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On L 1 compactness in transport theory

We give a systematic and nearly optimal treatment of the compactness in connection with the L 1 spectral theory of neutron transport equations on both n-dimensional torus and spatial domains with …nite volume and nonincoming boundary conditions. Some L 1 "averaging lemmas" are also given.

Introduction

A main feature of spectra of transport operators in nuclear reactor theory relies on the compactness (or weak compactness in L 1 ) of some power of K( T ) 1 where T denotes the advection operator

T ' = v @' @x (x; v)'
with suitable boundary conditions and K is the collision operator which describes the interactions of neutrons with the host medium. Indeed, according to Gohberg-Schmulyan's theorem [START_REF] Vidav | Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator[END_REF] ; (T + K) \ fRe > s(T )g (the socalled asymptotic spectrum of T ) consists of at most isolated eigenvalues with …nite algebraic multiplicities where s(T ) is the spectral bound of T s(T ) = sup fRe ; 2 (T )g :

On the other hand, the time asymptotic behavior (t ! 1) of the c 0semigroup fV (t); t 0g generated by T + K; which governs the Cauchy 1 problem @' @t + v @' @x + (x; v)' + K' = 0; '(0) = ' 0 ;

depends heavily on the spectrum of fV (t); t 0g outside the disc ; j j e s(T )t ;

(see [START_REF] Vidav | Spectra of perturbed semigoups with applications to transport theory[END_REF]). Of course, e tf (T +K)\fRe >s(T )gg (e t(T +K) ) \ ; j j > e s(T )t :

However, this inclusion is a priori strict because of the lack, in general, of a spectral mapping theorem. Thus a direct spectral analysis of e t(T +K) is necessary. To this end, we expand V (t) into a Dyson-Philips expansion

V (t) = 1 X 0 U j (t)
where U 0 (t) = e tT ; U j+1 (t) = Z t 0 U 0 (s)KU j (t s)ds (j 0):

A basic result is that (1) is an equality if some remainder term R m (t) is compact (or weakly compact in L 1 ) where

R m (t) = 1 X j=m U j (t)
(see [START_REF] Vidav | Spectra of perturbed semigoups with applications to transport theory[END_REF] [17] [START_REF] Voigt | Stability of the essential type of strongly continuous semigroups[END_REF] [19] [START_REF] Schlüchtermann | Perturbation of linear semigroups[END_REF] and [START_REF] Mokhtar-Kharroubi | Mathematical Topics in neutron transport theory[END_REF] Chap 2 for more details): In such a case, (e t(T +K) ) \ ; j j > e s(T )t (the so-called asymptotic spectrum of V (t)) consists of, at most, isolated eigenvalues with …nite algebraic multiplicities. Thus, the asymptotic spectral theory of the transport operator T relies on the compactness of some power of K( T ) 1 while the asymptotic spectral theory of the corresponding semigroup relies on the compactness of some remainder term R m (t): These are the two basic compactness problems in neutron transport theory. Of course, there exists a great deal of works on this topic since the …fties already covering all the usual models (see [START_REF] Mokhtar-Kharroubi | Mathematical Topics in neutron transport theory[END_REF] Chap 4 and references therein). In a recent work [START_REF] Mokhtar-Kharroubi | Optimal spectral theory of neutron transport models[END_REF] the author gave necessary and su¢cient compactness results for tranport equations in L p spaces (1 < p < 1) in terms of properties of the velocity measure. This provides us with an optimal spectral theory for neutron tranport equations for both periodic boundary conditions and classical nonincoming boundary conditions. The mathematical analysis relies on "Fourier integral" type arguments. This approach, of course, does not cover the (physical) L 1 spaces. The present paper deals with the L 1 theory. We obtain nearly optimal theorems by using new mathematical tools. Indeed, some relevant operators are shown to be convolution operators with suitable Radon measures. The Fourier analysis of such measures enables us to derive smoothing properties of their convolution iterates from which various weak compactness results are obtained. In Section 2 and Section 3, we deal with transport equations with model collision operators on the n-dimensional torus. A thorough analysis of the di¤erent aspects of (weak) compactness is given with detailled proofs. In Section 4 and Section 5, we treat transport equations on domains with …nite volume (not necessarilly bounded) and nonincoming boundary conditions; the treatment is quite similar (with some modi…cations) and the proofs are only sketched. In Section 6 we give much more precise results (similar to that of the L p theory [START_REF] Mokhtar-Kharroubi | Optimal spectral theory of neutron transport models[END_REF]) in one dimension and show that these results are no longer true in n dimensions with n 3. In Section 7 we show how the above compactness results provide a complete foundation of the L 1 spectral theory of neutron transport equations for general collision operators. Although they have not a direct connection with the main purpose of this paper, we give in the last section some L 1 "averaging lemmas" which improve or complement some known results.

Model stationary equations on the torus

Let be the n-dimensional torus (n 1) we identify with [0; 2 ] n . We identify L 1 ( ) with the locally integrable [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF] n -periodic functions on R n . Similarly, C( ) denotes the continuous [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF] n -periodic functions on R n : Let d be a positive …nite Radon measure on R n with support V: Let fU (t); t 2 Rg be the c 0 -group of isometries

U (t) : ' 2 L 1 ( V ) ! '(x tv; v) 2 L 1 ( V )
where V is endowed with the product measure dx d : The in…nitesimal generator of fU (t); t 2 Rg is given by

T : ' 2 D(T ) ! v: @' @x 2 L 1 ( V )
with

D(T ) = ' 2 L 1 ( V ); v: @' @x 2 L 1 ( V )
where the directional derivative v: @' @x is taken in the sense of periodic distribution. The resolvent of T , for > 0; is given by

( T ) 1 : ' 2 L 1 ( V ) ! Z 1 0 e t '(x tv; v)dt:
We are concerned with the smoothing properties of M ( T ) 1 where

M : ' 2 L 1 ( V ) ! e '(:) := Z '(:; v) d (v) 2 L 1 ( ) (2) 
is the so called (velocity) averaging operator. More precisely, we are looking for necessary and (or) su¢cient conditions on the measure d such that some power of M ( T ) 1 is weakly compact or compact. We start with the following result which was …rst pointed out in ([2] Prop 3 and example 1) for the whole space.

Proposition 1 (i) The operator

M ( T ) 1 : L 1 ( V ) ! L 1 ( )
is not weakly compact: (ii) If the hyperplanes through the origin have zero d -measure then M ( T ) 1 maps weakly compact sets into compact sets.

Proof:

The proof is the same as that given in [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF] : However, for the reader's convenience, we resume it here.

(i) Let ff j g j L 1 ( V ) be a normalized sequence converging in the weak star topology of measures to the Dirac mass (0;v) = x=0 v=v where v 2 V: Then, for a 2 C( );

hM ( T ) 1 f j ; i = Z (x)dx Z d (v) Z 1 0 e t f j (x tv; v)dt = Z 1 0 e t dt Z d (v) Z tv (y + tv)f j (y; v)dy = Z 1 0 e t dt Z d (v) Z (y + tv)f j (y; v)dy = Z 1 0 e t dt Z V (y + tv)f j (y; v)dyd (v) = Z V Z 1 0 e t (y + tv)dt f j (y; v)dyd (v) and hM ( T ) 1 f j ; i ! Z 1 0 e t (tv)dt as j ! 1 i.e. M ( T ) 1 f j converges to the Radon measure 2 C( ) ! Z 1 0 e t (tv)dt
supported on the line Rv and consequently M (

T ) 1 f is not weakly compact if n > 1: If n = 1 and if 0 2 V then the choice v = 0 shows that M ( T ) 1 f j converges to the Dirac measure 1 x=0 : Of course, if n = 1 and if 0 = 2 V it is easy to see that M ( T ) 1 is a compact operator. (ii) Let L 1 ( V ) be relatively weakly compact. We have to prove that if g = M ( T ) 1 f; f 2 ; then Z jg(x + h) g(x)j dx ! 0 uniformly in f 2 (3) 
as h ! 0: We write g = g 1 + g 2 where

g 1 = M ( T ) 1 (f ff > g ) and g 2 = M ( T ) 1 (f ff < g ):
We note that

Z jg 1 (x + h) g 1 (x)j dx 2 kg 1 k 2 kM k Z ff > g jf (x; v)j dxd (v)
and

dxd ff > g kf k c ! 0 so that, by the equi-integrability of ; Z ff > g jf (x; v)j dxd (v) ! 0 uniformly in f 2
as ! 1. Thus, for " > 0, Z jg 1 (x + h) g 1 (x)j dx " uniformly in f 2 for large enough. We …x this : Then

f ff < g ; f 2 is a bounded subset of L 2 (
V ) and consequently fg 2 ; f 2 g is relatively compact in L 2 ( ) (see [START_REF] Mokhtar-Kharroubi | Optimal spectral theory of neutron transport models[END_REF] Thm 9) and consequently relatively compact in L 1 ( ) so that

Z jg 2 (x + h) g 2 (x)j dx ! 0 uniformly in f 2
as h ! 0: This proves (3): Before giving our compactness results we derive a necessary condition.

