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ABSTRACT. We review the main types of mathematical models that haee besigned
to represent and predict the evolution of a cell populatinden the action of anti-cancer
drugs that are in use in the clinic, with effects on healthgt eancer tissue growth, which
from a cell functional point of view are classically dividegtween “proliferation, death
and differentiation”. We focus here on the choices of thegdiargets in these models,
aiming at showing that they must be linked in each case toengiverapeutic application.
We recall some analytical results that have been obtainediing models of proliferation
in cell populations with control in recent years. We presmthe simulations performed
when no theoretical result is available and we state some jpdlems. In view of clinical
applications, we propose possible ways to design optinebfieutic strategies by using
combinations of drugs, cytotoxic, cytostatic, or rediffetiating agents, depending on the
type of cancer considered, acting on different targetseatetel of cell populations.

1. Introduction. Mathematical models have been called for some time alrepdypicer
biologists and clinical oncologists to help improve theazftly of anti-cancer treatments.
Indeed, understanding better the evolution of cancers amdth treat them in an opti-
mal way is still an open question, that might benefit from dbations of mathematics to
represent cell proliferation control by drugs.

Knowing that most anti-cancer treatments use combinatidndrugs with different
molecular targets and different functional effects on ifecdting cell populations, we ad-
vocate considering these effects not just as on inhibitioa global ‘birth minus death’
rate, but rather with a refined point of view, considering tiple targets, representing dif-
ferential drug effects on birth, death or differentiatibg,different control targets in math-
ematical models. The closer these model representatien® actual clinical questions,
the better.

The main two pitfalls of clinical oncology, that limit incasing drug doses, are un-
wanted toxic side effects on healthy cell populations armioence of resistance to drugs
in cancer cell populations. According to the medical questiat stake, one may consider
different models to represent the underlying biologicatpimena that are the object of
control by drugs. Spatial representations may be partigfbklin particular when tumour
neo-angiogenesis and anti-angiogenic drugs are presemeWér, in as much as drug
effects are the tools of control considered here, and simeg act mostly by modifying
the physiology of cells, physiologically structured magdshould always be used, with or
without added spatial structure. In particular, focus Ww#l set here on models structured
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according to age in the cell cycle, or according to an evoh#ry phenotype if evolution
towards drug resistance is the main issue.

The paper is organised in the following way: firstly, we revithe main difficulties
inherent to cell population modelling for drug delivery ¢anh, and categories of drugs
used in the clinic, from a pharmacological point of view. \WWern present in an abstract
way, but with concrete instances, how anti-cancer drugetangay actually be represented
in cell proliferation dynamic models. Finally, we briefljwiew the main types of models
lately used in the scientific literature on drug control ialiey and cancer cell populations,
sketching some results recently obtained, either thegreniints to possible future results
coming from mere simulations, when proper mathematicdyara still seem out of reach.

2. Anticancer drug effects and their representation in mathenatical models. The types
of models used to predict cell population behaviour undetrobby drugs range from cel-
lular automata to ordinary and partial differential eqoasi (ODEs and PDES), PDEs being
amenable to transformation into delay differential equai(DDES) by integration of PDEs
along characteristicstp, 85]. Biological variability (physiological differences heeen
cells) is easily taken into account by stochastic models, sorcalled individual-based
models (IBMs) are amenable to include any kind of rule ons puthe individual agents.
These models are hardly amenable to mathematical analygasticular to the study of
their asymptotics, given the intrinsically finite numbercedls they take into account, but
their simulation may give hints to possible properties efithehaviour, that need to be fur-
ther explored by mathematical analysi§]. As regards physiologically structured PDEs,
their structure variables (e.g., age in cell cycle modd&taely represent biological vari-
abilities considered as the most relevant for the questistaie, and their asymptotics can
be studied when the model is tractable, sometimes resitiltitticorems - which is hardly
possible with agent-based models.

2.1. A model, what for? Guidelines to design a model for an applicdon. It should
be stressed that designing cell population models undeadtien of drugs puts from the
beginning modellers in a perspective completely diffefemin the one used to represent
the “natural history” of tumour growth under the influencenodéchanical or physiological
factors, but without built-in drug control. A model for acdincer therapeutics should be
thought of toward a precise aim, with the idea to control byvammeans the biological
system under study (the growth of a cell population, or ofedént cell populations), or
to analyse a precise aspect of it. Moreover, given the caxitplef biological phenomena
underlying tissue growth, i.e., proliferation of histologlly homogeneous cell populations
(notwithstanding some biological variability betweeniindual cells), choosing well de-
lineated questions of therapeutics arising in the clinicarfcers as a source of inspiration
helps designing practical models adapted to represenalacaatments, with the aim to
answer questions (about prediction of unwanted toxic sftexts, drug resistance, and
optimal combinations of drugs) asked by clinicians.

Optimisation of drug delivery is always a concern for cliaits. This for mathemati-
cians implies defining an objective function, usually thentner or density of cancer cells
to be minimised, under constraints that may be limitatioriosdcity to healthy cells or
avoidance of the thriving of a drug-resistant subpoputaiiocancer cells, or both. On-
cologists seldom use only one drug, but rather, combinatidrdrugs acting on different
molecular targets with the aim to potentiate their effe¢teane wants to accurately rep-
resent and study such combinations, it is necessary tordesiglels with built-in specific
targets for the drugs in usag).
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Anticancer drugs are most often known for theipleculareffects, i.e., effects that
involve blockade or re-establishment of an intracelluignalling pathway, for instance
targeting a specific enzyme or a chain of molecular reactspaging with a membrane
or cytosol receptor. Nevertheless, such effects are nayaspecific, and even when a
drug has been designed to block a given pathway by confasmetanalysis of known
molecules, unexpected other effects may be unravelled églipical and clinical trials,
and these effects may be deleterious on other pathways tre¢ocells. Furthermore, anti-
cancer drugs show their therapeutic effects in a measunabl@nly at the cell population
level by actuatell functionaleffects, i.e., on cell death, birth or differentiation.

This points out the multiscale nature of drug delivery peohé: drugs are given at the
whole body level (collection of communicating cell popidat), exert their effects at the
single cell level, but these effects, as far proliferat®noncerned, are actually measurable
at the cell population level only3B]. The most relevant level to describe proliferation
and its control by drugs is clearly the cell population levelt the single cell (molecular,
at which drugs chemically act) and whole body (at which draigdelivered) levels must
also be considered, at least if one aims at designing moolefgédctical applications, i.e.,
for therapeutic optimisation. Drug effects must be diffeér@ cancer and in healthy cell
populations if a therapeutic benefit is searched for, whiobsses the fact that identical
functional targets should be represented as behavingddiffly in cancer and in healthy
tissues.

Note that we will consider here onfyroliferating cell populations. In an extended rep-
resentation including applications to fast invading tumso.g., gliomas) and their treat-
ments, a fourth fate for tumours beyond cell proliferatideath and differentiation that
should be considered is cell motion, which (“go or grow” alive) is, in a given time
lapse, incompatible with proliferatio3].

2.2. A gap between molecular and functional targets.Anticancer drugs that are de-
signed for their effects at the molecular level are mostrokeown to block a specific
intracellular signalling pathway (a chain of molecularatans) that is assumed to end up
by being involved in “apoptosis, proliferation, differéton” all together, with seldom
further precisions, because of the entanglement of thewsrinolecular pathways partic-
ipating in these physiological cell functions. Moleculessdjned at the single cell level
thus need to be further studied at upper levels, by cell @djoul dynamic studies in cell
cultures and in experimental animal models, to investigai differential way all these
physiological functions, plus drug resistance in diseasdipopulations.

