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Abstract

We give a systematic and nearly optimal treatment of the compact-
ness in connection with the L1 spectral theory of neutron transport
equations on both n-dimensional torus and spatial domains with �nite
volume and nonincoming boundary conditions. Some L1 �averaging
lemmas� are also given.

1 Introduction

A main feature of spectra of transport operators in nuclear reactor theory
relies on the compactness (or weak compactness in L1) of some power of
K(�� T )�1 where T denotes the advection operator

T' = �v@'
@x
� �(x; v)'

with suitable boundary conditions and K is the collision operator which de-
scribes the interactions of neutrons with the host medium. Indeed, according
to Gohberg-Schmulyan�s theorem [13] ; �(T + K) \ fRe� > s(T )g (the so-
called asymptotic spectrum of T ) consists of at most isolated eigenvalues with
�nite algebraic multiplicities where s(T ) is the spectral bound of T

s(T ) = sup fRe�; � 2 �(T )g :

On the other hand, the time asymptotic behavior (t ! 1) of the c0-
semigroup fV (t); t � 0g generated by T + K; which governs the Cauchy
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problem
@'

@t
+ v

@'

@x
+ �(x; v)'+K' = 0; '(0) = '0;

depends heavily on the spectrum of fV (t); t � 0g outside the disc
�
�; j�j � es(T )t

	
;

(see [14]). Of course,

etf�(T+K)\fRe�>s(T )gg � �(et(T+K)) \
�
�; j�j > es(T )t

	
: (1)

However, this inclusion is a priori strict because of the lack, in general, of
a spectral mapping theorem. Thus a direct spectral analysis of et(T+K) is
necessary. To this end, we expand V (t) into a Dyson-Philips expansion

V (t) =

1X

0

Uj(t)

where

U0(t) = etT ; Uj+1(t) =

Z t

0

U0(s)KUj(t� s)ds (j � 0):

A basic result is that (1) is an equality if some remainder term Rm(t) is
compact (or weakly compact in L1) where

Rm(t) =
1X

j=m

Uj(t)

(see [14] [17] [18] [19] [11] and [7] Chap 2 for more details): In such a case,
�(et(T+K)) \

�
�; j�j > es(T )t

	
(the so-called asymptotic spectrum of V (t))

consists of, at most, isolated eigenvalues with �nite algebraic multiplicities.
Thus, the asymptotic spectral theory of the transport operator T relies on
the compactness of some power of K(� � T )�1 while the asymptotic spec-
tral theory of the corresponding semigroup relies on the compactness of some
remainder term Rm(t): These are the two basic compactness problems in neu-
tron transport theory. Of course, there exists a great deal of works on this
topic since the �fties already covering all the usual models (see [7] Chap 4 and
references therein). In a recent work [9] the author gave necessary and su¢-
cient compactness results for tranport equations in Lp spaces (1 < p <1) in
terms of properties of the velocity measure. This provides us with an optimal
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spectral theory for neutron tranport equations for both periodic boundary
conditions and classical nonincoming boundary conditions. The mathemat-
ical analysis relies on �Fourier integral� type arguments. This approach, of
course, does not cover the (physical) L1 spaces. The present paper deals
with the L1 theory. We obtain nearly optimal theorems by using new math-
ematical tools. Indeed, some relevant operators are shown to be convolution
operators with suitable Radon measures. The Fourier analysis of such mea-
sures enables us to derive smoothing properties of their convolution iterates
from which various weak compactness results are obtained. In Section 2 and
Section 3, we deal with transport equations with model collision operators
on the n-dimensional torus. A thorough analysis of the di¤erent aspects of
(weak) compactness is given with detailled proofs. In Section 4 and Section
5, we treat transport equations on domains 
 with �nite volume (not nec-
essarilly bounded) and nonincoming boundary conditions; the treatment is
quite similar (with some modi�cations) and the proofs are only sketched. In
Section 6 we give much more precise results (similar to that of the Lp theory
[9]) in one dimension and show that these results are no longer true in n
dimensions with n � 3. In Section 7 we show how the above compactness
results provide a complete foundation of the L1 spectral theory of neutron
transport equations for general collision operators. Although they have not
a direct connection with the main purpose of this paper, we give in the last
section some L1 �averaging lemmas� which improve or complement some
known results.

2 Model stationary equations on the torus

Let 
 be the n-dimensional torus (n � 1) we identify with [0; 2�]n. We iden-
tify L1(
) with the locally integrable [2�]n-periodic functions on Rn. Simi-
larly, C(
) denotes the continuous [2�]n-periodic functions on Rn: Let d� be
a positive �nite Radon measure on Rn with support V: Let fU(t); t 2 Rg be
the c0-group of isometries

U(t) : ' 2 L1(
� V )! '(x� tv; v) 2 L1(
� V )

where 
�V is endowed with the product measure dx
d�: The in�nitesimal
generator of fU(t); t 2 Rg is given by

T : ' 2 D(T )! �v:@'
@x

2 L1(
� V )
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with

D(T ) =

�
' 2 L1(
� V ); v:

@'

@x
2 L1(
� V )

�

where the directional derivative v:@'
@x
is taken in the sense of periodic distri-

bution. The resolvent of T , for � > 0; is given by

(�� T )�1 : ' 2 L1(
� V )!
Z 1

0

e��t'(x� tv; v)dt:

We are concerned with the smoothing properties of M(�� T )�1 where

M : ' 2 L1(
� V )! e'(:) :=
Z
'(:; v) d�(v) 2 L1(
) (2)

is the so called (velocity) averaging operator. More precisely, we are looking
for necessary and (or) su¢cient conditions on the measure d� such that
some power of M(� � T )�1 is weakly compact or compact. We start with
the following result which was �rst pointed out in ([2] Prop 3 and example
1) for the whole space.

Proposition 1 (i) The operator

M(�� T )�1 : L1(
� V )! L1(
)

is not weakly compact:
(ii) If the hyperplanes through the origin have zero d�-measure thenM(��

T )�1 maps weakly compact sets into compact sets.

Proof:

The proof is the same as that given in [2] : However, for the reader�s
convenience, we resume it here.
(i) Let ffjgj � L1(
 � V ) be a normalized sequence converging in the

weak star topology of measures to the Dirac mass �(0;v) = �x=0 
 �v=v where
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v 2 V: Then, for a  2 C(
);

hM(�� T )�1fj;  i =

Z




 (x)dx

Z
d�(v)

Z 1

0

e��tfj(x� tv; v)dt

=

Z 1

0

e��tdt

Z
d�(v)

Z


�tv

 (y + tv)fj(y; v)dy

=

Z 1

0

e��tdt

Z
d�(v)

Z




 (y + tv)fj(y; v)dy

=

Z 1

0

e��tdt

Z


�V

 (y + tv)fj(y; v)dyd�(v)

=

Z


�V

�Z 1

0

e��t (y + tv)dt

�
fj(y; v)dyd�(v)

and

hM(�� T )�1fj;  i !
Z 1

0

e��t (tv)dt as j !1

i.e. M(�� T )�1fj converges to the Radon measure

 2 C(
)!
Z 1

0

e��t (tv)dt

supported on the line Rv and consequently M(� � T )�1f is not weakly
compact if n > 1: If n = 1 and if 0 2 V then the choice v = 0 shows that
M(��T )�1fj converges to the Dirac measure 1

�
�x=0: Of course, if n = 1 and

if 0 =2 V it is easy to see that M(�� T )�1 is a compact operator.
(ii) Let � � L1(
� V ) be relatively weakly compact. We have to prove

that if g =M(�� T )�1f; f 2 �; then
Z




jg(x+ h)� g(x)j dx! 0 uniformly in f 2 � (3)

as h! 0: We write g = g1 + g2 where

g1 =M(�� T )�1(f�ff>�g) and g2 =M(�� T )�1(f�ff<�g):

We note that
Z




jg1(x+ h)� g1(x)j dx � 2 kg1k �
2 kMk
�

Z

ff>�g

jf(x; v)j dxd�(v)
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and

dxd� ff > �g � kfk
�
� c

�
! 0

so that, by the equi-integrability of �;

Z

ff>�g

jf(x; v)j dxd�(v)! 0 uniformly in f 2 �

as �!1. Thus, for " > 0,
Z




jg1(x+ h)� g1(x)j dx � " uniformly in f 2 �

for � large enough. We �x this �: Then
�
f�ff<�g; f 2 �

	
is a bounded

subset of L2(
 � V ) and consequently fg2; f 2 �g is relatively compact in
L2(
) (see [9] Thm 9) and consequently relatively compact in L1(
) so that

Z




jg2(x+ h)� g2(x)j dx! 0 uniformly in f 2 �

as h! 0: This proves (3): �
Before giving our compactness results we derive a necessary condition.