Proposition 2

We assume that d is invariant under the symmetry about the origin v ! v: If some power of M ( T ) 1 is weakly compact then the hyperplanes through the origin have zero d -measure.

Proof:

Since the square of a weakly compact operator in L 1 is compact [START_REF] Dunford | Linear Operators, Part I[END_REF], we may assume that some power of M ( T ) 1 is compact. Then some power of M ( T ) 1 M is also compact. On the other hand, since

M ( T ) 1 M maps also L p ( V ) into L p ( ) for all p 2 [1; 1] then, by interpolation, some power of M ( T ) 1 M : L 2 ( V ) ! L 2 ( )
is compact too. We may assume, without loss of generality that

M ( T ) 1 M 2 m : L 2 ( V ) ! L 2 ( )
is compact for some integer m: On the other hand, M ( T ) 1 M is selfadjoint for real. Indeed,

(M ( T ) 1 M '; ) = (( T ) 1 M '; M ) = Z Z V dxd (v) Z 1 0 e t (M ')(x tv)dt(M )(x) = Z V d (v) Z 1 0 e t Z dx(M ')(x tv)dt(M )(x) = Z V d (v) Z 1 0 e t Z dy(M ')(y)dt(M )(y + tv) = Z 1 0 e t Z dy(M ')(y)dt Z V d (v)(M )(y + tv) = Z 1 0 e t Z dy(M ')(y)dt Z V d (v)(M )(y tv) = Z Z V dyd (v)(M ')(y) Z 1 0 e t (M )(y tv)dt = (M '; ( T ) 1 M ) = ('; M ( T ) 1 M ): Hence the compactness of [M ( T ) 1 M ] 2 m implies the compactness of [M ( T ) 1 M ] 2 m 1
by the fact that the square of a selfadjoint operator O is compact if and only if O is. It follows, by induction, that M ( T ) 1 M is compact. We use now Vladimirov's argument [START_REF] Vladimirov | Mathematical Problems in the One-velocity Theory of Particle Transport[END_REF] as in [START_REF] Mokhtar-Kharroubi | La compacité dans la théorie du transport des neutrons[END_REF] to prove that ( T ) 1 M is compact. It follows that M ( T ) 1 is compact and this implies that the hyperplanes through the origin have zero d -measure ([7] Remark 3.1, p. 35).

From now on we assume that

The hyperplanes through the origin have zero d -measure.

If we except the dimension one (see Section 6), Assumption (4) alone does not seem to be su¢cient to derive compactness results (see however [START_REF] Mokhtar-Kharroubi | On the strong convex compactness property for the strong operator topology and related topics[END_REF] for Dunford-Pettis results). However, some slightly stronger condition will be.

To this end, we recall the following:

Lemma 1 ([7] lemma 3.1, p. 32) All the hyperplanes through the origin have zero d -measure if and only if sup e2S n 1 d fv; jv:ej "g ! 0 as " ! 0:

A key point in our subsequent analysis is that M ( T ) 1 M is a convolution operator with a suitable Radon measure d whose Fourier properties turn out to play a crucial role. The fact to interpret various operators (related to tranport equations) as convolution with suitable measures was introduced by the author in ([7] Chap 4) but was not fully exploited.

Lemma 2 There exists a Radon measure d on R n such that

M ( T ) 1 M ' = Z R n (M ')(x y)d (y) = d M ':
Moreover, the Fourier transform of d is given by

c d ( ) = Z R n e i :y d (y) = Z d (v) + i :v ( 2 R n ): (5) 
Proof:

We point out that the above convolution does not take place on the torus but on R n . Moreover, d M ' 2 L 1 ( ):

We note that

M ( T ) 1 M ' = Z 1 0 e t dt Z R n (M ')(x tv) d (v) = Z 1 0 e t dt Z R n (M ')(x z) d t (z)
where d t is the image of d under the dilation v ! tv: Hence

M ( T ) 1 M ' = Z (M ')(x z) d (z) = d M ' (6) 
where

d = Z 1 0 e t d t dt denotes the measure 2 C( ) ! Z 1 0 e t hd t ; idt: Morevoer, the k th Fourier coe¢cient of the L 1 ( )-function M ( T ) 1 M ' is equal to Z e ik:x dx Z 1 0 e t dt Z R n (M ')(x tv) d (v) = Z 1 0 e t dt Z R n e itk:v d M ' k d (v) = ( Z R n d (v) + ik:v ) [ M ' k = c d (k) [ M ' k where [ M ' k is the k th Fourier coe¢cient of the L 1 ( )-function M ' and c d (k) is the continuous Fourier transform of d on R n evaluated at k 2 Z n : Remark 1 Assumption (4) that hyperplanes have zero d -measure implies R R n d (v)
+i :v ! 0 as j j ! 1 (see, for instance, [START_REF] Mokhtar-Kharroubi | Mathematical Topics in neutron transport theory[END_REF] Chap 3), i.e. c d ( ) ! 0 as j j ! 1: In particular

c d (k) ! 0 as jkj ! 1 (k 2 Z n ): (7) 
We are going to show that a slightly stronger assumption than [START_REF] Mokhtar-Kharroubi | Mathematical Topics in neutron transport theory[END_REF] is the key of the problem.

Theorem 1 We assume there exists s 1 such that

X k2Z n c d (k) s < 1: (8) 
Let m be the least integer such that (8) is satis…ed with s = 2m:

Then [M ( T ) 1 ] m+1 is weakly compact and [M ( T ) 1 ] m+2 is compact. Proof: According to Lemma 2 M ( T ) 1 M 2 ' = d [M (d M ')] = kd k d (d M ') = kd k (d d ) M ':
We show by induction that

M ( T ) 1 M m ' = kd k m 1 d M ' where d = d d d ( m times). Hence the k th Fourier coe¢cient of [M ( T ) 1 M ] m ' is equal to kd k m 1 c d (k)M ' k = kd k m 1 h c d (k) i m M ' k :
On the other hand, according to (8);

nh c d (k) i m o k 2 l 2 (Z n ) and consequently nh c d (k) i m M ' k o k 2 l 2 (Z n ) since fM ' k g k 2 c 0 (Z n ): Then Parseval identity yields M ( T ) 1 M m ' 2 L 2 ( ):
This shows that [M (

T ) 1 M ] m maps continuously L 1 ( V ) into L 2 ( ) and consequently M ( T ) 1 M m : L 1 ( V ) ! L 1 ( )
is weakly compact since the injection of L 2 ( ) in L 1 ( ) is weakly compact by the Dunford-Pettis criterion of weak compactness. We note that

M 2 = kd k M and consequently [M ( T ) 1 ] m+1 is weakly compact in L 1 ( V ); i.e.

maps bounded sets into weakly compact ones and consequently

[M ( T ) 1 ]
m+2 is compact since, by Prop 1, M ( T ) 1 maps weakly compact sets into compact sets.