Otherwise said, in the same way as silencing a gene may himasebén other pheno-
types than the targeted one, blocking a molecular pathwaysélalom specific effects on
a functional target in a cell population, hence the inteoéstvestigating combinations of
drugs by their functional more than by their molecular effeand at the cell population
rather than at the molecular level, from an experimentaitoafiview in cell cultures. Such
process obviously ought to be completed by further studiesguvhole body animal exper-
iments, to unravel possible unexpected toxic side effattstioer cell populations, possibly
resulting in prohibitive toxicities to healthy tissues.

The gap to bridge between these three levels of observetinglé¢ cell, cell popula-
tion, whole body) of this multiscale perspective is an mgic difficulty for which no mir-
acle solution is known in general. Specific ways to integthtan depend on the type
of model used at the cell population level, which is centnapioliferation. A common
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suggestion38, 39 is to use compartmental ODEs for pharmacology (pharmaetids-
pharmacodynamics, PK-PD for short) of anti-cancer drugsctured PDEs for cell pop-
ulations in each compartment, and a simultaneous managevhéme cell populations
attacked by drugs by optimisation algorithms at the wholdytevel.

2.3. Drugs used in cancer treatments considered at the single ¢dével. Tissue re-
newal, which at the cell population level is made of prokon, cell death and differen-
tiation, relies on physiological phenomena that are bdi#lementary molecular reaction
chains, and it is on these cell biochemical reactions thcamcer drugs act. In particular,
proliferation of cell populations relies at the single dellel on the cell division cycleq2.

2.3.1. DNA damaging agentsAlso known as alkylating agents, these drugs act by directly
binding to the DNA and creating damages in it, such as doutded breaks, that are hard
to repair by the cell. They are in principle not cell cycle pbapecific. However, the fact
that DNA is less protected if phase, when it is duplicated, makes them more active in
this phase. Commonly used alkylating agents are for instamgplatin, oxaliplatin and
cyclophosphamide. DNA damaging agents are cytotoxic dfsegs below).

2.3.2. Cell cycle phase-specific agentS.phase-specific drugs block DNA replication ei-
ther by acting as substrate substitutes in metabolic mac{antimetabolites) or by inhibit-
ing enzymes of these metabolic reactions, or both. Such-&ledsouracil, a substitute for
normal uracil, that also acts by blocking the enzyme thylaidisynthase, and irinotecan,
that blocks topoisomerase I, an enzyme that is essentiBNA replication. M phase
specific drugs block mitosis either by destroying the mitspindle (spindle poisons, such
as vinca alkaloids, e.g., vincristine) or preventing itssdiciation, such as taxanes (e.g.,
docetaxel and taxotere). These drugs secondarily creatagks to the DNA (and thus are
cytotoxic) since it cannot be properly duplicatetighase-specific drugs) or they produce
cells that are unable to divide; in both cases, cells undaclatare short-lived due to cell
control mechanisms occurring at so-called checkpointsigéowCell death).

2.3.3. Molecular targeted therapiesAlthough in principle all drugs have molecular tar-
gets, that are defined as specifically as possible, thistlgckEsmominated category of drugs
was firstly restricted to chemicals shown to very specifjcadtestablish the normal func-
tioning of a molecular signalling pathway perturbed in am©ne of the first used molec-
ular targeted therapies was in 1986 all-transretinoic aciiTRA, a molecule that corrects
the normal granulocyte differentiation process blockeddnte promyelocytic leukaemia
(APL, also known as type 3 acute myeloblastic leukaemiahkeychimeric protein PML-
RAR«, ATRA destroying this proteing5]. The term ‘molecular targeted therapy’ now
includes mostly monoclonal antibodies (associations ofcavth factor receptor antago-
nist with an antibody that is specific of the receptor, withaane usually ending in -mab)
and tyrosine kinase inhibitors (TKIs, that directly bloalogth factor receptors in kinases
at a tyrosine site, with a name usually ending in -nib). Thstl@own success story in
molecular targeted therapies is that of imatinib mesyliat, has completely transformed
the prognosis of chronic myelogenous leukaemia (CML7.[ ATRA and imatinib actu-
ally cure most of APL (over 80%, by using it in combination kvé cytotoxic drug) and
CML (over 95%, in monotherapy) patients, respectivelyeljkbecause they are directed
against well identified chimeric (abnormal) proteins, PRAR« and BCR-AbI, respec-
tively. However, in cases where other protein targets arenabbut only abnormally over-
expressed, molecular targeted therapies are not so gffeatid sometimes highly toxic.
Other recent molecular targeted therapies include histeaeetylase (HDAC) inhibitors,
drugs that block the effects of HDACs, electively in canaglts; since healthy cells seem
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to be more protected against their effects. Since thesensemare involved in most cell
processes (proliferation, cell differentiation and dgatiey may be molecule-specific, but
not functionally specific, as are for instance imatinib ooliferation or ATRA on differen-
tiation; however, tentative functional distinctions betm them have been proposé&@?.
Molecular targeted therapies are usually cytostatic (sd@A) but may become cytotoxic
at high doses.

2.4. Drug effects and targets at the cell population levelindeed, since the aimed-at and
clinically measurable effects of drugs are functional (ooliferation, cell differentiation
or death) at the cell population level, it is at least as #g&ng to consider such drug effects
as acting on functional terms in model equations represgtigsue growth. As mentioned
above, bridging the gap between the molecular and fundteffects of anti-cancer drugs
remains in general an open question. Another issue in thesunement of drug effects
in cell populations comes from technological limitationgedo the tools used to identify
model parameters, that seldom can be all highlighted, srtlesmodel is very simplified.
Such identification relies in particular on flow cytometeramgrementsd6, 97] and, more
recently, on fluorescence-based methods investigatihgygekll a whole populationd0,
89, 90].

2.4.1. Cytotoxics and cytostatic€ytotoxic drugs are those that are aimed at killing cells
- usually killing not only cancer cells -, sending them to tilesither by directly launching
apoptosis (i.e., ‘clean’ cell death), or blocking them inimaversible phase of the division
cycle where long-term survival is impossible. On the camtreytostatic drugs may kill not
even a single cell, being not directed at creating damagiéeteells, but rather slow down
the growth of the cell population as a whole, which may be grpentally evidenced by a
lengthening of the cell population doubling time. It is knrohowever that, depending on
the drug dose, various cytostatics may become cytotoxitlais has been represented in
a model dealing with lapatinitbf].

2.4.2. Cell death. A direct enhancement of death rates by drugs is the simplagtta/
represent the effect of cytotoxics, and it is the only oneilabke in the simplest ODE
models where &birth minus death” term is the only possible target in the equations
(i.e., Z—? = r(n).n — d.n). Although apoptosis pathways, involving at the molecidsel
members of the Bcl2 family, have been explored with the airfirtd targets for drugs
that would be specific of apoptosis launching, it does notnstieat specific proapoptotic
drugs are already routinely available in the clinic. Howevfeone wants to oppose drug
effects that are clearly cytotoxic to others that are onlpstatic, it is licit, provided that
the model allows separate identifiability of cytotoxic andostatic effects, to represent
cytotoxic effects on death rates, as opposed to cytostaéis on proliferation rates.