Proposition 2 We assume that d� is invariant under the symmetry about
the origin v ! �v: If some power of M(��T )�1 is weakly compact then the
hyperplanes through the origin have zero d�-measure.

Proof:

Since the square of a weakly compact operator in L1 is compact [1], we
may assume that some power of M(�� T )�1 is compact. Then some power
of M(�� T )�1M is also compact. On the other hand, since M(�� T )�1M
maps also Lp(
 � V ) into Lp(
) for all p 2 [1;1] then, by interpolation,
some power of

M(�� T )�1M : L2(
� V )! L2(
)

is compact too. We may assume, without loss of generality that

�
M(�� T )�1M

�2m
: L2(
� V )! L2(
)
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is compact for some integerm:On the other hand,M(��T )�1M is selfadjoint
for � real. Indeed,

(M(�� T )�1M'; ) = ((�� T )�1M';M )

=

Z




Z

V

dxd�(v)

Z 1

0

e��t(M')(x� tv)dt(M )(x)

=

Z

V

d�(v)

Z 1

0

e��t
Z




dx(M')(x� tv)dt(M )(x)

=

Z

V

d�(v)

Z 1

0

e��t
Z




dy(M')(y)dt(M )(y + tv)

=

Z 1

0

e��t
Z




dy(M')(y)dt

Z

V

d�(v)(M )(y + tv)

=

Z 1

0

e��t
Z




dy(M')(y)dt

Z

V

d�(v)(M )(y � tv)

=

Z




Z

V

dyd�(v)(M')(y)

Z 1

0

e��t(M )(y � tv)dt

= (M'; (�� T )�1M ) = (';M(�� T )�1M ):

Hence the compactness of [M(�� T )�1M ]
2m
implies the compactness of

[M(�� T )�1M ]
2m�1

by the fact that the square of a selfadjoint operator
O is compact if and only if O is. It follows, by induction, thatM(��T )�1M
is compact. We use now Vladimirov�s argument [15] as in [6] to prove that
(� � T )�1M is compact. It follows that M(� � T �)�1 is compact and this
implies that the hyperplanes through the origin have zero d�-measure ([7]
Remark 3.1, p. 35). �
From now on we assume that

The hyperplanes through the origin have zero d�-measure. (4)

If we except the dimension one (see Section 6), Assumption (4) alone does
not seem to be su¢cient to derive compactness results (see however [8] for
Dunford-Pettis results). However, some slightly stronger condition will be.
To this end, we recall the following:

Lemma 1 ([7] lemma 3.1, p. 32) All the hyperplanes through the origin have
zero d�-measure if and only if supe2Sn�1 d� fv; jv:ej � "g ! 0 as "! 0:

A key point in our subsequent analysis is thatM(��T )�1M is a convolu-
tion operator with a suitable Radon measure d� whose Fourier properties turn
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out to play a crucial role. The fact to interpret various operators (related
to tranport equations) as convolution with suitable measures was introduced
by the author in ([7] Chap 4) but was not fully exploited.

Lemma 2 There exists a Radon measure d� on Rn such that

M(�� T )�1M' =

Z

Rn
(M')(x� y)d�(y) = d� �M':

Moreover, the Fourier transform of d� is given by

cd�(�) =
Z

Rn
e�i�:yd�(y) =

Z
d�(v)

�+ i�:v
(� 2 Rn): (5)

Proof:

We point out that the above convolution does not take place on the torus
but on Rn. Moreover,

d� �M' 2 L1(
):
We note that

M(�� T )�1M' =

Z 1

0

e��tdt

Z

Rn
(M')(x� tv) d�(v)

=

Z 1

0

e��tdt

Z

Rn
(M')(x� z) d�t(z)

where d�t is the image of d� under the dilation v ! tv: Hence

M(�� T )�1M' =

Z
(M')(x� z) d�(z) = d� �M' (6)

where

d� =

Z 1

0

e��td�tdt

denotes the measure

 2 C(
)!
Z 1

0

e��thd�t;  idt:

Morevoer, the kth Fourier coe¢cient of the L1(
)-function M(� � T )�1M'
is equal to Z




e�ik:xdx

Z 1

0

e��tdt

Z

Rn
(M')(x� tv) d�(v)

=

Z 1

0

e��tdt

Z

Rn
e�itk:vdM'k d�(v) = (

Z

Rn

d�(v)

�+ ik:v
)[M'k

= cd�(k)[M'k

8



where[M'k is the k
th Fourier coe¢cient of the L1(
)-functionM' andcd�(k)

is the continuous Fourier transform of d� on Rn evaluated at k 2 Zn: �

Remark 1 Assumption (4) that hyperplanes have zero d�-measure impliesR
Rn

d�(v)
�+i�:v

! 0 as j�j ! 1 (see, for instance, [7] Chap 3), i.e. cd�(�)! 0 as

j�j ! 1: In particular

cd�(k)! 0 as jkj ! 1 (k 2 Zn): (7)

We are going to show that a slightly stronger assumption than (7) is the key
of the problem.

Theorem 1 We assume there exists s � 1 such that
X

k2Zn

���cd�(k)
���
s

<1: (8)

Let m be the least integer such that (8) is satis�ed with s = 2m: Then
[M(�� T )�1]

m+1
is weakly compact and [M(�� T )�1]

m+2
is compact.

Proof :
According to Lemma 2

�
M(�� T )�1M

�2
' = d� � [M(d� �M')]

= kd�k d� � (d� �M')

= kd�k (d� � d�) �M':

We show by induction that
�
M(�� T )�1M

�m
' = kd�km�1 d� �M'

where d� = d� � d� � � � � � d� ( m times). Hence the kth Fourier coe¢cient
of [M(�� T )�1M ]

m
' is equal to

kd�km�1cd�(k)M'k = kd�km�1
h
cd�(k)

im
M'k:

On the other hand, according to (8);
nh
cd�(k)

imo
k
2 l2(Zn) and consequently

nh
cd�(k)

im
M'k

o
k
2 l2(Zn) since fM'kgk 2 c0(Zn): Then Parseval identity

yields �
M(�� T )�1M

�m
' 2 L2(
):
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This shows that [M(�� T )�1M ]
m
maps continuously L1(
� V ) into L2(
)

and consequently
�
M(�� T )�1M

�m
: L1(
� V )! L1(
)

is weakly compact since the injection of L2(
) in L1(
) is weakly compact
by the Dunford-Pettis criterion of weak compactness. We note that M2 =
kd�kM and consequently [M(�� T )�1]

m+1
is weakly compact in L1(
 �

V ); i.e. maps bounded sets into weakly compact ones and consequently
[M(�� T )�1]

m+2
is compact since, by Prop 1, M(� � T )�1 maps weakly

compact sets into compact sets. �

Remark 2 Is (8) true for all d� satisfying (4) ? If not, is it possible to
characterize those measures satisfying (8) ? A su¢cient condition is provided
by the following:

Proposition 3 We suppose there exist 0 <  < 1 and � � 1 such that
X

k2Zn

�
sup

e2Sn�1
d�

�
jv:ej � 1

jkj
���

<1: (9)

Then (8) is satis�ed for even integer s = 2m > max
n
�; n

1�

o
: In particular,

if there exist � > 0 and c > 0 such that

sup
e2Sn�1

d� fv; jv:ej � "g � c"� (10)

then (9) is satis�ed.

Proof:

We note that
���cd�(k)

��� �
Z

d�(v)

j�+ ik:vj =
Z

d�(v)q
�2 + jkj2 je:vj2

where e = k
jkj
2 Sn�1: Thus

���cd�(k)
��� �

Z

je:vj�"

d�(v)q
�2 + jkj2 je:vj2

+

Z

je:vj>"

d�(v)q
�2 + jkj2 je:vj2

� 1

�
d� fjv:ej � "g+ kd�kq

�2 + jkj2 "2
:
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Choose " = 1
jkj
. Then, for k 6= 0;

kd�kq
�2 + jkj2 "2

� kd�k
jkj " =

kd�k
jkj1�

so

�
kd�kp
�2+jkj2"2

�

k

2 l2m(Zn) if 2(1 � )m > n, i.e. for all m > n
2(1�)

:

Moreover, according to (9),

�
sup

e2Sn�1
d�

�
jv:ej � 1

jkj
��

k

2 l2m(Zn) if 2m � �

whence
n
cd�(k)

o
k
2 l2m(Zn) if 2m > max

n
�; n

1�

o
: �

Remark 3 Condition (10) in Prop 3 is obviously satis�ed by Lebesgue mea-
sures on bounded open sets or on spheres.