Remark 2 Is (8) true for all d satisfying (4) ? If not, is it possible to characterize those measures satisfying (8) ? A su¢cient condition is provided by the following: Proposition 3 We suppose there exist 0 < < 1 and 1 such that

X k2Z n sup e2S n 1 d jv:ej 1 jkj < 1: (9) 
Then (8) is satis…ed for even integer s = 2m > max n ; n 1 o : In particular, if there exist > 0 and c > 0 such that sup e2S n 1 d fv; jv:ej "g c" [START_REF] Mokhtar-Kharroubi | On the essential spectrum of transport operators in L 1 spaces[END_REF] then (9) is satis…ed.

Proof:

We note that

c d (k) Z d (v) j + ik:vj = Z d (v) q 2 + jkj 2 je:vj 2 where e = k jkj 2 S n 1 : Thus c d (k) Z je:vj " d (v) q 2 + jkj 2 je:vj 2 + Z je:vj>" d (v) q 2 + jkj 2 je:vj 2 1 d fjv:ej "g + kd k q 2 + jkj 2 " 2 :
Choose " = 1 jkj . Then, for k 6 = 0; 

kd k q 2 + jkj 2 " 2 kd k jkj " = kd k jkj 1 so kd k p 2 +jkj 2 " 2 k 2 l 2m (Z n ) if 2(1 )m > n, i.e. for all m > n 2(1 ) : Moreover, according to (9), sup e2S n 1 d jv:ej 1 jkj k 2 l 2m (Z n ) if 2m whence n c d (k) o k 2 l 2m (Z n ) if 2m > max n ; n

On model evolution equations on the torus

We deal now with the c 0 -group fV (t); t 2 R g generated by T + M where M is the velocity averaging operator (2): We recall that this perturbed group is given by a Dyson-Philips expansion

V (t) = 1 X j=0 U j (t) (11) 
where

U 0 (t) = U (t) and U j (t) = Z t 0 U (t s)M U j 1 (s)ds (j 1): Let R m (t) = P 1 j=m U j (t) (m 1)
be the remainder terms of the Dyson-Philips expansion [START_REF] Schlüchtermann | Perturbation of linear semigroups[END_REF]: We are concerned in this section with conditions on the velocity measure d under which some remainder term R m (t) is weakly compact. We observe that U j = [U M ] j U (j 1) where is the convolution operator which associates to strongly continuous (operator valued) mappings

f; g : [0; 1[ ! L(L 1 ( V ))
the strongly continuous mapping

f g : t 2 [0; 1[ ! Z t 0 f (t s)g(s)ds 2 L(L 1 ( V ))
and

[U M ] j = (U M ) (U M ) (j times):
We note that: f; g ! f g is associative. We recall (see [START_REF] Mokhtar-Kharroubi | Mathematical Topics in neutron transport theory[END_REF] Chap 2, Thm 2.6, p. 16) that R m (t) is weakly compact for all t 0 if and only if U m (t) is. According to the convex compactness property of the strong operator topology ( [START_REF] Schlüchtermann | On weakly compact operators[END_REF] or [START_REF] Mokhtar-Kharroubi | On the strong convex compactness property for the strong operator topology and related topics[END_REF]), the weak compactness of [U M ] m (t) for all t 0 implies the weak compactness of

U m (t) = Z t 0 [U M ] m (s)U (t s)ds:
Thus, we may deal with

[U M ] m = [U M ] [U M ] [U M ] (m times).
On the other hand, since M 2 = kd k M , one sees that

[U M ] m (t) = 1 kd k m 2 U [M U M ] [M U M ]
where the term [M U M ] appears m 1 times. By appealing againg to the convex compactness property of the strong operator topology, we may deal with the weak compactness of [M U M ] m 1 : The basic strategy in this section relies on the fact that [M U M ] m 1 is a convolution operator with a suitable Radon measure whose Fourier properties will play a key role.

Lemma 3 Let m 2 N (m 1). There exists a Radon measure

d m on R n such that [M U M ] m ' = d m M ': (12) 
Proof:

Arguing as in the proof of Lemma 2,

M U (t)M ' = Z M '(x tv)d (v) = Z M '(x y)d t (y) = d t M '
where d t is the image of d under the dilation v ! tv: Note again that the convolution above takes place on R n : Observe that the mapping

t > 0 ! d t 2 M ( ) is strongly continuous, i.e. t > 0 ! hd t ; 'i = Z '(x tv)d (v)
is continuous. We have

[M U M ] 2 (t)' = Z t 0 M U (t s)M M U (s)M 'ds = Z t 0 d t s M (M U (s)M ')ds = kd k Z t 0 d t s (d s M ')ds = kd k Z t 0 (d t s d s ) M 'ds = kd k Z t 0 (d t s d s )ds M ': = kd k d 2 (t) M '
where the integral

d 2 (t) = Z t 0 (d t s d s )ds
is taken in the strong sense, i.e.

hd 2 (t); 'i = Z t 0 hd t s d s ; 'ids:

One sees, by induction, that

[M U M ] m (t)' = kd k m 1 d m (t) M ' (13) 
where d m (t) is de…ned inductively by

d m (t) = Z t 0 (d t s d m 1 (s))ds (m > 2)
which ends the proof. Before stating the main result of this section we recall ([9] Lemma 2) that the a¢ne (i.e. translated) hyperplanes have zero d -measure if and only if

sup e2S n 1 d d f(v; v 0 ) 2 V V ; j(v v 0 ):ej < "g ! 0 as " ! 0: (14) 
We are going to show that a slightly stronger condition than [START_REF] Vidav | Spectra of perturbed semigoups with applications to transport theory[END_REF] is the key of the problem.

Theorem 2 We assume there exist 0 < < 1 and

1 such that X k2Z n sup e2S n 1 d d (v; v 0 ) 2 V V ; j(v v 0 ):ej < 1 jkj < 1 ( 15 
)
where Z n = Z n f0g : Let m be the least even integer such that m > max ; n (1 ) :

Then the remainder terms R j (t) are weakly compact for all t 0 and j m + 1: In particular, (15) is satis…ed if there exist c > 0 and > 0 such that

sup e2S n 1 d d f(v; v 0 ) 2 V V ; j(v v 0 ):ej < "g c" : (16) 
Proof: It su¢ces to prove there exists an integer j > 1 such that [M U M ] j 1 (t) is weakly compact for all t 0: Set j 1 = m: We look for an even integer m; i.e. m = 2p:

In such a case, [M U M ] m = [M U M ] 2 p where [M U M ] 2 : ' 2 L 1 ( V ) ! kd k d 2 (t) M ' 2 L 1 ( ) and 
d 2 (t) = Z t 0 d s d t s ds:
A simple calculation shows that the continuous Fourier transform of d 2 (t)

evaluated at k 2 Z n is equal to \ d (t) 2 (k) = Z t 0 d d s (k) [ d t s (k)ds where d d s is the continuous Fourier transform of d s : Thus \ d (t) 2 (k) = Z t 0 Z e iv:k d s (v) Z e iv 0 :k d t s (v 0 ) ds = Z t 0 Z e isv:k d (v) Z e i(t s)v 0 :k d (v 0 ) ds = Z Z Z t 0 e isv:k e i(t s)v 0 :k ds d (v)d (v 0 ) = Z Z e itv 0 :k e itv:k i(v v 0 ):k d (v)d (v 0 ):
Introducing the polar coordinates k = jkj e; e 2 S n 1 , we decompose the last integral as

Z Z j(v v 0 ):ej " e itv 0 :k e itv:k i(v v 0 ):k + Z Z j(v v 0 ):ej>" e itv 0 :k e itv:k i(v v 0 ):k
where " > 0 is arbitrary. Thus