In age-structured models of the cell division cycle, whezk ©ycle phases are distinct,
separated by transition rates between them, it is alsolgesginowing that these transi-
tions are under the control of protein p53 - “the guardiarhefgenome” -, itself triggered
by DNA damage, to represent cytotoxic effects, rather thiaectly on death rates, by
p53-mediated blockade of the cell cycle at these transit{eo-called checkpoints, mainly
betweenG; andS, and betweeitz, and M phases). We allude here at McKendrick-like
PDE models for the density; (¢, ) > 0 of cells with ager in cell cycle phaseé=1,...,T
at timet, in which inputs of drug may be considered as impacting deathsd, (¢, z) in
phases or boundary terms, p53-controlled transition thtes 1 (¢, =) between phases in
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transport equations for cell division cycle phases

0

Eni(t, x) + %{vi(x)ni(t, )b+ {di(t,x) + Kisip1(t, ) ni(t,2) =0 (1)

with boundary terms;(t,z = 0) = / Ki15i(t, &) ni—1(t, &) d€. (See below Eq.5)
£20

for a more complete description.)

But then one would have to describe in equations the actgakseing of physiological
mechanisms by which, as classically stated in biology taksrp53 arrests the cell cycle
and launches DNA repair or apoptosis], subsequently relating by complementary equa-
tions thed; to the K;_,; 1, i.e., how should cell death launch be represented whes cell
have spent “too much time” blocked at checkpoints? This &sé that to our knowledge
has not been done thus far, essentially because of lackiygjgitgical knowledge on the
timing in this sequence of events. Likely, cell energetinsiderations (e.g., on ATP con-
sumption) could be helpful. Nevertheless, cell death atklp@ints can be mimicked in a
coarse way in numeric simulations by imposing an arbitraaximum number of runs of
the division cycle for a given cell until it passes to next gha

Furthermore, enzymatic repair mechanisms (nucleotidisiexcrepair, NER, after dam-
age to the DNA) are important to consider since resistanaatiecancer drugs may be due
to their over-expression (and it is also the only way to eixplasistance to radiotherapy).
Thus they should also be included in a model of control ofife@tion to complete the
representation of this p53-related missing link betweeRidmage induced by cytotoxic
drugs and its consequences on death rates at the cell popuéatel. This also remains to
be done, to our knowledge.

2.4.3. Proliferation terms: birth rate or ageing speedtffects of cytostatic drugs, that
slow down proliferation without destroying cells, may benesented in simple models by
a decrease in a multiplicative growth factor affecting te# population variable, e.g., by
introducing a drug effecft in an equation of the form

dn  r(n).n

dt 1+ f(t)
which obviously does not distinguish them, in this simplaripfrom additive effects on
death rates. But they may be represented in different amémriways in models of the
cell division cycle, such as constituted of copies of the Mo#rick equation presented

above, and also below in a more detailed way, see Ey.by an inhibiting action on the
speedv; with which phase (mostly G; or GG2) is scrolled through, or by introducing an

—d.n, (2)

inhibiting factor before the boundary terr?é Kiit1(t, &) ni(t, &) dE, both ways to
>

£>0
mean a negative effect on the influence of growth factorsglvhsually is the result of the
action of cytostatic drugs.

2.4.4. Sending cells to quiescenc@nother way to represent the effect of cytostatic drugs
is to use age-structured models in which cell cycle phasesar necessarily detailed,
keeping only one proliferative phase, but introducing exaes of proliferating cells with

a quiescent phase in which cells do not grow. One may thugsept cytostatic effects
by a contrasted fate at mitosis, sending proliferatingsceglth densityp(¢, ) either back
into the division cycle, or to a storage sidiggrepresenting a quiescent phase, abifj, [
depending on the cytostatic drug-controlled factqsee below Eq.q)). Such a model is
still linear and thus amenable to asymptotic analysis bgstigating its first eigenvalue, or
Malthus exponentd5]. But it would be also possible to perform the same reprediemt
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of drug effects on exchanges between proliferation andsgeigce in non linear models in-
volving furthermore feedback from quiescence onto pradifiag cell populations, follow-
ing models for stem cell populations as proposed by Mackey delay-differential form
in 1978 [67], and later by many others, in particul&d 24, 46] in a PDE form with both
age and molecular structure, further studied with redadtiothe only molecular (cyclin
D) structure in B2, 33]. Itis also possible in these models to linearise the systesund
stationary points (zero or infinite total cell populatioa)terform asymptotic analyses.

2.4.5. Differentiation terms.The same kind of models, applied to haematopoietic cell pop-
ulations, for which cell differentiation is relatively wénown and in which it is completely
blocked at different maturation stages in acute myelollstid leukaemia (AML), in par-
ticular at the promyelocytic stage mentioned above abolt, ABs been studied by Adimy

et al. They proposed a model with continuous age and discrete ityastnucture [L], for
which a stability analysis was performed and stability dbads involving both prolif-
eration and differentiation, are giverd, 80]. In its delay-differential version (obtained
by integration in age along characteristid®,[859]), the model describes at each matura-
tion stage the dynamics of both quiescent and proliferating cellspddackey’s models
[49, 67], see belowB.3.2

2.4.6. Effects of anti-angiogenic drugs here are a lot of models dedicated to specifically
represent the action of these anticancer agents, that dachdirectly on the cancer cell
populations themselves, but on their vascular environnigrey will not be considered as
such here, but in as much as their effects on cell populatoa®y limiting their prolif-
eration, not by directly killing them, they may be considkes belonging to the class of
cytostatic drugs. The representation of their effects ddpen the prior choice of a model.
Angiogenic drugs have been considered in particular in OEets 7, 56] and in PDE
models, physiologically structured or n&1} 34, 50, 87, 88]. In these models, either they
act by decreasing the “carrying capacity” of the tumour,hmytchoke progression in the
cell cycle at the7, /S transition.

2.4.7. Other models.In a more abstract way, it is also possible to consider a vengral
model for the action of drugs on cell populations, withoutime molecular nor functional
targets, aiming at optimising the sequence of drug delitiergs, as proposed i3], such
models lying not exactly within the scope of this study, whaeals molecular and func-
tional targets for anticancer drugs in proliferating cedpplations, we limit ourselves to
only mention this possibility.

3. Short review of cell population models with targets for drugeffects. In this section,
we present a brief review of various types of models that h&esn designed to investigate
drug efficacy on cancer cell populations. A lot of work hasrbgerformed in this domain
since the end of the 20th century, and we do not claim here éxlhaustive, but only sketch
the scenery by choosing examples. More can be founddjj vhere the presentation is
focused on drug delivery optimisation, and in the synopi pnd in the references in
these articles. We focus here on the representation of drggts in these models.

3.1. Cellular Automata. A popular way among physicists, chemists and biologistsje r
resent the cell division cycle is to consider this cycle asta§prescribed biological rules
that govern cell evolution. In this way, cellular automatalele to describe individual cell
evolution within a cell population and to investigate drdficacy.

Alarcon et al. [5] used a cellular automaton model to represent tumour granven
vascular environment, opening the way to the possible sgmtation of anti-angiogenic
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therapies. Tumour growth at the vascular stage was furtbdresl by means of an ODE
model 6] and later on with the addition of a PDE modé] [see below).