3 On model evolution equations on the torus

We deal now with the c0-group fV (t); t 2 R g generated by T +M where M
is the velocity averaging operator (2):We recall that this perturbed group is
given by a Dyson-Philips expansion

V (t) =
1X

j=0

Uj(t) (11)

where

U0(t) = U(t) and Uj(t) =

Z t

0

U(t� s)MUj�1(s)ds (j � 1):

Let Rm(t) =
P1

j=m Uj(t) (m � 1) be the remainder terms of the Dyson-
Philips expansion (11): We are concerned in this section with conditions on
the velocity measure d� under which some remainder term Rm(t) is weakly
compact. We observe that Uj = [UM ]

j�U (j � 1) where � is the convolution
operator which associates to strongly continuous (operator valued) mappings

f; g : [0;1[! L(L1(
� V ))
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the strongly continuous mapping

f � g : t 2 [0;1[!
Z t

0

f(t� s)g(s)ds 2 L(L1(
� V ))

and [UM ]j = (UM) � � � � � (UM) (j times): We note that: f; g ! f � g
is associative. We recall (see [7] Chap 2, Thm 2.6, p. 16) that Rm(t) is
weakly compact for all t � 0 if and only if Um(t) is. According to the convex
compactness property of the strong operator topology ([12] or [8]), the weak
compactness of [UM ]m (t) for all t � 0 implies the weak compactness of

Um(t) =

Z t

0

[UM ]m (s)U(t� s)ds:

Thus, we may deal with

[UM ]m = [UM ] � [UM ] � � � � [UM ] (m times).

On the other hand, since M2 = kd�kM , one sees that

[UM ]m (t) =
1

kd�km�2
U � [MUM ] � � � � [MUM ]

where the term [MUM ] appears m � 1 times. By appealing againg to the
convex compactness property of the strong operator topology, we may deal
with the weak compactness of [MUM ]m�1 : The basic strategy in this section
relies on the fact that [MUM ]m�1 is a convolution operator with a suitable
Radon measure whose Fourier properties will play a key role.

Lemma 3 Let m 2 N (m � 1). There exists a Radon measure d�m on Rn
such that

[MUM ]m ' = d�m �M': (12)

Proof:

Arguing as in the proof of Lemma 2,

MU(t)M' =

Z
M'(x� tv)d�(v) =

Z
M'(x� y)d�t(y) = d�t �M'

where d�t is the image of d� under the dilation v ! tv: Note again that the
convolution above takes place on Rn: Observe that the mapping t > 0 !
d�t 2M(
) is strongly continuous, i.e.

t > 0! hd�t; 'i =
Z
'(x� tv)d�(v)

12



is continuous. We have

[MUM ]2 (t)' =

Z t

0

MU(t� s)MMU(s)M'ds

=

Z t

0

d�t�s �M(MU(s)M')ds

= kd�k
Z t

0

d�t�s � (d�s �M')ds

= kd�k
Z t

0

(d�t�s � d�s) �M'ds

= kd�k
�Z t

0

(d�t�s � d�s)ds
�
�M':

= kd�k d�2(t) �M'

where the integral

d�2(t) =

Z t

0

(d�t�s � d�s)ds

is taken in the strong sense, i.e.

hd�2(t); 'i =
Z t

0

hd�t�s � d�s; 'ids:

One sees, by induction, that

[MUM ]m (t)' = kd�km�1 d�m(t) �M' (13)

where d�m(t) is de�ned inductively by

d�m(t) =

Z t

0

(d�t�s � d�m�1(s))ds (m > 2)

which ends the proof. �
Before stating the main result of this section we recall ([9] Lemma 2) that

the a¢ne (i.e. translated) hyperplanes have zero d�-measure if and only if

sup
e2Sn�1

d�
 d� f(v; v0) 2 V � V ; j(v � v0):ej < "g ! 0 as "! 0: (14)

We are going to show that a slightly stronger condition than (14) is the key
of the problem.
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Theorem 2 We assume there exist 0 < � < 1 and � � 1 such that
X

k2Zn�

�
sup

e2Sn�1
d�
 d�

�
(v; v0) 2 V � V ; j(v � v0):ej < 1

jkj�
���

<1 (15)

where Zn� = Zn � f0g : Let m be the least even integer such that

m > max

�
�;

n

(1� �)

�
:

Then the remainder terms Rj(t) are weakly compact for all t � 0 and j �
m+1: In particular, (15) is satis�ed if there exist c > 0 and � > 0 such that

sup
e2Sn�1

d�
 d� f(v; v0) 2 V � V ; j(v � v0):ej < "g � c"�: (16)

Proof:

It su¢ces to prove there exists an integer j > 1 such that [MUM ]j�1 (t)
is weakly compact for all t � 0: Set j � 1 = m: We look for an even integer
m; i.e. m = 2p: In such a case, [MUM ]m =

�
[MUM ]2

�p
where

[MUM ]2 : ' 2 L1(
� V )! kd�k d�2(t) �M' 2 L1(
)
and

d�2(t) =

Z t

0

d�s � d�t�sds:

A simple calculation shows that the continuous Fourier transform of d�2(t)
evaluated at k 2 Zn is equal to

\d�(t)2(k) =

Z t

0

dd�s(k)[d�t�s(k)ds

wheredd�s is the continuous Fourier transform of d�s: Thus

\d�(t)2(k) =

Z t

0

�Z
e�iv:kd�s(v)

� �Z
e�iv

0:kd�t�s(v
0)

�
ds

=

Z t

0

�Z
e�isv:kd�(v)

� �Z
e�i(t�s)v

0:kd�(v0)

�
ds

=

Z Z �Z t

0

e�isv:ke�i(t�s)v
0:kds

�
d�(v)d�(v0)

=

Z Z
e�itv

0:k � e�itv:k

i(v � v0):k
d�(v)d�(v0):

14



Introducing the polar coordinates k = jkj e; e 2 Sn�1, we decompose the last
integral as

Z Z

j(v�v0):ej�"

e�itv
0:k � e�itv:k

i(v � v0):k
+

Z Z

j(v�v0):ej>"

e�itv
0:k � e�itv:k

i(v � v0):k

where " > 0 is arbitrary. Thus

���\d�(t)2(k)
��� � ct

Z Z

j(v�v0):ej�"

d�(v)d�(v0) +
2

jkj "

Z Z
d�(v)d�(v0)

where

ct = t sup
p6=q

����
eip � eiq

p� q

���� : (17)

Let 0 < � < 1 and " = jkj�� : Hence
���\d�(t)2(k)

��� is majorized by

ct sup
e2Sn�1

d�
 d�

�
(v; v0) 2 V � V ; j(v � v0):ej < 1

jkj�
�
(18)

+
2 kd�k2

jkj1��
= ctak + bk

where bk =
2kd�k2

jkj1��
: Note that fakgk and fbkgk do not depend on t: Clearly,

fbkgk 2 lq(Zn) for all q > n
(1��)

: On the other hand, according to (15),

fakgk 2 l�(Zn) and consequently

fak + bkg 2 lr(Zn) 8r > max
�
�;

n

(1� �)

�
: (19)

According to (12)

[MUM ]4 : ' 2 L1(
� V )! kd�k3 d�4(t) �M' 2 L1(
)

where

d�4(t) =

Z t

0

d�2(t� s) � d�2(s)ds

whence
\d�4(t)(k) =

Z t

0

\d�(t� s)2(k)\d�(s)2(k)ds

15



and
���\d�4(t)(k)

��� �
Z t

0

��� \d�(t� s)2(k)
���
���\d�(s)2(k)

��� ds

�
Z t

0

(ct�sak + bk)(csak + bk)ds

� tc02t (ak + bk)
2

where c02t := max f1; ctg : It follows, by induction, that
���\d�2p(t)(k)

��� � bc(p; t)(ak + bk)
p

where bc(p; t) is a constant (in k) depending only on t and p: According to
(19)

f(ak + bk)
pg 2 l rp (Zn) 8r > max

�
�;

n

(1� �)

�
:

By choosing an integer p � r
2
, we have r

p
� 2 and therefore

f(ak + bk)
pg 2 l2(Zn):

Hence, for m = 2p > max
n
�; n

(1��)

o
;
n
\d�m(t)(k)

o
2 l2(Zn): On the other

hand
[MUM ]m ' = d�m �M'

shows that the kth Fourier coe¢cient \d�m(t)(k)dM'k of the L
1(
)-function

[MUM ]m ' is majorized by
���\d�m(t)(k)

��� kM'kL1(
) 2 l2(Zn)

so that, by Parseval identity, [MUM ]m ' 2 L2(
): Hence, for m = 2p >

max
n
�; n

(1��)

o
; [MUM ]m maps continuously L1(
� V ) into L2(
) so that

[MUM ]m : L1(
� V )! L1(
)

is weakly compact. Finally, [MUM ]j�1 is weakly compact for j � 1 >

max
n
�; n

(1��)

o
and so is Rj(t). On the other hand, since

Ri+1(t) =

Z t

0

U(t� s)MRi(s)ds (i � 1)

16



([7] Lemma 2.2, p.15) then, by the convex compactness property of the strong
operator topology ([12] or [8]), it follows that Ri(t) is weakly compact for all
i � j .�

Remark 4 We point out that the weak compactness of some remainder term
Rm(t) for all t � 0 implies the compactness of Rm+2(t) (see [8]): Condition
(16) in Thm 2 is obviously satis�ed by Lebesgue measures on bounded open
sets or on spheres.

