), wherel (t) represents the total (healthy and cancer) cell populapi@venting the
healthy cell population from exploding, whereas in the esimmpulation case, no such
homeostasis has been put in the evolution equation. Thedimsan p4] show that under

a cytotoxic therapy, the convergence occurs towards aesibghc mass (monomorphism
of the fittest population) , concentrated aroung 0 in the healthy case, and concentrated
around a fittest trait~ # 0, i.e., a resistant phenotype, in the cancer case.

3.4.3. Combining cytotoxic and cytostatic effecislith settings close to those shown in
Eq. (10), neglecting mutations, but representing the action of different drugsand a
2-dimensional resistance phenotypey), one corresponding to a cytostatic drug that acts
on proliferation, and another one corresponding to a cyiotdrug that acts on a death
term, it is possible to obtain numerically dimorphism of mgyotic traits in the cancer cell
population, one fittest subpopulation concentrated ar¢uri) and the other aroun@, 1)
(Fig. 2), i.e., asymptotic coexistence of two different subpopaies, one resistant to the
cytostatic, the other resistant to the cytotoxic drug. THug@y model for tumour cells runs

dun(t, z,y) = | —\=rY) S = de. () = o)) nit o). @D

1+ pa(@, y)ea(t
wherec; andc; represent the effects of a cytotoxic and of a cytostatic dregpectively,
andI(t) is again the total (weighted) population of all cells, hepland tumour, the term
d(x,y) thus representing competition for space and nutrientsewhi and i represent
the targets for cytotoxic and cytostatic drugs, respelstive

Simulation results, with particular choices for the tarfyetctions (not shown), taking
into account the fact that developing resistance hindesbf@ration capacities, and with
initial conditions centered around mean valdesy) = (0.5,0.5) show the possibility
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of evolution towards a dimorphic cell population in cancells; whereas the healthy cell

population, with a homeostatic factor multiplying its pfetation term (see above), on the
contrary evolves towards total sensitivity, as illustdate Fig.1 and?2.
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FIGURE 1. Healthy cells. Startingt£€0, left) from an average 2d phe-
notype [z,y) = (0.5,0.5)], evolution towards total sensitivity£80,
right): no resistance. Model, simulation and figure by Toremlaorenzi.
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FIGURE 2. Cancer cells. Starting=0, left) from the same average 2d
phenotype (x, y) = (0.5, 0.5)], evolution towards two separate resistant
clones (=80, right), one resistant to the cytotoxic drug, the othes to
the cytostatic drug. Model, simulation and figure by Tommlasenzi.
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It is also possible, as numerically shown 8], Fig. 6.6, to obtain different asymptotic
behaviours, in particular evolution towards resistancexpinction of the cancer cell pop-
ulation while keeping healthy cells alive, only by varyimgnstant doses of the two drugs.
This may be considered as a step towards drug delivery agaitron with respect to the
question of avoiding drug resistance, by combining cytimtexd cytostatic drugs.

Note that one can also (work underway) represent simulizsigspace and an evolu-
tionary phenotype in PDE or integro-differential models@mting for the evolution of
tumour spheroids submitted to an externally deliveredayer In this case, a 1d radial
spatial variable is a relevant structure variable that nbestonsidered together with the
cell phenotype responsible for drug resistance.

4. Conclusion. We have reviewed in this article some old and more recent fe@d@ro-
liferating cell population dynamics designed to theomdtcsolve problems of therapeutic
optimisation encountered in the clinic of cancers, alwaysstdering them from the point
of view of drug target representation. Polychemotheramsiglly the rule in oncology -
with a few known exceptions such as imatinib in chronic mgelwous leukaemia -, so that
designing a rationale to optimally combine treatmentsngctin different functional tar-
gets in the physiological mechanisms that control prddifien in cell populations should
eventually be a help in the clinic. This involves taking imtocount in multiscale mathe-
matical models the moving physiological knowledge of theeehanisms, of how old and
new drugs can modify them, and of how they can be investigatéue different levels of
observation: single cell, cell population, and whole bosglyaollection of interacting cell
populations. We stress that this program implies frequenstactions, going far beyond an
attitude of sort of ‘scientific service providers’, betweeams of mathematicians, biolo-
gists and clinicians, with mutual efforts to understand leagh discipline can benefit of
each others’ representations and findings. We hope thataiswv of models and results,
seen from the point of view of drug targets, can be helpfuhis &im.
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