Altinok and Goldbeter developed a cellular automaton ferdkll cycle B, 9, 10, 11].
Transition between two states of the automaton, that reptgshases of the cell cycle,
correspond to cell progression through, or exit from, thié @ele, and are assumed to
respect some prescribed rules. For instance each phase céltlcycle is assumed to be
characterised by a mean duration and a variability in ordeake into account inter-cell
variability that can appear within a population. This cllhautomaton was coupled with a
model of the circadian clock in order to investigate the tyta@ effects of time-scheduled
(delivered according to a periodic schedule) infusions-Bitibrouracil (5-FU) P, 10]. The
authors modelled the effects of 5-FU on the cell cycle byeasing the probability that
cells submitted to this drug while if phase exit from the cell cycle at the next /M
transition. Altinoket al. also investigated the effects of oxaliplatin time-scheduhera-
pies on cancer cellsl]l]. Contrary to 5-FU, oxaliplatin is an anti-cancer agent ikaot
phase-specific. Therefore the authors modelled the eftéaizaliplatin on the cell cycle
progression by increasing the probability for exposedsagfilexiting the cycle at the next
checkpoint (71 /S or G5 /M transitions).

3.2. Ordinary Differential Equations. The most popular models that formed the basis
of the development of models to investigate drug efficacypaimmarily the exponential

model (Z—? = An), the logistic % = An (1 — %) whereK is the maximum tumour

size, or “carrying capacity” of the environment), and thenthertz % =Anln|— ),
n

where agairk is the carrying capacity). A lot of studies on drug contr@ based on these

models [L6, 17, 37, 68, 69, 70, 73, 74, 75). To model the action of cytotoxic drugs, these
models integrate a cell loss term that depends on the druceotration and that can be

generically written as:

‘;_7; = \nln (g) — L(n,D) 3)

whereL : R? — R is a function, not necessarily linear, of the density ofsall and of

the drug concentratio®. The drug concentratioP is usually given as the solution of an
ODE that depends on the drug infusion rate and that can beasetive output of a more

or less complicated PK-PD model. For instance, Maidit] feveloped such a model with

a functionL linear inn and D to optimise chemotherapy schedules under constraints of
maximal tolerated doses. In a more mechanistic way, Basbaluod llliadis [L6] defined

the drug concentration thanks to a two-compartment modleo€hemotherapy PK.

These models consider only one cell population, whereas®thtegrate several kinds
of cell populations. Distinguishing between tumour celtldrealthy cell populations en-
ables to take into account possible side-effects of thérresat on the population of normal
cells [L7, 37, 73, 74]. For instance, in17] Basdevanet al. proposed two optimisation
problems. The first one consisted in determining the drugsioh scheme that would min-
imise the number of tumour cells while kipping the number edilthy cells above a given
threshold. The second one consisted in finding a quasigbierivug infusion scheme that
would maintain the tumour cell population at the lowest fasslevel while preserving
the healthy cell population. As tumour cell resistance candsponsible for the failure of
chemotherapy, Martiet al. [70] considered two tumour cell subpopulations: one sensitive
to treatment and the other one insensitive to treatmenty agsumed that sensitive tumour
cells could spontaneously become insensitive and that atherapy had a cytotoxic effect
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only on sensitive cells. In another woi&]], the same authors studied the effect of a combi-
nation of two chemotherapies and thus considered thresudgtiopulations, differentiating
cells being insensitive to one of the two chemotherapies both chemotherapies.

To design a more realistic model of tumour growth, in patécto study the effects
of anti-angiogenic agents on tumour growth, Hahnfeldal. [57] considered, in a Gom-
pertz model, the carrying capacify as a variable. The variations of this carrying ca-
pacity were given by an ODE integrating the spontaneoustuimur-induced and the
anti-angiogenic drug-induced vasculature loss. Morentgesome authors based them-
selves on this approach to study other kinds of variationth®carrying capacity and to
analyse the effect of anti-angiogenic therapies combiridtdakemotherapies or radiother-
apies 8, 63, 76, 77, 78]. For instance, in§3], Ledzewiczet al. analysed an optimisation
problem that consisted in minimising the final volume of a tumsubmitted to a combi-
nation of an anti-angiogenic and a cytotoxic anti-can@atment, under constraints on the
total amounts of the two drugs. This study enabled the astioquropose optimal infusion
schemes for such combination of anti-cancer agents.

Most anti-cancer agents are phase-specific, which meanththatarget only cells that
are in a specific phase of the cell division cycle. To analjigeeffect of such chemother-
apies on cancer cell populations, models that integrateotwoore compartments repre-
senting the phases or additions of the phases of the cek tyle been developed. The
simplest ones distinguish between cycling and non-cyd#lits and suppose that only cy-
cling cells are sensitive to chemotherapy through a death &1, 82, 100 101]. Other
more detailed models combine for instartge and.S phases in one compartment afig
and M in another one@l, 94], or consider the phase&s, and/orS in separate compart-
ments p, 83]. These models aim at accounting for the effects on candepapulations
of phase-specific chemotherapies, that can be cytotoxigtostatic. Alarcoret al. [6] for
instance established by a linear stability analysis thairanmal oxygen concentration is
necessary for the tumour to actually grow, instead of befabilised at a maximum size
level. Independently, Kozuslet al. [61] analysed the effects on cell cycle progression and
cell viability of several doses of curacin A by represeniisgffects on the transition rates
between phases; andS, and betweeri’s and M of the cell division cycle, and on cell
apoptosis rate, cells being distinguished between seasitid resistant cells. Panettizal.
[83] then completed this model by separating the ph&seand.S in order to investigate
the effects of 6-mercaptopurine, arphase-specific drug, on the dynamics of the cell cycle
in populations of cells that were more or less resistant éottbatment. Swiernia&t al.
[94, 95 distinguished betwee6,, G1, andS/G>/M to analyse the effects of a cytotoxic
chemotherapy combined with ‘recruiting’ agents such askiges, that enable the global
cell population to recruit cells from the quiescent phégeinto the proliferating phase,
which is assumed to make then sensitive to the cytotoxidrreat, i.e., to subsequently
kill them when they are definitely committed in the cell cycle

3.3. Partial Differential Equations: physiologically structured transport equations.

Cell population growth also depends on the physiologicapprties of cells. Such physio-
logical properties can be age of the cells (i.e., the timpsad since the last cell division),
mass or volume of the cells, their degree of resistance &btrent, their DNA content, the
size of the induced metastases, etc. To take into accourpi@palation of cells between-
individual variability linked to these physiological panaters, the McKendrick (or Von
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Foerster-McKendrick) PDE framework is particularly welited:

on 0

E(x, t) + a{v(x)n(%t)} +d(z)n(z,t) =0 (t>0,2 > Tmin) ,
nemin )= [ BEn(E ) de (t>0) )
n(z,0) = no(x) h (T > Zomin)

wheren(z, t) is the density of proliferating cells with characteristiage, mass, volume,
DNA content, etc.) at time, v is the cell growth rate (a velocity relating physiological
characteristia: to timet), d is the death rate] is the birth rateg,,,;, > 0 is the minimum
value ofz for a cell to actually proceed in the cycle. Note that/, 5 depend orx.