4 Model stationary equations with nonincom-

ing boundary conditions

Let 
 � Rn be an open set with �nite Lebesgue measure (not necessarily
bounded) and d� be a �nite and positive Radon measure on Rn with sup-
port V:We denote by fU(t); t � 0g the classical advection c0-semigroup with
nonincoming boundary conditions

U(t) : ' 2 L1(
� V )! '(x� tv; v)�(t < �(x; v)) 2 L1(
� V )

where �(x; v) = inf fs > 0; x� sv =2 
g : Let T be its generator. We do not
need its description. We note however that if @
 is �smooth� then

T' = �v:@'
@x

; ' 2 D(T )

where

D(T ) =

�
' 2 L1(
� V ); v:

@'

@x
; 'j�� = 0

�

�� := f(x; v) 2 @
� V ; v:n(x) < 0g
and n(x) is the unit outward normal at x 2 @
 (see, for instance, [16]). Let

(�� T )�1 : ' 2 L1(
� V )!
Z �(x;v)

0

e��t'(x� tv; v)dt (� > 0)

be the resolvent of T and let

M : ' 2 L1(
� V )! e'(:) =
Z
'(:; v) d�(v) 2 L1(
) (20)

17



be the (velocity) averaging operator. As in Section 2, we are concerned with
the weak compactness of some power of M(�� T )�1 and, similarly, we deal
�rst with the powers of M(� � T )�1M: The arguments are quite similar so
we do not enter into all the details. We start with the following observation:

Proposition 4 We assume that d� is invariant under the symmetry about
the origin v ! �v: If some power of M(��T )�1 is weakly compact then the
hyperplanes through the origin have zero d�-measure.

Proof:

We proceed exactly as in the proof of Prop 2. The main point is to show
that M(�� T )�1M is selfadjoint for � real. To this end, we note that

(M(�� T )�1M'; ) = ((�� T )�1M';M )

= (';M(�� T �)�1M )

where T � is the adjoint of T and

(�� T �)�1' =

Z �(x;�v)

0

e��t'(x+ tv; v)dt:

On the other hand

M(�� T �)�1M =

Z
d�(v)

Z �(x;�v)

0

e��tM'(x+ tv)dt

=

Z
d�(v)

Z �(x;v)

0

e��tM'(x� tv)dt

= M(�� T )�1M 

because d� is unvariant by the symmetry v ! �v: �
Thus it is natural to assume (4) for the sequel. We note that

U(t)' � RU1(t)E'; ' 2 L1+(
� V ) (21)

where
U1(t)' = '(x� tv; v); ' 2 L1(Rn � V )

is the advection c0-semigroup in the whole space,

E : L1(
� V )! L1(Rn � V )

18



is the trivial extension (by zero) to Rn � V and

R : L1(Rn � V )! L1(
� V )

is the restriction operator. It follows that

(�� T )�1' � R(�� T1)
�1E'; ' 2 L1+(
� V )

where

(�� T1)
�1 : ' 2 L1(Rn � V )!

Z 1

0

e��t'(x� tv; v)dt 2 L1(Rn � V ):

Since E and R commute with the averaging operator M; it follows that

M(�� T )�1M' � RM(�� T1)
�1ME':

It is easy to see, by induction, that
�
M(�� T )�1M

�m
' � R

�
M(�� T1)

�1M
�m
E'; ' 2 L1+(
� V ): (22)

Hence, by a domination argument; it su¢ces to prove that

R
�
M(�� T1)

�1M
�m
: L1(Rn � V )! L1(
)

is weakly compact. To this end, it su¢ces to show that [M(�� T1)
�1M ]

m

maps continuously L1(Rn � V ) into L2(Rn): Indeed, in such a case,

R
�
M(�� T1)

�1M
�m
: L1(Rn � V )! L2(
)

is continuous and

R
�
M(�� T1)

�1M
�m
: L1(Rn � V )! L1(
)

is weakly compact because the injection of L2(
) into L1(
) is weakly com-
pact since the Lebesgue measure of 
 is �nite. On the other hand, for
' 2 L1(Rn � V )

M(�� T )�1M' =

Z

Rn
d�(v)

Z 1

0

e��t(M')(x� tv)dt

=

Z 1

0

e��tdt

Z

Rn
(M')(x� tv)d�(v)

=

Z 1

0

e��tdt

Z

Rn
(M')(x� z) d�t(z)

19



where d�t is the image of d� under the dilation v ! tv: Hence

M(�� T )�1M' =

Z
(M')(x� z) d�(z) = d� �M' (23)

where

d� =

Z 1

0

e��td�tdt:

Moreover, the Fourier transform of the L1 function M(�� T )�1M' is equal
to Z 1

0

e��tdt

Z

Rn
e�it�:vdM'(�) d�(v) =

Z

Rn

d�(v)

�+ i�:v
:dM'(�):

Hence
cd�(�) =

Z

Rn

d�(v)

�+ i�:v
:

It follows that

�
M(�� T )�1M

�m
' = kd�km�1 d� �M'

where d� = d� � � � � � d� (m times) and

cd�(�) =
�Z

Rn

d�(v)

�+ i�:v

�m
:

Before stating the main result of this section, we recall again that Assumption
(4) that hyperplanes have zero d�-measure implies

Z

Rn

d�(v)

�+ i�:v
! 0 as j�j ! 1:

We are going to show that a slightly stronger condition is the key of the
problem.

Theorem 3 We assume that 
 has a �nite Lebesgue measure and there
exists an integer m such that

Z
d�

����
Z

Rn

d�(v)

�+ i�:v

����
2m

<1: (24)

Then [M(�� T )�1M ]
m
is weakly compact in L1(
�V ) and consequently so

is [M(�� T )�1]
m+1

: Moreover [M(�� T )�1]
m+2

is compact.

20



Proof:

It remains only to note that Condition (24) means that
h
cd�(:)

i
2 L2(Rn)

and consequently, by Parseval identity, d� is an L2(Rn)-function. It follows
that [M(�� T )�1M ]

m
' 2 L2(Rn) and this shows that [M(�� T )�1M ]

m
and

[M(�� T )�1]
m+1

are weakly compact in L1(
 � V ): The fact that M(� �
T )�1 maps weakly compact sets into compact sets ([2] Prop 3) implies that
[M(�� T )�1]

m+2
is compact. �

We give now a practical condition on d� which ensures (24):

Theorem 4 We suppose there exist c > 0 and � > 0 such that

sup
e2Sn�1

d� fv; jv:ej � "g � c"�

then (24) is satis�ed for all m > n(�+1)
2�

:

Proof:

We note that

���cd�(�)
��� =

����
Z

Rn

d�(v)

�+ i�:v

���� �
Z

Rn

d�(v)q
�2 + j�j2 je:vj2

where e = �

j�j
: Hence, for every " > 0;

���cd�(�)
��� � 1

�
d� fje:vj < "g+ kd�kj�j "

� (
1

�
+ kd�k)("� + 1

j�j "):

The choice " = 1

j�j
1

�+1
leads to

���cd�(�)
��� �

1

�
+kd�k

j�j
�

�+1
and to

���cd�(�)
���
2m

� ( 1
�
+ kd�k)2m

j�j
2m�
�+1

:

Hence it su¢ces that 2m�
�+1

> n, i.e. m > n(�+1)
2�

: �
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5 Model evolution equations with nonincom-

ing boundary conditions

We deal now with the c0-group fV (t); t 2 R g generated by T +M where M
is the velocity averaging operator (2): As in Section 3, we look for conditions
on d� under which