\ d (t) 2 (k) c t Z Z j(v v 0 ):ej " d (v)d (v 0 ) + 2 jkj " Z Z d (v)d (v 0 )
where

c t = t sup p6 =q
e ip e iq p q : (17

) Let 0 < < 1 and " = jkj : Hence \ d (t) 2 (k) is majorized by c t sup e2S n 1 d d (v; v 0 ) 2 V V ; j(v v 0 ):ej < 1 jkj (18) 
+ 2 kd k 2 jkj 1 = c t a k + b k where b k = 2kd k 2 jkj 1
: Note that fa k g k and fb k g k do not depend on t: Clearly, fb k g k 2 l q (Z n ) for all q > n (1 ) : On the other hand, according to (15), fa k g k 2 l (Z n ) and consequently

fa k + b k g 2 l r (Z n ) 8r > max ; n (1 ) : (19) 
According to (12) 

[M U M ] 4 : ' 2 L 1 ( V ) ! kd k 3 d 4 (t) M ' 2 L 1 ( ) where 
d 4 (t) = Z t 0 d 2 (t s) d 2 (s)ds whence \ d 4 (t)(k) = Z t 0 \ d (t s) 2 (k) \ d (s) 2 (k)ds and \ d 4 (t)(k) Z t 0 \ d (t s) 2 (k) \ d (s) 2 (k) ds Z t 0 (c t s a k + b k )(c s a k + b k )ds tc 02 t (a k + b k )
f(a k + b k ) p g 2 l r p (Z n ) 8r > max ; n (1 ) : 
By choosing an integer p r 2 , we have r p 2 and therefore

f(a k + b k ) p g 2 l 2 (Z n ): Hence, for m = 2p > max n ; n (1 ) o ; n \ d m (t)(k) o 2 l 2 (Z n ): On the other hand [M U M ] m ' = d m M ' shows that the k th Fourier coe¢cient \ d m (t)(k) d M ' k of the L 1 ( )-function [M U M ] m ' is majorized by \ d m (t)(k) kM 'k L 1 ( ) 2 l 2 (Z n ) so that, by Parseval identity, [M U M ] m ' 2 L 2 ( ): Hence, for m = 2p > max n ; n (1 ) 
o

; [M U M ] m maps continuously L 1 ( V ) into L 2 ( ) so that [M U M ] m : L 1 ( V ) ! L 1 ( ) is weakly compact. Finally, [M U M ] j 1 is weakly compact for j 1 > max n ; n (1 ) 
o and so is R j (t). On the other hand, since 

R i+1 (t) = Z t 0 U (t s)M R i (s)ds (i
U (t) : ' 2 L 1 ( V ) ! '(x tv; v) (t < (x; v)) 2 L 1 ( V )
where (x; v) = inf fs > 0; x sv = 2 g : Let T be its generator. We do not need its description. We note however that if @ is "smooth" then

T ' = v: @' @x ; ' 2 D(T )
where

D(T ) = ' 2 L 1 ( V ); v: @' @x ; ' j = 0 := f(x; v) 2 @ V ; v:n(x) < 0g
and n(x) is the unit outward normal at x 2 @ (see, for instance, [START_REF] Voigt | Functional analytic treatment of the initial boundary value problem for collisionless gases[END_REF]). Let

( T ) 1 : ' 2 L 1 ( V ) ! Z (x;v) 0 e t '(x tv; v)dt ( > 0)
be the resolvent of T and let

M : ' 2 L 1 ( V ) ! e '(:) = Z '(:; v) d (v) 2 L 1 ( ) (20) 
be the (velocity) averaging operator. As in Section 2, we are concerned with the weak compactness of some power of M ( T ) 1 and, similarly, we deal …rst with the powers of M ( T ) 1 M: The arguments are quite similar so we do not enter into all the details. We start with the following observation: Proposition 4 We assume that d is invariant under the symmetry about the origin v ! v: If some power of M ( T ) 1 is weakly compact then the hyperplanes through the origin have zero d -measure.

Proof:

We proceed exactly as in the proof of Prop 2. The main point is to show that M ( T ) 1 M is selfadjoint for real. To this end, we note that

(M ( T ) 1 M '; ) = (( T ) 1 M '; M ) = ('; M ( T ) 1 M )
where T is the adjoint of T and

( T ) 1 ' = Z (x; v) 0 e t '(x + tv; v)dt:
On the other hand

M ( T ) 1 M = Z d (v) Z (x; v) 0 e t M '(x + tv)dt = Z d (v) Z (x;v) 0 e t M '(x tv)dt = M ( T ) 1 M because d is unvariant by the symmetry v ! v:
Thus it is natural to assume (4) for the sequel. We note that

U (t)' RU 1 (t)E'; ' 2 L 1 + ( V ) (21) 
where

U 1 (t)' = '(x tv; v); ' 2 L 1 (R n V )
is the advection c 0 -semigroup in the whole space,

E : L 1 ( V ) ! L 1 (R n V )
is the trivial extension (by zero) to R n V and

R : L 1 (R n V ) ! L 1 ( V )
is the restriction operator. It follows that

( T ) 1 ' R( T 1 ) 1 E'; ' 2 L 1 + ( V )
where

( T 1 ) 1 : ' 2 L 1 (R n V ) ! Z 1 0 e t '(x tv; v)dt 2 L 1 (R n V ):
Since E and R commute with the averaging operator M; it follows that

M ( T ) 1 M ' RM ( T 1 ) 1 M E':
It is easy to see, by induction, that

M ( T ) 1 M m ' R M ( T 1 ) 1 M m E'; ' 2 L 1 + ( V ): (22) 
Hence, by a domination argument; it su¢ces to prove that

R M ( T 1 ) 1 M m : L 1 (R n V ) ! L 1 ( )
is weakly compact. To this end, it su¢ces to show that [M (

T 1 ) 1 M ] m maps continuously L 1 (R n V ) into L 2 (R n ): Indeed, in such a case, R M ( T 1 ) 1 M m : L 1 (R n V ) ! L 2 ( ) is continuous and R M ( T 1 ) 1 M m : L 1 (R n V ) ! L 1 ( )
is weakly compact because the injection of L 2 ( ) into L 1 ( ) is weakly compact since the Lebesgue measure of is …nite. On the other hand, for

' 2 L 1 (R n V ) M ( T ) 1 M ' = Z R n d (v) Z 1 0 e t (M ')(x tv)dt = Z 1 0 e t dt Z R n (M ')(x tv)d (v) = Z 1 0 e t dt Z R n (M ')(x z) d t (z)
where d t is the image of d under the dilation v ! tv: Hence

M ( T ) 1 M ' = Z (M ')(x z) d (z) = d M ' (23) 
where

d = Z 1 0 e t d t dt:
Moreover, the Fourier transform of the

L 1 function M ( T ) 1 M ' is equal to Z 1 0 e t dt Z R n e it :v d M '( ) d (v) = Z R n d (v) + i :v : d M '( ): Hence c d ( ) = Z R n d (v) + i :v : It follows that M ( T ) 1 M m ' = kd k m 1 d M '
where d = d d (m times) and

c d ( ) = Z R n d (v) + i :v m :
Before stating the main result of this section, we recall again that Assumption (4) that hyperplanes have zero d -measure implies Z

R n d (v) + i :v ! 0 as j j ! 1:
We are going to show that a slightly stronger condition is the key of the problem.

Theorem 3

We assume that has a …nite Lebesgue measure and there exists an integer m such that

Z d Z R n d (v) + i :v 2m < 1: (24) Then [M ( T ) 1 M ] m is weakly compact in L 1 ( V ) and consequently so is [M ( T ) 1 ] m+1 : Moreover [M ( T ) 1 ] m+2 is compact.

Proof:

It remains only to note that Condition (24) means that

h c d (:) i 2 L 2 (R n )
and consequently, by Parseval identity, d is an

L 2 (R n )-function. It follows that [M ( T ) 1 M ] m ' 2 L 2 (R n ) and this shows that [M ( T ) 1 M ] m and [M ( T ) 1 ] m+1 are weakly compact in L 1 ( V ):
The fact that M ( T ) 1 maps weakly compact sets into compact sets ([2] Prop 3) implies that [M ( T ) 1 ] m+2 is compact. We give now a practical condition on d which ensures (24): Theorem 4 We suppose there exist c > 0 and > 0 such that sup e2S n 1 d fv; jv:ej "g c" then (24) is satis…ed for all m > n( +1) 2 :

Proof: We note that c d ( ) = Z R n d (v) + i :v Z R n d (v) q 2 + j j 2 je:vj 2
where e = j j : Hence, for every " > 0;

c d ( ) 1 d fje:vj < "g + kd k j j " ( 1 + kd k)(" + 1 j j "
):

The choice " = 1 j j

1 +1
leads to c d ( )

1 +kd k j j +1 and to c d ( ) 2m ( 1 + kd k) 2m j j 2m +1
:

Hence it su¢ces that 2m +1 > n, i.e. m > n( +1) 2 :

i.e.