The McKendrick model is positive and linear, and as suchsiysrgtotics is governed by
afirst eigenvalue, also calledMalthus exponentt can be proved indeed (using the Krein-
Rutman theorem and a generalised relative entropy - GREeipie, see, e.g.8p]) that
its solution may be represented for large timéy a bounded function timesep(—At).

Physiologically structured cell population dynamics msdeave been extensively stud-
ied in the last 25 years, see e.d.2[13, 14, 15, 21, 22, 28, 30, 40, 41, 54, 58, 59, 60, 71,
87, 99. We focus here, as mentioned earlier, on those that efplioclude a target for
the representation of drug effects to control their dynamic

3.3.1. Age-structured models for the cell division cycksge of cells in the cell cycle is

one of the the most used physiological characteristicsénitarature on physiologically

structured models. The main interest of considering ansagetured model is in distin-

guishing, in a representation of the cell division cycletween physiological time (age)
and external time, in the perspective of controlling theleyay drugs that act on it, as do
most anti-cancer drugs.

In the McKendrick model, the variablecorresponds to the age of the cells in the cell
division cycle for a one-compartmental model (cf E4)){or more generally to the age of
the cells in each of thé phases (or addition of phases, eg§andGs, or Gy and M) of
the cell cycle:

%ni(t,x) + %{Uz(x) ni(t,x)} + {di(t,z) + Kiit1(t,2)} ni(t,x) =0 ,
ni(t,x = 0) = / K1t ©) nia(t,€) de 2<i<I 5)
£>0

nl(t,(E:O):Q KI—>1(t7§) n[(t7§) dé- 3
£>0

in which protein p53 is assumed to control phase transit@nésk; ;. 1 between phases
i1andi + 1, e.g.,G1 andS.

As in the case of ODE models, the simplest way to represerdadtien of a cytotoxic
treatment is to enhance the death rate of the cell populatoarding to the treatment ac-
tivity. Thus Kheifetzet al. [60] used a one-compartment age-structured cell cycle model
where the death rate integrates the drug activity througéxaonentially decreasing mul-
tiplicative function.

As mentioned earlier, age-structured models have alsoumahto represent the action
of cytotoxic agents by their effects, not directly on deates, but primarily on phase tran-
sition rates, death occurring only secondarily, when dedlge been blocked long enough
at phase transition checkpoints. IBO[ 40, 41], the authors consider a multiphase age-
structured PDE model of the cell cycle in which is introdueetime dependency of the
parameters (death rate, transition rate from one phaseafeth cycle to the next one) to
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analyse the effects of a circadian control (a biologicatipwn physiological control with
period 24 hours) on tissue proliferation, in particular tnmgrowth, with or without ther-
apy. Thus in 10, 41], the authors compare the growth rate (Malthus exponend) axl|
population submitted to different time-periodic contrb&tween them, including the case
of a no control (i.e., a control function being replaced bydtiplicative constant set to an
average of the control function it is compared to).

In [30), it is proved that when transition ratés; ;1 (¢, z) are time-independent, the
stiffer these rates behave as a function of agiae lower is the Malthus exponeht More
precisely, if the cycle phase duration probability dengityction (p.d.f.)K ()¢~ Jo K (&) d¢

—+o0

(which is indeed a p.d.f., oR . provided that/ K () d§ = 400) is taken in a family

of laws with fixed mean and varying variancOeQ, then) is an increasing function af?.

In other words, the higher the incertitude on the phase urahe higher the growth ex-
ponent. This result is not completely original, and it cepends to the intuitive notion that
healthy cell populations are well synchronised with respeacell cycle timing, passing
from one phase to the following one in good order, whereasearatells are more loosely
coordinated, resulting in a higher growth rate for a caneéimpopulation.

This being settled, the question of a target for periodidrdiy physiological or phar-
macological inputs may be assessed in the McKendrick modlehther unexpected re-
sult proved in #3] (Theorem 2.1) is that when tame-periodic controls exerted only on
death rates, then the Malthus expongris always higher than its counterpart for an un-
controlled time-stationary model designed with the same{averaged coefficients (death
rates). Otherwise said, periodic gating control exertedeath rates enhances proliferation.
But if the same periodic control is exerted only on transitiates instead of death rates,
then no clear hierarchy can be found between the perioditherstationaris [40, 41, 42).
This theoretical finding, combined with the fact that protpb3 is known to exhibit peri-
odic oscillations in case of DNA damage exerted by a cytatalkiug (62, 64], see also
recent reviews and new physiologically based models forgsgdlations in fi5, 91, 92)),
together with the fact that cytotoxic drugs themselvesrofieow variations in their con-
centrations that are under the dependence of periodicafiyralled enzymes of the cell
metabolism, induces to consider as more likely an actiorytaftoxic drugs on cell cycle
phase transition rates rather than only directly on ded#sra

In [30], an optimisation problem is considered, consisting inimising the exponen-
tial growth rate\¢ of a population of tumour cells submitted to a phase-spewyfictoxic
therapy under a toxicity constraint on the population ofitgeacells. This constraintis also
represented by an exponential grovith to be maintained over a (tunable) constant value
A. The phase-specific chronotherapy results in the blockireglts at theG, /M check-
point, and subsequent cell death when too much time has peahia such blocked status,
for cells that are committed in the division cycle. As mené#d earlier, in the absence of
physiological knowledge on how cell death occurs after cgtle arrest, subsequent cell
death is coarsely represented in numeric simulation3Ghdy a maximum number of runs
of the division cycle, i.e., a limited number of loops on agéor transition rates. It re-
sults after this number is passed in a null transition #gte; ,, (¢, a) and null boundary

term/ Kio1i(t, &) ni—1(t, &) d¢ for all phases. The model in a 2-phase form has
£>0

been partly (i.e., without drug control) identified on bigical data (an NIH-3T3 cell line,
mouse embryonic fibroblasts in culture) by using the FUCQIrfiscence metho@$9, 90].
Only simulations have been performed, and the model hasdrdgmartly identified, but
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optimal control strategies for a periodic drug delivery preposed in 30] , that success-
fully solve the problem, decreasing the cancer growth rdidewnaintaining the healthy
cell population growth rate over a given threshold.

Other works model cytostatic, rather than cytotoxic, éffdzy an action on the age-
ing velocity v in Eq. (4). Thus, Hinowet al. [58] investigated the effect of lapatinib
(a cytostatic drug that is known to become cytotoxic at higeas) on proliferating and
non-proliferating cells. To be consistent with experinatgiata the authors considered a
slowing (cytostatic) effect of the drug on the velocity ofeatg in the proliferative cell
population inG; (i.e., with the notations of Eq.4j), they tookv(a) = 1 — §(a, t) where
the functiond also depended on the drug dose), and simultaneously, athigidoses, a
cytotoxic effect (death term) on the two cell populations.

Another way to represent cell population growth control ptpstatics in age-structured
models s to send (and to maintain) proliferating cells imggcent phase where they do not
proliferate. Gabriekt al. [5]] investigated the effect of erlotinib, another cytostatiag,
on cancer cells, using an age-structured model that insladeroliferative compartment
and a quiescent one. They assumed that the rate of pralifgialls that become quiescent
is an increasing function of the cytostatic drug dose. Tinigpte linear McKendrick model
is written as

Splt, )+ 5op(t) + o+ K@)} plt,) =0

ot
p(t,x=0)=2(1-f) - K(&) p(t,§) dE
p(t,x = O) = pO(SC) ’ . (6)

%Q(t) =2f K(&) p(t,§) d€ —vQ(t) ,
€0
Q) =Qo ,

and the drug target here j§ rate of escape at mitosis towards the siding pl@asé¢ to
be enhanced by a cytostatic drug. The model was identified@human Non Small Cell
Lung Cancer (NSCLC) cell line PC-9 submitted to erlotinib.