[MUM ]m = [MUM ] � � � � � [MUM ] (m times)

is weakly compact. According to (21)

U(t)' � RU1(t)E'; ' 2 L1+(
� V )

so that, for ' 2 L1+(
� V );

MU(t)M' �MRU1(t)EM' = RMU1(t)ME'

from which it follows easily that

[MUM ]m � R [MU1M ]
mE':

Thus, by a domination argument, it su¢ces to show that

R [MU1M ]
m : L1(Rn � V )! L1(
)

is weakly compact. To this end, it su¢ces that [MU1M ]
m maps continuously

L1(Rn�V ) into L2(Rn): Indeed, the injection of L2(
) into L1(
) is weakly
compact because 
 has a �nite Lebesgue measure. On the other hand,

MU1(t)M' =

Z
(M')(x� tv)d�(v)

=

Z
(M')(x� y)d�t(y)

= d�t �M'; ' 2 L1(Rn � V )

where d�t is the image of d� under the dilation v ! tv. On the other hand,
the operator [MU1(:)M ]

2 (t) acts as

'! d�: �M(d�: �M') = kd�k
Z t

0

d�s � d�t�s �M'ds
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i.e.
[MU1(:)M ]

2 ' = kd�k d�2(t) �M'

where

d�2(t) =

Z t

0

d�s � d�t�sds:

By induction,

[MU1(:)M ]
m ' = kd�km�1 d�m(t) �M'

where d�m(t) is de�ned inductively by

d�j+1(t) :=

Z t

0

d�s � d�j(t� s)ds; (j � 2):

By choosing an even integer m = 2p (p 2 N);

[MU1(:)M ]
2p ' = kd�k2p�1 d�2p(t) �M'

and consequently, the L1 Fourier transform of [MU1(:)M ]
2p ' is equal to

kd�k2p�1
�
\d�2(t)(�)

�p dM'(�):

As for the torus, a slightly stronger condition than (14) turns out to be the
key of the problem:

Theorem 5 We assume there exist 0 < � < 1 andm > n
(1��)

an even integer
such that
Z

j�j�1

d�

�
sup

e2Sn�1
d�
 d�

�
(v; v0) 2 V � V ; j(v � v0):ej < 1

j�j�
��m

<1

(25)
Then the remainder terms Rj(t) are weakly compact for all t � 0 and j �
m+ 1: In particular, if there exist c > 0 and � > 0 such that

sup
e2Sn�1

d�
 d� f(v; v0) 2 V � V ; j(v � v0):ej < "g � c"�

then Rj(t) are weakly compact for all t � 0 and j > n(�+1)
�

+ 1:
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Proof: As in Section 3,

\d�2(t)(�) =

Z t

0

dd�s(�)[d�t�s(�)ds

=

Z Z
e�itv

0:� � e�itv:�

i(v � v0):�
d�(v)d�(v0)

and
���\d�2(t)(�)

��� is majorized by

ct sup
e2Sn�1

d�
 d�

�
(v; v0) 2 V � V ; j(v � v0):ej < 1

j�j�
�
+
2 kd�k2

j�j1��
= cta(�) + b(�)

where ct = t supp6=q

��� eip�eiqp�q

��� and b(�) := 2kd�k2

j�j1��
: It follows that

���\d�4(t)(�)
��� =

����
Z t

0

\d�2(s)(�) \d�2(t� s)(�)ds

����

�
Z t

0

��� \d�2(s)(�)
���
��� \d�2(t� s)(�)

��� ds

�
Z t

0

(csa(�) + b(�))(ct�sa(�) + b(�))ds

� ct(2)(a(�) + b(�))
2

where ct(2) is a constant in �: It follows, by induction, that
���\d�2p(t)(�)

��� � ct(p)(a(�) + b(�))
p

where ct(p) is a constant in �: Thus the modulus of the Fourier transform of
[MU1(:)M ]

2p ' is majorized by

ct(p) kd�k2p�1
���dM'(�)

��� (a(�) + b(�))p

� ct(p) kd�k2p�1 kM'kL1 (a(�) + b(�))p:

Hence, knowing that m = 2p; [MU1(:)M ]
m ' belongs to L2(Rn) provided

that Z

j�j�1

(a(�) + b(�))md� <1

24



and therefore provided that
Z

j�j�1

a(�)md� +

Z

j�j�1

b(�)md� <1:

Since b(�) = 2kd�k2

j�j1��
; this is possible if

Z

j�j�1

a(�)md� <1 with m >
n

1� �
(26)

which amounts to our assumption (25): Hence [MU1(:)M ]
m is weakly com-

pact and so is Rm+1(t): By the convex compactness property of the strong
operator topology, it follows that Rj(t) is weakly compact for all j � m+ 1:
If supe2Sn�1 d� fv; jv:ej � "g � c"� then

a(�) + b(�) � c
1

j�j�� +
2 kd�k2

j�j1��
:

The choice �� = 1 � � (i.e. � = 1
�+1
) leads to a(�) + b(�) � c0

j�j
�

�+1
and (25)

amounts to m > n(�+1)
�

: �
As for the torus, the weak compactness of some remainder term Rm(t)

for all t � 0 implies the compactness of Rm+2(t) (see [8]).

6 Complementary results

In the present section, we show the optimality, in some sense, of the preceed-
ing results. We restrict ourselves to nonincoming boundary conditions.

Theorem 6 Let n � 3 and 
 � Rn be a convex open set. Then:
(i)

(�� T +M)�1 � (�� T )�1

is not weakly compact.
(ii) For all t > 0; V (t)� U(t) is not weakly compact.

Proof:

(i) It is easy to see that

(�� T +M)�1 � (�� T )�1 =

1X

m=1

(�� T )�1
�
M(�� T )�1

�m
(27)
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so that
(�� T +M)�1 � (�� T )�1M(�� T )�1

in the lattice sense. Hence the weak compactness of (��T+M)�1�(��T )�1
would imply that (��T )�1M(��T )�1 is also weakly compact: Let us show
that the latter is not weakly compact if n � 3: It is easy to see that

(�� T )�1M(�� T )�1f

=

Z �(x;v)

0

e��tdt

Z

V

d�(v0)

Z �(x;v0)

0

e��sf(x� tv � sv0; v0)ds

=

Z

V

d�(v0)

Z �(x;v)

0

Z �(x;v0)

0

e��te��sf(x� tv � sv0; v0)dsdt

=

Z

V

d�(v0)

Z 1

0

Z 1

0

e��te��sf(x� tv � sv0; v0)dsdt

where f has been extended by zero outside 
 thanks to the convexity of 
:
Let ffjgj � L1(
�V ) be a normalized sequence converging in the weak star
topology of measures to the Dirac mass �(0;v) = �x=0
 �v=v where v 2 V: Let
 2 C0(
 � V ) the space of continuous functions on 
 � V tending to zero
at the boundary @
: Then

Z


�V

((�� T )�1M(�� T )�1fj) 

is equal to

Z

V

d�(v)

Z




 (x; v)dx

Z

V

d�(v0)

Z 1

0

Z 1

0

e��te��sfj(x� tv � sv0; v0)dsdt

or
Z

V

d�(v)

Z

V

d�(v0)

Z 1

0

Z 1

0

e��te��sdsdt

Z




 (y + tv + sv0; v)fj(y; v
0)dy

=

Z


�V

dyd�(v0)fj(y; v
0)

�Z

V

d�(v)

Z 1

0

Z 1

0

e��te��s (y + tv + sv0; v)dsdt

�

which tends to
Z

V

d�(v)

Z 1

0

Z 1

0

e��te��s (tv + sv; v)dsdt:
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where  has been extended by zero outside 
: Thus (�� T )�1M(�� T )�1fj
converges, in the weak start topology, to the �nite Radon measure d� on

� V :

 2 C0(
� V )!
Z

V

d�(v)

Z 1

0

Z 1

0

e��te��s (tv + sv; v)dsdt

We claim that d� is not a function. Suppose the contrary, i.e. there exists
f 2 L1(
� V ) such that 8 2 C0(
� V )
Z

V

d�(v)

Z 1

0

Z 1

0

e��te��s (tv + sv; v)dsdt =

Z


�V

f(x; v) (x; v)dxd�(v):

On the other hand, since for d�-almost all v 2 V;
f(:; v) : x! f(x; v) 2 L1(
)

then, for d�-almost all v 2 V; the measure on 


 2 C(
)!
Z 1

0

Z 1

0

e��te��s (tv + sv)dsdt (28)

is equal to the L1 function f(:; v); i:e: is a density measure

 2 C(
)!
Z




f(x; v) (x)dx:

This is impossible since the measure (28) is supported on the bidimensional
linear space spanned by v and v: This shows that (� � T )�1M(� � T )�1 is
not weakly compact.
(ii) The Dyson-Philips expansion V (t) � U(t) =

P1
j=1 Uj(t) shows that

V (t) � U(t) � U1(t) in the lattice sense so that the weak compactness of
V (t) � U(t) for some t > 0 would imply that U1(t) is also weakly compact.
Let us show that U1(t) is not weakly compact. Note that

U1(t)f =

Z t

0

U(t� s)MU(s)fds

is equal to
Z t

0

ds

Z
f(x� (t� s)v � sv0; v0)�

� fs < �(x� (t� s)v; v0)g� ft� s < �(x; v)g d�(v0)

=

Z t

0

ds

Z
f(x� (t� s)v � sv0; v0)� f(s; t);x� (t� s)v � sv0 2 
 g d�(v0)
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where x 2 
: Let  2 C0(
 � V ): Let ffjgj � L1(
 � V ) be a normalized
sequence converging in the weak star topology of measures to the Dirac mass
�(0;v) = �x=0 
 �v=v where v 2 V: Then hU1(t)fj;  i is equal to

Z


�V

dxd�(v) (x; v)

Z t

0

ds

Z
fj(x� (t� s)v � sv0; v0)�

� f(s; t);x� (t� s)v � sv0 2 
 g d�(v0)

=

Z
d�(v)

Z
d�(v0)

Z t

0

ds

Z




 (x; v)fj(x� (t� s)v � sv0; v0)�

� f(s; t);x� (t� s)v � sv0 2 
 g dx

=

Z
d�(v)

Z
d�(v0)

Z t

0

ds

Z




 (y + (t� s)v + sv0; v)fj(y; v
0)�

� f(s; t); y + (t� s)v + sv0 2 
 g dy

=

Z


�V

fj(y; v
0)dxd�(v)

Z
d�(v)

Z t

0

 (y + (t� s)v + sv0; v)�

� f(s; t); y + (t� s)v + sv0 2 
 g ds

and therefore fU1(t)fjg converges in the weak star topology of measures on

� V to

 2 C(
�V )!
Z
d�(v)

Z t

0

 ((t�s)v+sv; v)� f(s; t); y + (t� s)v + sv0 2 
 g ds:

Let us show that it is not a function: Suppose there exists f 2 L1(
 � V )
such that

Z
d�(v)

Z t

0

 ((t� s)v + sv; v)� f(s; t); y + (t� s)v + sv0 2 
 g ds

=

Z


�V

f(x; v) (x; v)dxd�(v):

Then, for d�-almost all v 2 V;
Z t

0

 ((t�s)v+sv; v)� f(s; t); y + (t� s)v + sv0 2 
 g ds =
Z




f(x; v) (x; v)dx

and consequently, for d�-almost all v 2 V; the Radon measure on 


 2 C(
)!
Z t

0

 ((t� s)v + sv)� f(s; t); y + (t� s)v + sv0 2 
 g ds (29)
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is an L1 function, namely f(:; v); and this is not possible since the support
of (29) is contained in the bidimensional linear space spanned by v and v: �

Remark 5 It is not di¢cult to show that (��T+M)�1�(��T )�1 is weakly
compact if and only if (� � T )�1M(� � T )�1 is. Thus, Thm 6 shows that
we cannot hope to avoid the hypothesis that some �iterate� of M(��T )�1 is
weakly compact. Similarly, V (t)�U(t) is weakly compact if and only if U1(t)
is and Thm 6 shows that we cannot avoid to appeal to remainder terms Rj(t)
with j � 2: This justi�es, a posteriori, Vidav�s assumptions [13] [14] but only
for the L1 theory. The situation is completely di¤erent in Lp (1 < p < 1)
[9] : As in Prop 1, we can show that if the hyperplanes have zero d�-measure
then (� � T + M)�1 � (� � T )�1 maps weakly compact sets into compact
ones. The same result holds for V (t) � U(t) if the a¢ne hyperplanes have
zero d�-measure [8].

The case n = 1 is quite surprising. Indeed, we have:

Theorem 7 Let n = 1 and 
 = ]�a; a[ : Let d� be a positive Radon measure
on R with support V:
(i) M(�� T )�1 is an integral operator but is not weakly compact.
(ii) If d� f0g = 0 then (�� T )�1M is a compact (integral) operator and

consequently (�� T +M)�1 � (�� T )�1 is compact.
(iii) We assume that d� is such that d� f[v � "; v + "]g ! 0 as " ! 0

uniformly in v 2 V: Then V (t)� U(t) is weakly compact for all t � 0:
Proof:

(i) The fact that M(� � T )�1 is not weakly compact has been noted in
Prop 1. It is also easy to see that it is an integral operator.
(ii) We note that

O' = (�� T )�1M' =

8
<
:

1
jvj

R x
�a
e��

jx�yj
jvj M'(y)dy if v > 0

1
jvj

R a
x
e��

jx�yj
jvj M'(y)dy if v < 0:

Let fhkgk be a sequence of continuous functions with compact supports such
that, for each k, hk vanishes in some neighborhood of v = 0 and hk ! 1 in
L1(V ) (note that d� is �nite and d� f0g = 0): We �approximate� O by

Ok : '!

8
<
:

hk(v)
jvj

R x
�a
e��

jx�yj
jvj M'(y)dy if v > 0

hk(v)
jvj

R a
x
e��

jx�yj
jvj M'(y)dy if v < 0:
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It is not di¢cult to prove that Ok is a compact operator in L
1(
 � V ): On

the other hand,

kO'�Ok'k =

Z +1

0

d�(v)

Z a

�a

dx

����
1� hk(v)

jvj

Z x

�a

e��
jx�yj
jvj M'(y)dy

����

+

Z 0

�1

d�(v)

Z a

�a

dx

����
1� hk(v)

jvj

Z a

x

e��
jx�yj
jvj M'(y)dy

����

�
Z +1

0

d�(v)

Z a

�a

dx
j1� hk(v)j

jvj

Z x

�a

e��
jx�yj
jvj M j'j (y)dy

+

Z 0

�1

d�(v)

Z a

�a

dx
j1� hk(v)j

jvj

Z a

x

e��
jx�yj
jvj M j'j (y)dy

�
Z +1

0

d�(v)

Z 1

�1

dx
j1� hk(v)j

jvj

Z a

�a

e��
jx�yj
jvj M j'j (y)dy

+

Z 0

�1

d�(v)

Z 1

�1

dx
j1� hk(v)j

jvj

Z a

�a

e��
jx�yj
jvj M j'j (y)dy

=
2

�

Z +1

0

d�(v) j1� hk(v)j
Z a

�a

M j'j (y)dy

+
2

�

Z 0

�1

d�(v) j1� hk(v)j
Z a

�a

M j'j (y)dy:

Hence

kO �Okk �
2 kMkL(L1;L1)

�
k1� hkkL1(V ) ! 0 as k !1

which shows that O is compact.
(iii) We recall that V (t)�U(t) is weakly compact for all t � 0 if and only

if U1(t) is weakly compact for all t � 0 [7] Chap 2, Thm 2.6. Let us show
that U1(t) is weakly compact. We note that U1(t)' is equal to

Z t

0

ds

Z
'(x� (t� s)v � sv0; v0)� f(s; t);x� (t� s)v � sv0 2 
g d�(v0)

=

Z
d�(v0)

Z t

0

'(x� (t� s)v � sv0; v0)� f(s; t);x� (t� s)v � sv0 2 
g ds:

On the other hand, � f(s; t);x� (t� s)v � sv0 2 
g = 1 amounts to

x� tv + s(v � v0) 2 ]�a; a[
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so
Z t

0

'(x� (t� s)v � sv0; v0)� f(s; t);x� (t� s)v � sv0 2 
g ds

=

( R (x�tv0)^a
(x�tv)_(�a)

'(y; v0) dy

jv�v0j
if v0 < vR (x�tv)^a

(x�tv0)_(�a)
'(y; v0) dy

jv�v0j
if v0 > v

and

U1(t)' =

Z v

�1

d�(v0)

Z (x�tv0)^a

(x�tv)_(�a)

'(y; v0)
dy

jv � v0j

+

Z 1

v

d�(v0)

Z (x�tv)^a

(x�tv0)_(�a)

'(y; v0)
dy

jv � v0j
= O1'+O2':

Let us show that both O1 and O2 are weakly compact. We restrict ourselves
for instance to O1 since the same argument holds for O2: Note that O1 is an
integral operator