[M U 1 (:

)M ] 2 ' = kd k d 2 (t) M '
where

d 2 (t) = Z t 0 d s d t s ds:
By induction,

[M U 1 (:)M ] m ' = kd k m 1 d m (t) M '
where d m (t) is de…ned inductively by

d j+1 (t) := Z t 0 d s d j (t s)ds; (j 2):
By choosing an even integer m = 2p (p 2 N );

[M U 1 (:)M ] 2p ' = kd k 2p 1 d 2p (t) M '
and consequently, the

L 1 Fourier transform of [M U 1 (:)M ] 2p ' is equal to kd k 2p 1 \ d 2 (t)( ) p d M '( ):
As for the torus, a slightly stronger condition than (14) turns out to be the key of the problem:

Theorem 5 We assume there exist 0 < < 1 and m > n (1 ) an even integer such that Z

j j 1 d sup e2S n 1 d d (v; v 0 ) 2 V V ; j(v v 0 ):ej < 1 j j m < 1 (25)
Then the remainder terms R j (t) are weakly compact for all t 0 and j m + 1: In particular, if there exist c > 0 and > 0 such that

sup e2S n 1 d d f(v; v 0 ) 2 V V ; j(v v 0 ):ej < "g c"
then R j (t) are weakly compact for all t 0 and j > n( +1) + 1:

Proof: As in Section 3,

\ d 2 (t)( ) = Z t 0 d d s ( ) [ d t s ( )ds = Z Z e itv 0 : e itv: i(v v 0 ): d (v)d (v 0 )
and \ d 2 (t)( ) is majorized by

c t sup e2S n 1 d d (v; v 0 ) 2 V V ; j(v v 0 ):ej < 1 j j + 2 kd k 2 j j 1 = c t a( ) + b( )
where c t = t sup p6 =q e ip e iq p q and b( ) := 2kd k 2 j j 1

: It follows that

\ d 4 (t)( ) = Z t 0 \ d 2 (s)( ) d 2 (t s)( )ds Z t 0 \ d 2 (s)( ) \ d 2 (t s)( ) ds Z t 0 (c s a( ) + b( ))(c t s a( ) + b( ))ds c t (2)(a( ) + b( )) 2
where c t (2) is a constant in : It follows, by induction, that

\ d 2p (t)( ) c t (p)(a( ) + b( )) p
where c t (p) is a constant in : Thus the modulus of the Fourier transform of

[M U 1 (:)M ] 2p ' is majorized by c t (p) kd k 2p 1 d M '( ) (a( ) + b( )) p c t (p) kd k 2p 1 kM 'k L 1 (a( ) + b( )) p : Hence, knowing that m = 2p; [M U 1 (:)M ] m ' belongs to L 2 (R n ) provided that Z j j 1 (a( ) + b( )) m d < 1
and therefore provided that

Z j j 1 a( ) m d + Z j j 1 b( ) m d < 1: Since b( ) = 2kd k 2 j j 1 ; this is possible if Z j j 1 a( ) m d < 1 with m > n 1 (26) 
which amounts to our assumption (25): Hence [M U 1 (:)M ] m is weakly compact and so is R m+1 (t): By the convex compactness property of the strong operator topology, it follows that R j (t) is weakly compact for all j m + 1:

If sup e2S n 1 d fv; jv:ej "g c" then a( ) + b( ) c 1 j j + 2 kd k 2 j j 1 :
The choice = 1 (i.e. = 1 +1 ) leads to a( ) + b( ) c 0 j j +1 and (25) amounts to m > n( +1) :

As for the torus, the weak compactness of some remainder term R m (t) for all t 0 implies the compactness of R m+2 (t) (see [START_REF] Mokhtar-Kharroubi | On the strong convex compactness property for the strong operator topology and related topics[END_REF]).

Complementary results

In the present section, we show the optimality, in some sense, of the preceeding results. We restrict ourselves to nonincoming boundary conditions. Theorem 6 Let n 3 and R n be a convex open set. Then:

(i) ( T + M ) 1 ( T ) 1
is not weakly compact.

(ii) For all t > 0; V (t) U (t) is not weakly compact.

Proof:

(i) It is easy to see that

( T + M ) 1 ( T ) 1 = 1 X m=1 ( T ) 1 M ( T ) 1 m (27)
so that

( T + M ) 1 ( T ) 1 M ( T ) 1
in the lattice sense. Hence the weak compactness of ( T +M ) 1 ( T ) 1 would imply that ( T ) 1 M ( T ) 1 is also weakly compact: Let us show that the latter is not weakly compact if n 3: It is easy to see that

( T ) 1 M ( T ) 1 f = Z (x;v) 0 e t dt Z V d (v 0 ) Z (x;v 0 ) 0 e s f (x tv sv 0 ; v 0 )ds = Z V d (v 0 ) Z (x;v) 0 Z (x;v 0 ) 0 e t e s f (x tv sv 0 ; v 0 )dsdt = Z V d (v 0 ) Z 1 0 Z 1 0 e t e s f (x tv sv 0 ; v 0 )dsdt
where f has been extended by zero outside thanks to the convexity of : Let ff j g j L 1 ( V ) be a normalized sequence converging in the weak star topology of measures to the Dirac mass (0;v) = x=0 v=v where v 2 V: Let 2 C 0 ( V ) the space of continuous functions on V tending to zero at the boundary @ : Then Z

V (( T ) 1 M ( T ) 1 f j ) is equal to Z V d (v) Z (x; v)dx Z V d (v 0 ) Z 1 0 Z 1 0 e t e s f j (x tv sv 0 ; v 0 )dsdt or Z V d (v) Z V d (v 0 ) Z 1 0 Z 1 0 e t e s dsdt Z (y + tv + sv 0 ; v)f j (y; v 0 )dy = Z V dyd (v 0 )f j (y; v 0 ) Z V d (v) Z 1 0 Z 1 0 e t e s (y + tv + sv 0 ; v)dsdt which tends to Z V d (v) Z 1 0 Z 1 0 e t e s (tv + sv; v)dsdt:
where has been extended by zero outside : Thus ( T ) 1 M ( T ) 1 f j converges, in the weak start topology, to the …nite Radon measure d on V :

2 C 0 ( V ) ! Z V d (v) Z 1 0 Z 1 0 e t e s (tv + sv; v)dsdt
We claim that d is not a function. Suppose the contrary, i.e. there exists

f 2 L 1 ( V ) such that 8 2 C 0 ( V ) Z V d (v) Z 1 0 Z 1 0 e t e s (tv + sv; v)dsdt = Z V f (x; v) (x; v)dxd (v):
On the other hand, since for d -almost all v 2 V;

f (:; v) : x ! f (x; v) 2 L 1 ( ) then, for d -almost all v 2 V; the measure on 2 C( ) ! Z 1 0 Z 1 0 e t e s (tv + sv)dsdt (28) 
is equal to the L 1 function f (:; v); i:e: is a density measure

2 C( ) ! Z f (x; v) (x)dx:
This is impossible since the measure (28) is supported on the bidimensional linear space spanned by v and v: This shows that ( T ) 1 M ( T ) 1 is not weakly compact.