3.3.2. Extension to delay differential modelBollowing a 30 year-old tradition of mod-
els for haematopoiesis that date back@d| [ using a distinction between proliferating and
nonproliferating (i.e., quiescent) cell compartmentsimylet al. designed a model with
continuous age and discrete maturity structude [In its delay-differential version (ob-
tained by integration of an age-structured PDE model aldragacteristics49, 89]), the
model describes at each maturation statiee dynamics of both quiescent cells with den-
sity z; and proliferating cellg;. It may be written as

i(t) = —=8ix(t) —wi(t) +2(1 — KZ)/ e " fi(a)w;(t — a) da
7—11710
+ 2Ki71/ 6_%71af1‘,1(a)wi,1(t — a) da , (7)
0
O = w0 +w® - [ e f@ut-a) da
0
where K;, with Ky = 0 (i = 0 representing the stem cell state), is the rate of cells that

differentiate to the next maturation stage+ 1), v; andd; are death rates at stagen
the proliferating and quiescent states respectivelyt) := S;(x;(t))x;(t), whereg; is
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a nonlinear feedback (“reintroduction function”, oftelk¢a as a decreasing Hill function
with limit zero at infinity, following [67]) from the ith quiescent to théth proliferating
phase. The introduction of the discrete maturity state=(1... ) allows to represent
the action of redifferentiating agents such as ATRA on tHedintiation ratess;, that
in AML are zero at some stage e.g., at the promyelocyte stage in APL. In this setting,
one can also represent the action of cytotoxic drugs by amease in the death rates
in the proliferating phase, and of cytostatic drugs by a el@se in the feedback functions
5i, considered here as representing (formerly in the boun@anys in the original PDE)
the dependence on growth factor receptors that is negatimglacted by cytostatic drugs.
Stability analyses were performed and theoretical druggtar involving both proliferation
and differentiation, were proposed grfunctions and rate&’ (see P, 79, 80] and refer-
ences therein). They involve an inequality on model pararsett a non trivial equiibrium
point, the existence of which is proven under conditions/ig].[ Such stability conditions
can be guidelines in the future to use such models as a raitorahe delivery of drugs in
combined therapies mixing cytotoxic (acting on death ratasdJ), cytostatic (acting on
the feedback functioft) and redifferentiating (acting on differentiation rdt§ molecules,
aiming at re-establishing a lost equilibrium. For the tineénlg, the focus in modelling has
been set on combinations between cytotoxics and cytostathas is in particular the case
of AML with a mutation of the FIt-3 growth factor receptor {8d1TD gene duplication, re-
sulting in an abnormal tyrosine kinase, that does not neatbitmal ligand to be activated),
which is present in about 30% of all AMLs, generally resugtin poor prognosisis)].

3.3.3. Other physiologically structured transport equatior3hysiologically structured mod-
els have also been used to study the dynamics of metast#itigopilation. Instead of
considering age of cells in the cell cycle as the main strectariable, these models con-
sider the size of the metastatic coloyp] 28, 59]. Thus, denoting by: the tumour size,
Iwataet al. [59] assumed that a primary tumour was generated from a sinfjlatdéne

t = 0, grew at ratey(z) and emitted at ratg(z) metastatic single cells that developed as
the primary tumour. The growth ratéz) was assumed to follow a Gompertz model:

b
v(x) = axlog (a:) (8)
and the evolution of the colony size distribution of metastamours with cell numbet at
timet was assumed to be governed by a McKendrick model (cf &9 $o that this model
is a combination of a Gompertz model and of an age-structomed In [L5] Barbolosiet
al. proposed a mathematical analysis of this model. Later, 8ayzt al. [28] introduced
in this model the effect of docetaxel, & phase-specific cytotoxic drug, using a PK-PD
three-compartmental model and an interface model to daterthe drug exposure. The
effect of this drug was modeled via a death term in the growthaity. In the same work,
they also analysed the effect of several infusion schediflas anti-angiogenic agent. To
do this, they considered an additional equation (ODE) fettitme evolution of the carrying
capacity, just as done by Hahnfegttal. in [57] (cf Section3.2), in which they introduced
a death term as a function of the concentration in the argfiegyenic agent. These authors
accounted for the experimentally observed phenomenon tdstatic acceleration after
anti-angiogenic therapy (using endostatin) and analyisednfluence of several infusion
schedules on this phenomenon. Finally, they compared fieetdfoth on the primary
tumour and on the number of metastases of several infustoenses of combination of
etoposide (cytotoxic drug) and bevacizumab (anti-angiagagent).

Transitions between the phases of the cell cycle are acauieghhy changes in DNA
content, from2n to 4n DNA content duringS phase, so that models structured by DNA
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content have also been developed. Badsa. [18] proposed a model for the four phases
of the cell cycle in which obviously only cells i phase undergo DNA changes. To
account for DNA variability induced by flow cytometry, thethars also introduced in the
equation on the density of cells Fiphase with DNA content at timet a dispersion term.
This model enabled them to compare calculated flow cytonpetifjles with experimental
ones. Later, Basset al. [19, 20] extended this model by adding an apoptosis phase that
could be reached via transition from the mitotic phase. Tuibas also introduced an age
structure in thel/ phase of the cell cycle, so that this phase is included imtloidel. They
use a model structured in both age and DNA content. This detémodel enabled them to
analyse the effects on tumour cell lines of paclitaxel)laphase-specific anti-cancer agent
known to induce mitotic cell cycle arrest and cell death viaaasition from the mitotic
phase to the apoptotic one blocks mitotic spindle dissimciathus preventing cytokinesis,
the last part of mitotic phase, during which a dividing cadtually becomes two). The
model parameters were determined by fitting them to experiah@rofiles obtained by
cytometry.

Other models consider several physiological variabletrastsire variables. Thus Bekkal
Brikci et al. [23, 24] developed an age-structured model that was also struthyehe
amount of the complex cyclin D/(Cdk4 or 6), known to be the magulator of the cell
cycle at the restriction point R in lat@; phase, an age after which cells are irreversibly
committed to proceed towards divisiond. The model considers a global proliferative
phase that is age- and cyclin D/(Cdk4 or 6)-structured andesgent one that is not phys-
iologically structured. The exchanges of cells betweemptiodiferative compartment and
the quiescent one depend on Hill functions of the total agtiidation, as in Mackey’s mod-
els [67]. Although the inclusion of drug control has been #] postponed to ‘the future’,
the model is adapted to represent targets for cytostatibea¢vel of these exchanges and
for cytotoxics either on death rates or on boundary termshfeproliferating population.
More recently, Borgest al. [32, 33] considered the age-independent version of this model,
i.e., a cyclin-structured model, still without drug targiet

Also Frieboest al. [50] developed a spatial transport equation model of tumouwtiro
to predict the response to a drug that also takes into accellmhenotype, i.e., that distin-
guished between drug sensitive and drug resistant viabledu cells. In this model, cell
proliferation and death depend on the intratumoral coma&ohs of oxygen, nutrients and
a cytotoxic drug (additionally represented by spatial tieacdiffusion equations).