O1' =

Z

V

Z +a

�a

'(y; v0)E(v; v0; x; y)dyd�(v0)

with kernel

E(v; v0; x; y) := � fv0 < vg� fy + tv0 � x � y + tvg jv � v0j�1 (30)

Let

O"1 : '!
Z

V

Z +a

�a

'(y; v0)E"(v; v
0; x; y)dyd�(v0)

with kernel

E"(v; v
0; x; y) = E(v; v0; x; y)� fjv � v0j � "g :

One sees that O"1 is weakly compact since E"(:; :; :; :) is bounded and [�a; a]�
V has a �nite measure. It su¢ces to show that O"1 ! O1 as " ! 0 in the
norm operator topology. We note that kO1'�O"1'k is equal to

Z

V

d�(v)

Z +a

�a

dx

Z

V

Z +a

�a

j'(y; v0)jE(v; v0; x; y)� fjv � v0j < "g dyd�(v0)

=

Z

V

d�(v0)

Z +a

�a

j'(y; v0)j dy
Z

V

� fjv � v0j < "g d�(v)
Z +a

�a

E(v; v0; x; y)dx:
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On the other hand, (30) shows that

Z +a

�a

E(v; v0; x; y)dx � jv � v0j�1
Z y+tv

y+tv0
dx = t

whence

kO1'�O"1'k � t

Z

V

d�(v0)

Z +a

�a

j'(y; v0)j dy
Z

V

� fjv � v0j < "g d�(v)

� t sup
v02V

d� f[v0 � "; v0 + "]g k'k

and
kO1 �O"1k � t sup

v02V
d� f[v0 � "; v0 + "]g ! 0 as "! 0:

Remark 6 (i) Note that the assumption supv02V d� f[v0 � "; v0 + "]g ! 0 as
"! 0 is satis�ed by the Lebesgue measure on R:
(ii) If V is bounded then supv02V d� f[v0 � "; v0 + "]g ! 0 as " ! 0 is

equivalent to the assumption that d� is di¤use, i.e. d� fv0g = 0 for all
v0 2 V:
(iii) The (weak) compactness of (��T )�1K in one dimension has already

been proved in [6] for general collision operator K:
(iv) The case n = 2 is a limiting case between the two di¤erent situations

described in Thm 6 and Thm 7. However we conjecture the plausible result:

Conjecture 1 Thm 6 is still true for n = 2:

Remark 7 Thm 6 (ii) solves in the positive (for n � 3) a conjecture by the
author [7] Chap 4. This conjecture turned out to be false in Lp (1 < p <1)
(see [9]):

7 Applications to spectral theory

In this section, we show how the above compactness results provide a sound
foundation to the L1 spectral theory. We restrict ourselves to nonincoming
boundary conditions but the same results hold on the torus. Let 
 � Rn

be an arbitrary open set with �nite Lebesgue measure and d� be a positive
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(not necessarily �nite) Radon measure on Rn with support V: Let K be a
collision operator

K : ' 2 L1(
� V )!
Z

V

k(x; v; v0)'(x; v0)d�(v0) 2 L1(
� V )

with the natural assumption
Z

V

jk(:; v; :)j d�(v) 2 L1(
� V ):

Let
�
V K(t); t � 0

	
the c0-semigroup generated by T +K: Following B. Lods

[5], we suppose thatK is regular in L1 in the sense that the family of operators
(indexed by x 2 
)

 2 L1(V )!
Z

V

k(x; v; v0)'(v0)d�(v0) 2 L1(V )

is collectively weakly compact. This amounts to

fjk(x; :; v0)j ; (x; v0) 2 
� V g is relatively weakly compact (31)

in L1(V ): This assumption can be checked by the well-known Dunford-Pettis
criterion (see [1]). We note that the positive collision operator

jKj : ' 2 L1(
� V )!
Z

V

jk(x; v; v0)j'(x; v0)d�(v0) 2 L1(
� V )

is also regular. On the other hand,
���K(�� T )�1

�m
'
�� �

�
jKj (�� T )�1

�m j'j

and ��UKj (t)'
�� � U

jKj
j (t) j'j

where
�
UKj
	
denotes the terms of the Dyson-Philips expansion of V K(t) andn

U
jKj
j

o
those of the semigroup V jKj(t) generated by T + jKj : Thus, as far as

the weak compactness is concerned, by using domination arguments, there is
no loss of generality to assume that the collision operator K is positive. On
the other hand, if ki(x; v; v

0) = k(x; v; v0)�fv2V ;jvj�ig and

Ki' =

Z

V

ki(x; v; v
0)'(x; v0)d�(v0)
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then

kK'�Ki'k �
Z


�fv2V ;jvj>ig

Z

V

k(x; v; v0) j'(x; v0)j d�(v0)

� sup
(x;v0)2
�V

Z

fv2V ;jvj>ig

k(x; v; v0)d�(v) k'kL1(
�V )

and, by (31);

kK'�Ki'k � sup
(x;v0)2
�V

Z

fv2V ;jvj>ig

k(x; v; v0)d�(v)! 0 as i!1:

Thus, we may replace K by some truncation Ki since [K(�� T )�1]
m
and

UKj (t) depends continuously on K in the norm operator topology . This
means that we may suppose without loss of generality that V is bounded and
consequently that d� is �nite. A basic property of a positive regular collision
operator is that it can be approximated in the norm operator topology by
collision operators dominated by collision operators of the form

' 2 L1(
� V )! f(v)

Z

V

'(x; v0)d�(v0) (32)

where f 2 L1(V ) [5] : Thus we may assume that K has the form (32). By
approximation again we may suppose that f 2 L1(V ) \ L1(V ) and �nally,
by a domination argument, we may even assume that f is a constant c: In
such a case, the collision operator K is nothing but the velocity averaging
operator

M : ' 2 L1(
� V )! c

Z

V

'(x; v0)d�(v0):

Hence, the following compactness results are simple consequences of Thm 3,
Thm 4 and Thm 5.

Theorem 8 Let 
 � Rn (n � 2) be an arbitrary open set with �nite Lebesgue
measure. Let d� be a positive (not necessarily �nite) Radon measure on Rn

and K be a regular collision operator in the sense (31):
(i) We assume that for all c > 0 there exist c0 > 0 and � > 0 such that

sup
e2Sn�1

d� fv; jvj � c; jv:ej � "g � c0"�: (33)

Then some power of K(�� T )�1 is weakly compact.
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(ii) We assume that for all c > 0 there exist c0 > 0 and � > 0 such that

sup
e2Sn�1

d�
 d� f(v; v0); jvj � c; jv0j � c; j(v � v0):ej < "g � c0"�: (34)

Then some remainder term of the Dyson-Philips expansion is weakly compact.

Remark 8 In general, the advection semigroup U(t) contains an absorption
term, i.e., has the form:

U(t)' = e�
R t
0
�(x�sv;v)ds'(x� tv; v)�ft��(x;v)g

where �(:; :) 2 L1(
 � V ) (or at least bounded below) is the collision fre-
quency. Mathematically speaking, this does not add any di¢culty since, by
domination arguments, we may assume that �(:; :) is a constant. Thus Thm
8 above remains true.

Remark 9 For n = 1, we have more precise results since Thm 7 remains
true for regular collision operators.

We are ready to summarize the spectral results:

Theorem 9 Let 
 � Rn be an arbitrary open set with �nite Lebesgue mea-
sure. Let d� be a positive (not necessarily �nite) Radon measure on Rn and
K be a regular collision operator in the sense (31):
(i) Let n � 2: If (33) is satis�ed then �(T + K) \ fRe� > s(T )g con-

sists of at most isolated eigenvalues with �nite algebraic multiplicities where
s(T ) is the spectral bound of T . If (34) is satis�ed then fU(t); t � 0g and
fV (t); t � 0g have the same essential type and consequently, in the region�
�; j�j > es(T )t

	
; �(V (t)) consists of at most isolated eigenvalues with �nite

algebraic multiplicities.
(ii) Let n = 1: If d� f0g = 0 then �(T + K) \ fRe� > s(T )g con-

sists of at most isolated eigenvalues with �nite algebraic multiplicities. If
supv02V d� f[v0 � "; v0 + "]g ! 0 as " ! 0 then �(V (t)) \

�
�; j�j > es(T )t

	

consists of at most isolated eigenvalues with �nite algebraic multiplicities.