(ii) The Dyson-Philips expansion

V (t) U (t) = P 1 j=1 U j (t) shows that V (t) U (t)
U 1 (t) in the lattice sense so that the weak compactness of V (t) U (t) for some t > 0 would imply that U 1 (t) is also weakly compact. Let us show that U 1 (t) is not weakly compact. Note that

U 1 (t)f = Z t 0 U (t s)M U (s)f ds is equal to Z t 0 ds Z f (x (t s)v sv 0 ; v 0 ) fs < (x (t s)v; v 0 )g ft s < (x; v)g d (v 0 ) = Z t 0 ds Z f (x (t s)v sv 0 ; v 0 ) f(s; t); x (t s)v sv 0 2 g d (v 0 )
where x 2 : Let 2 C 0 ( V ): Let ff j g j L 1 ( V ) be a normalized sequence converging in the weak star topology of measures to the Dirac mass

(0;v) = x=0
v=v where v 2 V: Then hU 1 (t)f j ; i is equal to

Z V dxd (v) (x; v) Z t 0 ds Z f j (x (t s)v sv 0 ; v 0 ) f(s; t); x (t s)v sv 0 2 g d (v 0 ) = Z d (v) Z d (v 0 ) Z t 0 ds Z (x; v)f j (x (t s)v sv 0 ; v 0 ) f(s; t); x (t s)v sv 0 2 g dx = Z d (v) Z d (v 0 ) Z t 0 ds Z (y + (t s)v + sv 0 ; v)f j (y; v 0 ) f(s; t); y + (t s)v + sv 0 2 g dy = Z V f j (y; v 0 )dxd (v) Z d (v) Z t 0 (y + (t s)v + sv 0 ; v)
f(s; t); y + (t s)v + sv 0 2 g ds and therefore fU 1 (t)f j g converges in the weak star topology of measures on V to

2 C( V ) ! Z d (v)
Z t 0 ((t s)v+sv; v) f(s; t); y + (t s)v + sv 0 2 g ds:

Let us show that it is not a function: Suppose there exists

f 2 L 1 ( V ) such that Z d (v) Z t 0 ((t s)v + sv; v) f(s; t); y + (t s)v + sv 0 2 g ds = Z V f (x; v) (x; v)dxd (v): Then, for d -almost all v 2 V; Z t 0 ((t s)v+sv; v) f(s; t); y + (t s)v + sv 0 2 g ds = Z f (x; v) (x; v)dx
and consequently, for d -almost all v 2 V; the Radon measure on

2 C( ) ! Z t 0 ((t s)v + sv) f(s; t); y + (t s)v + sv 0 2 g ds (29)
is an L 1 function, namely f (:; v); and this is not possible since the support of (29) is contained in the bidimensional linear space spanned by v and v:

Remark 5 It is not di¢cult to show that ( T +M ) 1 ( T ) 1 is weakly compact if and only if ( T ) 1 M ( T ) 1 is. Thus, Thm 6 shows that we cannot hope to avoid the hypothesis that some "iterate" of M ( T ) 1 is weakly compact. Similarly, V (t) U (t) is weakly compact if and only if U 1 (t) is and Thm 6 shows that we cannot avoid to appeal to remainder terms R j (t) with j 2: This justi…es, a posteriori, Vidav's assumptions [START_REF] Vidav | Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator[END_REF] [14] but only for the L 1 theory. The situation is completely di¤erent in L p (1 < p < 1) [START_REF] Mokhtar-Kharroubi | Optimal spectral theory of neutron transport models[END_REF] : As in Prop 1, we can show that if the hyperplanes have zero d -measure then ( T + M ) 1 ( T ) 1 maps weakly compact sets into compact ones. The same result holds for V (t) U (t) if the a¢ne hyperplanes have zero d -measure [START_REF] Mokhtar-Kharroubi | On the strong convex compactness property for the strong operator topology and related topics[END_REF].

The case n = 1 is quite surprising. Indeed, we have:

Theorem 7 Let n = 1 and = ] a; a[ : Let d be a positive Radon measure on R with support V: (i) M ( T ) 1 is an integral operator but is not weakly compact. (ii) If d f0g = 0 then ( T ) 1 M is a compact (integral) operator and consequently ( T + M ) 1 ( T ) 1 is compact. (iii) We assume that d is such that d f[v "; v + "]g ! 0 as " ! 0 uniformly in v 2 V: Then V (t) U (t)
is weakly compact for all t 0: Proof: (i) The fact that M ( T ) 1 is not weakly compact has been noted in Prop 1. It is also easy to see that it is an integral operator.

(ii) We note that

O' = ( T ) 1 M ' = 8 < : 1 jvj R x a e jx yj jvj M '(y)dy if v > 0 1 jvj R a x e jx yj jvj M '(y)dy if v < 0:
Let fh k g k be a sequence of continuous functions with compact supports such that, for each k, h k vanishes in some neighborhood of v = 0 and h k ! 1 in L 1 (V ) (note that d is …nite and d f0g = 0): We "approximate" O by

O k : ' ! 8 < : h k (v) jvj R x a e jx yj jvj M '(y)dy if v > 0 h k (v) jvj R a x e jx yj jvj M '(y)dy if v < 0: It is not di¢cult to prove that O k is a compact operator in L 1 ( V ): On the other hand, kO' O k 'k = Z +1 0 d (v) Z a a dx 1 h k (v) jvj Z x a e jx yj jvj M '(y)dy + Z 0 1 d (v) Z a a dx 1 h k (v) jvj Z a x e jx yj jvj M '(y)dy Z +1 0 d (v) Z a a dx j1 h k (v)j jvj Z x a e jx yj jvj M j'j (y)dy + Z 0 1 d (v) Z a a dx j1 h k (v)j jvj Z a x e jx yj jvj M j'j (y)dy Z +1 0 d (v) Z 1 1 dx j1 h k (v)j jvj Z a a e jx yj jvj M j'j (y)dy + Z 0 1 d (v) Z 1 1 dx j1 h k (v)j jvj Z a a e jx yj jvj M j'j (y)dy = 2 Z +1 0 d (v) j1 h k (v)j Z a a M j'j (y)dy + 2 Z 0 1 d (v) j1 h k (v)j
Z a a M j'j (y)dy:

Hence kO O k k 2 kM k L(L 1 ;L 1 ) k1 h k k L 1 (V ) ! 0 as k ! 1 which shows that O is compact. (iii) We recall that V (t) U (t) is weakly compact for all t 0 if and only if U 1 (t) is weakly compact for all t 0 [7] Chap 2, Thm 2.6. Let us show that U 1 (t) is weakly compact. We note that U 1 (t)' is equal to Z t 0 ds Z '(x (t s)v sv 0 ; v 0 ) f(s; t); x (t s)v sv 0 2 g d (v 0 ) = Z d (v 0 ) Z t 0 '(x (t s)v sv 0 ; v 0 ) f(s; t); x (t s)v sv 0 2 g ds:
On the other hand, f(s; t); x (t s)v sv 0 2 g = 1 amounts to

x tv + s(v v 0 ) 2 ] a; a[ so Z t 0 '(x (t s)v sv 0 ; v 0 ) f(s; t); x (t s)v sv 0 2 g ds = ( R (x tv 0 )^a (x tv)_( a) '(y; v 0 ) dy jv v 0 j if v 0 < v R (x tv)^a (x tv 0 )_( a) '(y; v 0 ) dy jv v 0 j if v 0 > v and U 1 (t)' = Z v 1 d (v 0 ) Z (x tv 0 )^a (x tv)_( a) '(y; v 0 ) dy jv v 0 j + Z 1 v d (v 0 ) Z (x tv)^a (x tv 0 )_( a) '(y; v 0 ) dy jv v 0 j = O 1 ' + O 2 ':
Let us show that both O 1 and O 2 are weakly compact. We restrict ourselves for instance to O 1 since the same argument holds for O 2 : Note that O 1 is an integral operator

O 1 ' = Z V Z +a a '(y; v 0 )E(v; v 0 ; x; y)dyd (v 0 )
with kernel E(v; v 0 ; x; y) := fv 0 < vg fy + tv 0 x y + tvg jv v 0 j

1 (30) Let O " 1 : ' ! Z V Z +a a '(y; v 0 )E " (v; v 0 ; x; y)dyd (v 0 )
with kernel E " (v; v 0 ; x; y) = E(v; v 0 ; x; y) fjv v 0 j "g :