3.3.4. Models integrating space and age-structufes mentioned earlier, the most rele-
vant level to describe proliferation and its control by dsug clearly the cell population
level, but the level of local surrounding cell populationsshalso be considered, in par-
ticular to account for the interactions between the tumawr igs environment. Brescét

al. [34] developed a tumour growth model in which cell cycle regolatalso depends
on the tumour environment, typically cell density and oxydmvel. The authors consid-
ered two proliferative phasdd andP;, representing respectively; before the restriction
point [72], and the rest of the cell cycle (remainder®f and.S/G» /M), two proliferative
phases to which a quiescent phésies added. They assumed that only proliferative phases
were age-structured and they added an advection term tolrifmpassive transport of
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tumour cells induced by cell division:

2 T r TV v ) =0,

O 0 LV (vePs) =0

%—?+V.(qu): (1= /)Pi(a = mas.p,) — [%T@(H . @
Pi(a=0)=2Py(a=amnazpr,)

Py(a=0)= fPi(a = amaz,p,) + [%} ’ Q) ,

whereP; = P;(t,z,y,z,a),(i = 1,2),Q = Q(t,z,y, z), a representing the age of cells
in each proliferative phas&/ denotes the derivative with respect to the 3d-space variabl
x = (z,y,2), vp,, Vp,, vVq are the velocities (in 3d-space with respect to tithin the
phases’;, P», Q respectivelyg,,qq, p, aNdanmqq, p, the maximal age a cell can spend in
P, and P, respectively[-]* the positive part. The functiojfi is a boolean function that
depends on time and space, equal to one if there is no ovdgiimpuand no hypoxia at
space locatiox = (z,y, z) and timet, equal to zero otherwise. Assuming that the three
velocities were equal and that the total number of tumourtesadthy cells was constant
yielded an additional equation to compute the velocity. sBhet al. [34] analysed the
influence on tumour growth of a membrane surrounding thisotumRibbaet al. [87]
considered a simplified version of this model as they did nobant for the oxygen but they
considered the action of matrix metalloproteinases (MMRHYIPs are enzymes secreted
by tumour cells, known to digest the extracellular matrixasao facilitate local invasion
by tumour cells. Using this model, Rible al. analysed the effect of MMP inhibitors
(MMPIs), anti-cancer agents known to reduce cancer growtmimal models but whose
clinical developmentwas not as successful as expecteghtbee too toxic). In this model,
MMPIs were assumed to promote the passage of proliferagil®iato the quiescent phase
at the restriction point. They assessed the therapeutiefivefi MMPIs via a parameter
that compared the proportion of quiescent cells in a pofmiaubmitted to treatment with
the one in the same population without treatment. Latety Bt al. [31], based on the
model developed by Bresadt al. [34], investigated the effects on tumour growth of an
anti-angiogenic therapy. They coupled, via oxygen conmaginh, the model developed by
Breschet al. with a continuous PDE model of angiogenesis that accountaéodensity of
endothelial cells (ECs, cells that constitute blood vejsekygen and some pro- and anti-
angiogenic substances. The authors investigated the effec anti-VEGF therapy (VEGF
being the main pro-angiogenic factor) that consisted irgasing the local concentration of
endostatin, an anti-angiogenic factor that competes WiV for binding to EC receptors.
This therapy was modelled through an endostatin oversenighce endostatin was known
to be endogenously secreted by tumour cells. Thus, in thieelnendostatin is assumed to
directly target VEGF binding to ECs since an increase of statim concentration induces a
decrease of the VEGF binding rate to ECs, which leads to lasfération of ECs by VEGF,
i.e., lower proliferation and migration rates of ECs andre€ death for high endostatin
concentrations (more details can be found3fi [Sections 3 and 4). Such therapy can lead
to regression of the vascular network and thus induce hypoxieven death of tumour
cells. Several infusion schedules were studied and thidaefes on the tumour volume
were compared. The authors highlighted the existence dfieatiocal concentration of
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endostatin below which it was more efficacious on tumour ginaw increase the rate of
oversecretion of endostatin instead of its duration and@bdnich the opposite was true.
Following the line of previous article$] 6], Alarconet al. proposed in] a multiscale

model using a cellular automaton (for the vascular netwd@K)Es (for the cell cycle) and
PDEs (for oxygen and VEGF diffusion). Ribkaal., following the line of their 2006 article
[87] published in 2009 another multiscale model to study thea# of cell cycle specific
drugs by introducing pharmacokinetic-pharmacodynanypcasentation of the drug fate
[88. In a more recent model, Powattet al. [86] used in a way close to the Alarcén
models a multiscale model of a hybrid nature, integratirggdéll cycle and the vascular
environment by an ODE system and a cellular automaton, andittusion of both oxygen
and anticancer drugs by spatial PDEs. This allowed thesaudsors to study and optimise
theoretical combinations of various cell cycle phase dmediugs acting on a tumour cell
population.

3.4. Cell Darwinism, adaptive dynamics,phenotype-structured populationmodels.

3.4.1. Cancer as an evolutionary diseas€he idea that cancer is an evolutionary disease
is not new, but strangely enough, not many articles on tleisit let alone on mathematical
models on Darwinism in cancer cell populations, have beétighed so far, according to a
recent review4], even though the necessity to consider cancer evoluti@menable to a
Darwinian selection principle is becoming popula2[53]. The idea promoted by Gatenby
et al. in these recent articles is that tumour eradication is acdiffigoal to achieve, and
that it can even have adverse consequences, inducingresistl subpopulations that will
be impossible to control, so that stabilising the tumoutdoty “dormancy”, i.e., a non-
proliferative state) rather than trying to eradicate itidddoe more reasonable and more
successful in terms of life expectancy for cancer patieftsvards this aim, metronomic
chemotherapy that consists in chronic administration wfdbemotherapeutic drug doses,
as advocated for instance i84], and studied from a modelling point of view i&€], might
contribute to some extent.

Note that it is a resistance phenotype, not a genotype,ghakén into account in such
models. Whereas the genetic paradigm, i.e., cancer duerigla §¥enegade” mutated cell
developing in a malignant clone, has most often been coresides the only explanation
of evolution towards cancer, with little attention brougbtfar to (possibly reversible) en-
vironmental effects exerted at the level of cell populagicand this may partly explain the
present state of publications regarding cancer as an ewoduy disease. In the perspec-
tive of cell Darwinism, which always concerns populatiohgdividual cells, considering
drug effects as part of an environmental pressure resuhisglection and possibly spe-
ciation (emergence of geneticallyresistant species) is a rather new idea in mathematical
modelling to account for evolution towards drug resistaincecancer cell population.