Remark 10 Apart from the one dimensional case where, thanks to Thm 7,
we can appeal to the stability of the essential spectrum by weakly compact
perturbation [4], the analysis of �(T + K) \ fRe� � s(T )g and �(V (t)) \�
�; j�j � es(T )t

	
for n � 2 relies on di¤erent tools [10].
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8 On L1 �averaging lemmas�

We know that in all dimensions M(� � T )�1 is never (weakly) compact [2]
Example 1 or Prop 1 (i) above. It may be of interest to look for practical
bounded subsets of L1(
�V ) which are mapped byM(��T )�1 into (weakly)
compact sets. We will restrict ourselves to nonincoming boundary conditions.

Theorem 10 Let n = 1 and 
 = ]�a; a[ : Let d� be a positive Radon mea-
sure on R such that d� f0g = 0: If � � L1(
� V ) is a bounded subset such
that Z "

�"

d�(v)

Z a

�a

j'(y; v)j dy ! 0 as "! 0 (35)

uniformly in ' 2 �; then fM(�� T )�1'; ' 2 �g is relatively compact in
L1(
):

Proof:

A simple calculation shows that

(�� T )�1' =

8
<
:

1
jvj

R x
�a
e��

jx�yj
jvj '(y; v)dy if v > 0

1
jvj

R a
x
e��

jx�yj
jvj '(y; v)dy if v < 0

so that

M(�� T )�1' =

Z 1

0

d�(v)
1

jvj

Z x

�a

e��
jx�yj
jvj '(y; v)dy

+

Z 0

�1

d�(v)
1

jvj

Z a

x

e��
jx�yj
jvj '(y; v)dy = O':

Let O" the truncated operator

'!
Z 1

"

d�(v)
1

jvj

Z x

�a

e��
jx�yj
jvj '(y; v)dy+

Z �"

�1

d�(v)
1

jvj

Z a

x

e��
jx�yj
jvj '(y; v)dy:

A simple calculation shows that O" is a compact operator on L
1(
� V ): On

the other hand

O'�O"' =

Z "

�"

d�(v)
1

jvj

Z x

�a

e��
jx�yj
jvj '(y; v)dy
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and

kO'�O"'k �
Z 1

�1

dx

Z "

�"

d�(v)
1

jvj

Z a

�a

e��
jx�yj
jvj j'(y; v)j dy

�
Z "

�"

d�(v)
1

jvj

Z a

�a

�Z 1

�1

e��
jx�yj
jvj dx

�
j'(y; v)j dy

=

Z "

�"

d�(v)
1

jvj

Z a

�a

�Z 1

�1

e��
jzj
jvjdz

�
j'(y; v)j dy

=
2

�

Z "

�"

d�(v)

Z a

�a

j'(y; v)j dy:

Hence, by (35); kO'�O"'k ! 0 as " ! 0 uniformly in ' 2 �: This shows
that

fO'; ' 2 �g = fO"'+ (O'�O"'); ' 2 �g 8" > 0
is relatively compact in L1(
): �

Remark 11 This result improves [2] Lemma 8, where it is assumed that
d� f[�"; "]g � c" and that � is a bounded subset of Lp [d�(v); L1(dx)] for
some p > 1:

Remark 12 It is clear that the same arguments used in the proof of Thm 7
(ii) show also that (�� eT )�1M is compact in L1 where eT' = v:@'

@x
and

D(eT ) =
�
' 2 L1; v:@'

@x
2 L1; 'j�+ = 0

�

so that, by duality, we obtain an averaging lemma in L1(
� V ) :

Theorem 11 Let n = 1 and 
 = ]�a; a[ : Let d� be a positive Radon mea-
sure on R such that d� f0g = 0: Then M(� � T )�1 : L1(
 � V ) ! L1(
)
is compact.

Remark 13 This result complements Lemma 7 in [2] where a stronger (Hölder)
regularity for velocity averages is obtained under the stronger assumption that
d� f[�"; "]g � c" .

We extend now Thm 10 to arbitrary dimensions under a stronger assump-
tion.
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Theorem 12 Let 
 � Rn (n � 2) be a bounded and convex open subset and
V = Rn endowed with the Lebesgue measure. Let

M : ' 2 L1(
�Rn; dx
 dv)!
Z

Rn
'(x; v)dv 2 L1(
):

Let � � L1(
�Rn) be a bounded subset. We assume that � is �equicon-
tinuous with respect to velocities� in the senseZ


�Rnv

j'(y; v + z)� '(y; v)j dydv ! 0 (36)

as z ! 0 uniformly in ' 2 �: Then fM(�� T )�1';' 2 �g is relatively
compact in L1(
):

Proof:

We note that

(�� T )�1' =

Z 1

0

e��t'(x� tv; v)dt; (x 2 
)

where ' has been extended by zero to Rnx with respect to the space variable:
Moreover,

M(�� T )�1' =

Z

Rn
dv

Z 1

0

e��t'(x� tv; v)dt

and a simple change of variable yield

 =M(�� T )�1' =

Z 1

0

e��t
dt

tn

Z

Rn
'(y;

x� y

t
)dy:

It su¢ces to show that
R
j (x+ z)�  (x)j dx ! 0 uniformly in ' 2 � as

z ! 0: We note thatZ
j (x+ z)�  (x)j dx �

Z 1

0

e��t
dt

tn

Z

Rn
dy

Z ����'(y;
x+ z � y

t
)� '(y;

x� y

t
)

���� dx

=

Z 1

0

e��tdt

Z

Rn
dy

Z ���'(y; v + z

t
)� '(y; v)

��� dv

=

Z "

0

e��tdt

Z

Rn
dy

Z ���'(y; v + z

t
)� '(y; v)

��� dv

+

Z 1

"

e��tdt

Z

Rn
dy

Z ���'(y; v + z

t
)� '(y; v)

��� dv

� 2" k'kL1 +
Z 1

"

e��tdt

Z

Rn
dy

Z ���'(y; v + z

t
)� '(y; v)

��� dv:
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On the other hand, by assumption, there exists � > 0 such that

Z

Rn
dy

Z ���'(y; v + z

t
)� '(y; v)

��� dv � "

uniformly in ' 2 � if
�� z
t

�� � �. This is true for all t � " if jzj � "� and
consequently

Z
j (x+ z)�  (x)j dx � 2" k'kL1 + ��1"

and the proof is complete. �

Remark 14 A result in the same spirit and with a di¤erent proof appeared
recently [3] under a weaker assumption : The set � is assumed to satisfy
only some �equiintegrability� with respect to velocities: However, the proof is
quite involved. On the other hand, arguing as in the proof of Thm 12, we can
derive a weak compactness result when � is only �equiintegrable� with respect
to velocities. Indeed:

De�nition 1 A bounded subset of L1(Rnx �Rnv ; dx
 dv) is said to be �equi-
integrable� with respect to velocities if for each " > 0 there exists � > 0 such
that for each measurable familly (Ay)y2Rn of measurable subsets of R

n satis-
fying jAyj � � we have

R
dy
R
Ay
j'(y; v)j dv � " uniformly in ' 2 � where

jAyj is the Lebesgue measure of Ay:

Theorem 13 Let 
 � Rn (n � 2) be a bounded and convex open subset and
V = Rn endowed with the Lebesgue measure. Let � � L1(
�Rn) be bounded
and �equiintegrable� with respect to velocities. Then fM(�� T )�1';' 2 �g
is relatively weakly compact in L1(
):

Proof :
We start as in the proof of Thm 12. We have

 =M(�� T )�1' =

Z 1

0

e��t
dt

tn

Z

Rn
'(y;

x� y

t
)dy:
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It remains to prove that
R
A
j (x)j dx ! 0 as jAj ! 0 uniformly in ' 2 �:

We note that
Z

A

j (x)j dx �
Z 1

0

e��t
dt

tn

Z

Rn
dy

Z

A

����'(y;
x� y

t
)

���� dx

=

Z 1

0

e��tdt

Z

Rn
dy

Z

A�y
t

j'(y; v)j dv

=

Z "

0

e��tdt

Z

Rn
dy

Z

A�y
t

j'(y; v)j dv

+

Z 1

"

e��tdt

Z

Rn
dy

Z

A�y
t

j'(y; v)j dv

� " k'kL1 +
Z 1

"

e��tdt

Z

Rn
dy

Z

A�y
t

j'(y; v)j dv:

On the other hand
����
A� y

t

���� =
1

tn
jA� yj = 1

tn
jAj � 1

"n
jAj (t � ")

and the �equiintegrability� with respect to velocities show that
Z

Rn
dy

Z

A�y
t

j'(y; v)j dv � "

uniformly in ' 2 � and in t � " if jAj is small enough. It follows that
Z

A

j (x)j dx � " k'kL1 + ��1" � (c+ ��1)"

uniformly in ' 2 � if jAj is small enough and the proof is complete. �
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