One sees that O " 1 is weakly compact since E " (:; :; :; :) is bounded and [ a; a] V has a …nite measure. It su¢ces to show that O " 1 ! O 1 as " ! 0 in the norm operator topology. We note that kO

1 ' O " 1 'k is equal to Z V d (v) Z +a a dx Z V Z +a a j'(y; v 0 )j E(v; v 0 ; x; y) fjv v 0 j < "g dyd (v 0 ) = Z V d (v 0 ) Z +a a j'(y; v 0 )j dy Z V fjv v 0 j < "g d (v) Z +a a E(v; v 0 ; x; y)dx:
On the other hand, (30) shows that

Z +a a E(v; v 0 ; x; y)dx jv v 0 j 1 Z y+tv y+tv 0 dx = t whence kO 1 ' O " 1 'k t Z V d (v 0 ) Z +a a j'(y; v 0 )j dy Z V fjv v 0 j < "g d (v) t sup v 0 2V d f[v 0 "; v 0 + "]g k'k and kO 1 O " 1 k t sup v 0 2V d f[v 0 "; v 0 + "]g ! 0 as " ! 0:
Remark 6 (i) Note that the assumption sup v 0 2V d f[v 0 "; v 0 + "]g ! 0 as " ! 0 is satis…ed by the Lebesgue measure on R:

(ii) If V is bounded then sup v 0 2V d f[v 0 "; v 0 + "]g ! 0
as " ! 0 is equivalent to the assumption that d is di¤use, i.e. d fv 0 g = 0 for all v 0 2 V:

(iii) The (weak) compactness of ( T ) 1 K in one dimension has already been proved in [START_REF] Mokhtar-Kharroubi | La compacité dans la théorie du transport des neutrons[END_REF] for general collision operator K:

(iv) The case n = 2 is a limiting case between the two di¤erent situations described in Thm 6 and Thm 7. However we conjecture the plausible result:

Conjecture 1 Thm 6 is still true for n = 2: Remark 7 Thm 6 (ii) solves in the positive (for n 3) a conjecture by the author [START_REF] Mokhtar-Kharroubi | Mathematical Topics in neutron transport theory[END_REF] Chap 4. This conjecture turned out to be false in L p (1 < p < 1) (see [START_REF] Mokhtar-Kharroubi | Optimal spectral theory of neutron transport models[END_REF]):

Applications to spectral theory

In this section, we show how the above compactness results provide a sound foundation to the L 1 spectral theory. We restrict ourselves to nonincoming boundary conditions but the same results hold on the torus. Let R n be an arbitrary open set with …nite Lebesgue measure and d be a positive (not necessarily …nite) Radon measure on R n with support V: Let K be a collision operator

K : ' 2 L 1 ( V ) ! Z V k(x; v; v 0 )'(x; v 0 )d (v 0 ) 2 L 1 ( V )
with the natural assumption

Z V jk(:; v; :)j d (v) 2 L 1 ( V ):
Let V K (t); t 0 the c 0 -semigroup generated by T + K: Following B. Lods [START_REF] Lods | Théorie spectrale des équations cinétiques[END_REF], we suppose that K is regular in L 1 in the sense that the family of operators (indexed by x 2 )

2 L 1 (V ) ! Z V k(x; v; v 0 )'(v 0 )d (v 0 ) 2 L 1 (V )
is collectively weakly compact. This amounts to fjk(x; :; v 0 )j ; (x; v 0 ) 2 V g is relatively weakly compact (31) in L 1 (V ): This assumption can be checked by the well-known Dunford-Pettis criterion (see [START_REF] Dunford | Linear Operators, Part I[END_REF]). We note that the positive collision operator

jKj : ' 2 L 1 ( V ) ! Z V jk(x; v; v 0 )j '(x; v 0 )d (v 0 ) 2 L 1 ( V )
is also regular. On the other hand,

K( T ) 1 m ' jKj ( T ) 1 m j'j and U K j (t)' U jKj j ( 
t) j'j where U K j denotes the terms of the Dyson-Philips expansion of V K (t) and n U jKj j o those of the semigroup V jKj (t) generated by T + jKj : Thus, as far as the weak compactness is concerned, by using domination arguments, there is no loss of generality to assume that the collision operator K is positive. On the other hand, if k i (x; v; v 0 ) = k(x; v; v 0 ) fv2V ;jvj ig and

K i ' = Z V k i (x; v; v 0 )'(x; v 0 )d (v 0 ) then kK' K i 'k Z fv2V ;jvj>ig Z V k(x; v; v 0 ) j'(x; v 0 )j d (v 0 ) sup (x;v 0 )2 V Z fv2V ;jvj>ig k(x; v; v 0 )d (v) k'k L 1 ( V )
and, by (31);

kK' K i 'k sup (x;v 0 )2 V Z fv2V ;jvj>ig k(x; v; v 0 )d (v) ! 0 as i ! 1:
Thus, we may replace K by some truncation K i since [K( T ) 1 ] m and U K j (t) depends continuously on K in the norm operator topology . This means that we may suppose without loss of generality that V is bounded and consequently that d is …nite. A basic property of a positive regular collision operator is that it can be approximated in the norm operator topology by collision operators dominated by collision operators of the form

' 2 L 1 ( V ) ! f (v) Z V '(x; v 0 )d (v 0 ) (32) 
where f 2 L 1 (V ) [START_REF] Lods | Théorie spectrale des équations cinétiques[END_REF] : Thus we may assume that K has the form (32). By approximation again we may suppose that f 2 L 1 (V ) \ L 1 (V ) and …nally, by a domination argument, we may even assume that f is a constant c: In such a case, the collision operator K is nothing but the velocity averaging operator

M : ' 2 L 1 ( V ) ! c Z V '(x; v 0 )d (v 0 ):
Hence, the following compactness results are simple consequences of Thm 3, Thm 4 and Thm 5.

Theorem 8 Let R n (n 2) be an arbitrary open set with …nite Lebesgue measure. Let d be a positive (not necessarily …nite) Radon measure on R n and K be a regular collision operator in the sense (31):

(i) We assume that for all c > 0 there exist c 0 > 0 and > 0 such that sup e2S n 1 d fv; jvj c; jv:ej "g c 0 " :

Then some power of K( T ) 1 is weakly compact.

(ii) We assume that for all c > 0 there exist c 0 > 0 and > 0 such that

sup e2S n 1 d d f(v; v 0 ); jvj c; jv 0 j c; j(v v 0 ):ej < "g c 0 " : (34) 
Then some remainder term of the Dyson-Philips expansion is weakly compact.

Remark 8

In general, the advection semigroup U (t) contains an absorption term, i.e., has the form:

U (t)' = e R t 0 (x sv;v)ds '(x tv; v) ft (x;v)g
where (:; :) 2 L 1 ( V ) (or at least bounded below) is the collision frequency. Mathematically speaking, this does not add any di¢culty since, by domination arguments, we may assume that (:; :) is a constant. Thus Thm 8 above remains true.

Remark 9

For n = 1, we have more precise results since Thm 7 remains true for regular collision operators.

We are ready to summarize the spectral results:

Theorem 9 Let
R n be an arbitrary open set with …nite Lebesgue measure. Let d be a positive (not necessarily …nite) Radon measure on R n and K be a regular collision operator in the sense (31):

(i) Let n 2: If (33) is satis…ed then (T + K) \ fRe > s(T )g consists of at most isolated eigenvalues with …nite algebraic multiplicities where s(T ) is the spectral bound of T . If (34) is satis…ed then fU (t); t 0g and fV (t); t 0g have the same essential type and consequently, in the region ; j j > e s(T )t ; (V (t)) consists of at most isolated eigenvalues with …nite algebraic multiplicities.

(ii) Let n = 1: If d f0g = 0 then (T + K) \ fRe > s(T )g consists of at most isolated eigenvalues with …nite algebraic multiplicities. If sup v 0 2V d f[v 0 "; v 0 + "]g ! 0 as " ! 0 then (V (t)) \ ; j j > e s(T )t consists of at most isolated eigenvalues with …nite algebraic multiplicities.