3.4.2. Phenotype-structured populatiomodels. These models, that are widespread in the
ecological modelling community, are only beginning to d#é in the cancer biological
modelling world. They can be used to describe the dynamicsliierent cell popula-
tions in interaction, healthy or tumour, with the additiochemvironmental variables such
as nutrients, natural molecules linked to the influence efgetic and metabolic settings,
that are assumed to play a role in pharmacotherapeutidse @ffmune system and drugs.
Physiologically structured, usually without space vaeab but nothing can be opposed
in principle to the introduction of a spatial variable if & ielevant to the question at stake
-, they consist of integro-differential equations to tak®iaccount the existence of nonlo-
cal interactions, leading for instance to mutations in pefpulations. An exemple i,
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and another one, focusing on the problem of drug resistanf&]i, presented belowFi-
nally, it is worth noting that a natural extension of thesedels are the kinetic-like models
presented in a general setting BRB[ 26, 27], which are concerned with the description of
cancer-immune competition

3.4.3. Phenotype-structured populatianodels for drug resistance, general forfhis
phenotype-structured populatianodel relies on equations with a continuous structure
variable representing, rather than age or any relevantaul@ea resistant phenotype €

0, no resistance; = 1, completely resistant population), which may be revees(iflre-
sistance is due to an epigenetic rather than genetic pheraer not. In models of the
type presented below (Eql()), evolution towards acquired drug resistance, i.e., the d
velopment of a subpopulation bearing a resistant phenptlpse tox = 1, may be the
result of mutations, but it may also be the result of exchamgth the environment, without
mutations, representing in the latter case possibly rédleracquired resistancé:

mutations and renewal

gt = i ([ Mt~ et
r(z)
+ <1—|—0¢702(t) — d(a:)](t)) n(x,t) - c1(t)p(z)n(x,t). (10)

: - - effect of cytotoxic therapies
growth with cytostatic therapies and death y P
HereM is a mutation kernel, with radiwspriori larger in the cancer than in the healthy cell
population g is the proportion of cells that undergo mutations at mitceml, introducing
subscriptdd andC for healthy and cancer cellsy andn, competition in the environment
is represented by variabldg and - that may be only fixed linear combinations of the

total healthy and cancer cell populatioy{s ny(z,t) de and/ no(x,t) de, but may
x>0 x>0
also be variables in interaction with the environment, evith cytokines.

3.4.4. Mutations only. The main interest of including a drug target on mutations éeo
represent genomic instability in cancer cells by a highebpbility of mutation under the
influence of a drug. This is presented in the frame of modehtqgu (LO) whené # 0.
Nevertheless, at least in this setting, mutations do nohdeelay the main part in the es-
tablishment of a resistant phenotype, yielding only difftasaround a Dira@ distribution
for the dominant phenotype. This rules out the possibilityepresenting in this model
acquired drug resistances only due to mutations of the tiaagdor instance imatinib re-
sistance, for which mutations of the target, BCR-Abl pnotbiave been evidenced. Likely,
other versions, focusing on mutations, of the same modelldtbe used in this case.

3.4.5. Competition for resources and exchanges with the envirahnie this type of model,

it is easy to obtain evolution towards resistance withoutations (i.e., setting = 0). In
fact, the theorems demonstrated @8] (Theorems 3.1, 3.2, 3.3) state asymptotic conver-
gence towards a single Dirac mass concentrated around aeuwidue of the phenotypic
trait, and these theorems hold with or without mutationse fbalthy cell population case

. . . 1 . .

is characterised by a homeostatic factor of the fm before the proliferation term
r(x), wherel(t) represents the total (healthy and cancer) cell populagiceventing the
healthy cell population from exploding, whereas in the esropulation case, no such
homeostasis has been put in the evolution equation. Theaimsan p6] show that under
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a cytotoxic therapy, the convergence occurs towards aesibighc mass (monomorphism
of the fittest population) , concentrated aroung 0 in the healthy case, and concentrated
around a fittest trait # 0, i.e., a resistant phenotype, in the cancer case.

3.4.6. Combining cytotoxic and cytostatic effeciélith settings close to those shown in
Eq. (10), neglecting mutations, but representing the action of different drugs and a
2-dimensional resistance phenotypey), one corresponding to a cytostatic drug that acts
on proliferation, and another one corresponding to a cxtotdrug that acts on a death
term, it is possible to obtain numerically dimorphism of mgyotic traits in the cancer cell
population, one fittest subpopulation concentrated ar¢ur) and the other aroun@, 1)
(Fig. 2), i.e., asymptotic coexistence of two different subpopaies, one resistant to the
cytostatic, the other resistant to the cytotoxic drug. THug@y model for tumour cells runs

dum(t,z,y) = | — ) S = de)I0) - e )| )., QD

L+ pa(@, y)ea(t
wherec; andc; represent the effects of a cytotoxic and of a cytostatic dregpectively,
andI(t) is again the total (weighted) population of all cells, hepland tumour, the term
d(x,y) thus representing competition for space and nutrientsewhi and i represent
the targets for cytotoxic and cytostatic drugs, respelstive

Simulation results, with particular choices for the tarfyetctions (not shown), taking
into account the fact that developing resistance hindesbf@ration capacities, and with
initial conditions centered around mean valgesy) = (0.5,0.5) show the possibility of
evolution towards a dimorphic cell populatiander the simultaneous infusion of cytotoxic
and cytostatic drugswvhereasjn the absence of therapeutic agents, the cell population
remains monomorphic and evolves towards a totally sees{tiwt highly proliferative)
state as illustrated on Figl and2.

nitxy) att=0 n(txy) att=20

12000
10000
8000

>05 > 0.5
k. 8 6000

4000

. 2000
2

FIGURE 1. Cancer cells without therapieStarting from an average 2d
phenotype (z,y) = (0.5,0.5), left], time evolution towards total sensi-
tivity: no resistance. Model, simulation and figure adagtech [65].
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FIGURE 2. Cancer cells with therapies. Starting from the same geera
2d phenotype(fr, y) = (0.5,0.5), left], time evolution towards two sep-
arate resistant clones, one resistant to the cytotoxic, dnegpther one to
the cytostatic drug. Model, simulation and figure adaptecthff65].

It is also possible, as numerically shown &86], Fig. 6.6, to obtain different asymptotic
behaviours, in particular evolution towards resistancextinction of the cancer cell pop-
ulation while keeping healthy cells alive, only by varyimgnstant doses of the two drugs.
This may be considered as a step towards drug delivery cgaition with respect to the
guestion of avoiding drug resistance, by combining cytmtaxd cytostatic drugs.

Note that one can also (work underway in the line @]] represent simultaneously
space and an evolutionary phenotype in integro-diffeaéntodels accounting for the evo-
lution of tumour spheroids submitted to an externally deidd therapy. In this case, a
1d radial spatial coordinate is a relevant complementanabte that must be considered
together with the cell phenotype responsible for drug tesce.

4. Conclusion. We have reviewed in this article some old and more recent fe@d@ro-
liferating cell population dynamics designed to theomdtjcsolve problems of therapeutic
optimisation encountered in the clinic of cancers, alwaysstdering them from the point
of view of drug target representation. Polychemotheramsiglly the rule in oncology -
with a few known exceptions such as imatinib in chronic mgelwous leukaemia -, so that
designing a rationale to optimally combine treatmentsngctin different functional tar-
gets in the physiological mechanisms that control prddifien in cell populations should
eventually be a help in the clinic. This involves taking imtocount in multiscale mathe-
matical models the moving physiological knowledge of theeehanisms, of how old and
new drugs can modify them, and of how they can be investigatéuke different levels of
observation: single cell, cell population, and whole boslyaaollection of interacting cell
populations. We stress that this program implies frequeatactions, going far beyond an
attitude of sort of ‘scientific service providers’, betwegeams of mathematicians, biolo-
gists and clinicians, involving in a much more committed waytual efforts to understand
how each discipline can benefit of each others’ representatind findings. We hope that
this review of models and results, focusing on drug targets,be helpful to this aim.
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