Remark 10 Apart from the one dimensional case where, thanks to Thm 7, we can appeal to the stability of the essential spectrum by weakly compact perturbation [START_REF] Latrach | On the essential spectrum of transport operators on L 1 spaces[END_REF], the analysis of (T + K) \ fRe s(T )g and (V (t)) \ ; j j e s(T )t for n 2 relies on di¤erent tools [START_REF] Mokhtar-Kharroubi | On the essential spectrum of transport operators in L 1 spaces[END_REF].

8 On L 1 "averaging lemmas"

We know that in all dimensions M ( T ) 1 is never (weakly) compact [2] Example 1 or Prop 1 (i) above. It may be of interest to look for practical bounded subsets of L 1 ( V ) which are mapped by M ( T ) 1 into (weakly) compact sets. We will restrict ourselves to nonincoming boundary conditions. Remark 11 This result improves [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF] Lemma 8, where it is assumed that d f[ "; "]g c" and that is a bounded subset of L p [d (v); L 1 (dx)] for some p > 1:

Remark 12 It is clear that the same arguments used in the proof of Thm 7 (ii) show also that ( e T ) 1 M is compact in L 1 where e T ' = v: @' @x and D( e T ) = ' 2 L 1 ; v: @' @x 2 L 1 ; ' j + = 0 so that, by duality, we obtain an averaging lemma in L 1 ( V ) :

Theorem 11 Let n = 1 and = ] a; a[ : Let d be a positive Radon measure on R such that d f0g = 0: Then M ( T

) 1 : L 1 ( V ) ! L 1 ( ) is compact.
Remark 13 This result complements Lemma 7 in [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF] where a stronger (Hölder) regularity for velocity averages is obtained under the stronger assumption that d f[ "; "]g c" .

We extend now Thm 10 to arbitrary dimensions under a stronger assumption. Let L 1 ( R n ) be a bounded subset. We assume that is "equicontinuous with respect to velocities" in the sense Z 

Remark 3

 3 Condition (10) in Prop 3 is obviously satis…ed by Lebesgue measures on bounded open sets or on spheres.

Theorem 10

 10 Let n = 1 and = ] a; a[ : Let d be a positive Radon measure on R such that d f0g = 0:If L 1 ( V ) is a bounded subset such that Z y; v)j dy ! 0 as " ! 0 (35)uniformly in ' 2 ; then fM ( T ) 1 '; ' 2 g is relatively compact in L 1 ( ): y; v)dy:A simple calculation shows that O " is a compact operator on L 1 ( y; v)j dy:Hence, by (35); kO' O " 'k ! 0 as " ! 0 uniformly in ' 2 : This shows that fO'; ' 2 g = fO " ' + (O' O " '); ' 2 g 8" > 0 is relatively compact in L 1 ( ):

Theorem 12

 12 LetR n (n 2) be a bounded and convex open subset and V = R n endowed with the Lebesgue measure. LetM : ' 2 L 1 ( R n ; dx dv) ! Z R n '(x; v)dv 2 L 1 ( ):

1 0

 1 y; v + z) '(y; v)j dydv ! 0 (36)as z ! 0 uniformly in ' 2 : Then fM ( T ) 1 '; ' 2 g is relatively compact in L 1 ( ): Proof: We note that ( T ) 1 ' = Z e t '(x tv; v)dt; (x 2 )where ' has been extended by zero to R n x with respect to the space variable: Moreover,

1 )

 1 ([START_REF] Mokhtar-Kharroubi | Mathematical Topics in neutron transport theory[END_REF] Lemma 2.2, p.15) then, by the convex compactness property of the strong operator topology ([START_REF] Schlüchtermann | On weakly compact operators[END_REF] or[START_REF] Mokhtar-Kharroubi | On the strong convex compactness property for the strong operator topology and related topics[END_REF]), it follows that R i (t) is weakly compact for all i j .Remark 4We point out that the weak compactness of some remainder term R m (t) for all t 0 implies the compactness of R m+2 (t) (see[START_REF] Mokhtar-Kharroubi | On the strong convex compactness property for the strong operator topology and related topics[END_REF]): Condition (16) in Thm 2 is obviously satis…ed by Lebesgue measures on bounded open sets or on spheres.LetR n be an open set with …nite Lebesgue measure (not necessarily bounded) and d be a …nite and positive Radon measure on R n with support V: We denote by fU (t); t 0g the classical advection c 0 -semigroup with nonincoming boundary conditions

	4 Model stationary equations with nonincom-
	ing boundary conditions

  It remains to prove that R A j (x)j dx ! 0 as jAj ! 0 uniformly in ' 2 :

	We note that								
	Z A	j (x)j dx	Z 1 0 Z 1	e t dt t n	Z R n Z	dy	Z A Z	'(y;	x y t	) dx
		=	0 Z "	e t dt Z	R n		dy Z	A y t	j'(y; v)j dv
		=	0	e t dt Z 1	R n Z dy		A y t Z	j'(y; v)j dv
			+	"	e t dt Z 1	R n	dy	A y t Z	j'(y; v)j dv Z
			" k'k L 1 +		"	e t dt	R n	dy	A y t	j'(y; v)j dv:
	On the other hand								
	t dt t n R n Z dy Z R n dy Z e t dt j (x + z) Z 1 0 t n = Z 1 0 e t dt = Z " 0 e t dt R n dy + Z 1 " e t dt Z R n dy R n Z 2" k'k L 1 + Z 1 " e t dt '(y; '(y; '(y; v + x + z y t '(y; v + '(y; v + Z R n dy '(y; v + ) '(y; t ) '(y; v) dv: z Z t ) '(y; v) dv z Z t ) '(y; v) dv z Z t ) '(y; v) dv z Z t ) dx x y (x)j dx ! 0 uniformly in ' 2 as R t )dy: x y Z = It su¢ces to show that Z j (x + z) (x)j dx z ! 0: We note that A y t 1 t n jA yj = 1 1 t n jAj dy Z A y " R n t

n jAj (t ") and the "equiintegrability" with respect to velocities show that Z j'(y; v)j dv "

uniformly in ' 2 and in t " if jAj is small enough. It follows that Z

A j (x)j dx " k'k L 1 + 1 " (c + 1 )"

uniformly in ' 2 if jAj is small enough and the proof is complete.

 

ing boundary conditions

We deal now with the c 0 -group fV (t); t 2 R g generated by T + M where M is the velocity averaging operator (2): As in Section 3, we look for conditions on d under which

is weakly compact. According to (21)

from which it follows easily that

Thus, by a domination argument, it su¢ces to show that

) is weakly compact because has a …nite Lebesgue measure. On the other hand,

where d t is the image of d under the dilation v ! tv. On the other hand, the operator [M U 1 (:)M ] 2 (t) acts as

On the other hand, by assumption, there exists > 0 such that Z

. This is true for all t " if jzj " and consequently

and the proof is complete.

Remark 14 A result in the same spirit and with a di¤erent proof appeared recently [START_REF] Golse | Velocity averaging in L 1 for the transport equation[END_REF] under a weaker assumption : The set is assumed to satisfy only some "equiintegrability" with respect to velocities: However, the proof is quite involved. On the other hand, arguing as in the proof of Thm 12, we can derive a weak compactness result when is only "equiintegrable" with respect to velocities. Indeed:

dx dv) is said to be "equiintegrable" with respect to velocities if for each " > 0 there exists > 0 such that for each measurable familly (A y ) y2R n of measurable subsets of R n satisfying jA y j we have R dy R Ay j'(y; v)j dv " uniformly in ' 2 where jA y j is the Lebesgue measure of A y : Theorem 13 Let R n (n 2) be a bounded and convex open subset and V = R n endowed with the Lebesgue measure. Let L 1 ( R n ) be bounded and "equiintegrable" with respect to velocities. Then fM ( T ) 1 '; ' 2 g is relatively weakly compact in L 1 ( ):

Proof : We start as in the proof of Thm 12. We have