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Abstract

The RATAN-600 antenna is a flexible multireflector system composed of reflectors of very large dimensions. An
extended system, with improved performance in the millimetric range, includes a focal receiver array. Accurate
electromagnetic analysis of such a system, and simulation of three-dimensional (3D) patterns, represents a sub-
stantial computational challenge. A fast Physical Optics method based on a multilevel subdivision of the surfaces
of integration is proposed to address this problem. This method allows to perform Physical Optics integrals with a
computational complexity comparable to that of the Fast Fourier Transform. The algorithm and initial numerical
results of its application to the RATAN-600 antenna system are presented. To cite this article: C. Letrou, V.
Khaikin, A. Boag, C. R. Physique 13 (2012).

Résumé

Analyse de l’antenne du radiotélescope RATAN-600 par une méthode d’Optique Physique multi-

niveaux. L’antenne du radiotélescope RATAN-600 est un système flexible composé de plusieurs réflecteurs, dont
certains de très grandes dimensions. Dans sa configuration la plus performante pour le domaine millimétrique, elle
est dotée d’un réseau focal. Un tel système constitue un défi du point de vue de l’analyse électromagnétique, si l’on
souhaite disposer de résultats précis sur son diagramme dans l’espace en 3D. Une méthode d’Optique Physique
rapide basée sur une décomposition multi-niveaux des surfaces d’intégration, permettant de rendre la complexité
des calculs d’intégrales comparable à celle de transformées de Fourier rapides, est proposée pour répondre à ce
besoin. L’algorithme de la méthode est présenté, ainsi que son application au cas du RATAN-600 et des résultats
numériques. Pour citer cet article : C. Letrou, V. Khaikin, A. Boag, C. R. Physique 13 (2012).
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1. Introduction

The RATAN-600 radiotelescope is based on a variable profile antenna in which the main mirror/reflector
shape depends on the cosmic source elevation [1,2]. The beam pattern of RATAN-600 scans the space
not by rotation of the whole reflector but by changing the shape of the main mirror and by moving
the secondary mirror on a radial railway. The main mirror is basically an elliptic conus section, with an
average diameter of 576 meters, parts of which can be transformed into parabolic cylinder and circular
conus sections, depending on the elevation angle of observation (around 0◦ and 90◦ respectively). This
telescope has been designed for observations in the 600MHz to 30GHz frequency range. This range is
being extended into the millimetric frequency domain, more specifically to the 33-38GHz and 41-44GHz
frequency bands (see http://www.spbf.sao.ru/CG/ for more details).

The optical scheme of the antenna system in the “South sector + Flat reflector” operating mode (S+F
system) is shown in Fig. 1. The flat reflector is used as a periscope to redirect waves horizontally towards
the primary mirror (also called “main reflector” in the following). This reflector is configured into a
parabolic cylindrical surface perpendicular to the horizon, that provides focusing of the incoming waves
in the horizontal plane (Fig. 2). The secondary mirror has the shape of a parabolic cylindrical surface,
whose generatrix is parallel to the horizon, and it focuses the waves in the vertical plane at a distance
of 2150 mm from its vertex (Fig. 3). The main reflector settings are such that the focal points in the
horizontal and vertical planes coincide. An extended version of this S+F system, based on the use of

Figure 1. Schematic 3D view of the RATAN-600 radiotelescope S+F antenna system. In red: some ray trajectories.

a focal receiver array, is currently under study to enlarge the observed area in the sky at millimetric
wavelengths. Such an extension would be of particular interest for observations of Cosmic Background
anisotropies. To minimize wave aberrations while extending the Field of View of the telescope, a long-
focus optics has been suggested in the form of a small tertiary quasi-elliptic mirror with double curvature
(not a figure of rotation) installed close to the secondary focus [3].

Analysis of the RATAN-600 S+F antenna system at millimeter-wave frequencies represents a substan-
tial computational challenge, due to its very large electrical dimensions: the main reflector surface area
is of about 40 millions of wavelengths for observations conducted at the λ = 8mm wavelength. Until
recently, this quasi-optical system has been mainly analyzed using Geometrical Optics (GO)/ray-tracing
techniques combined with the aperture integration method [3]. However, GO analysis does not provide
sufficient information on near-field diffraction effects and other wave related phenomena, in a context
where reflectors are not in their mutual far field regions, as can be inferred from the dimensions given in
Figs. 2 and 3. This point is even more critical in the case of the extended S+F system, where the tertiary
reflector potentially generates new diffraction and cross-polarization effects. Also, the aperture integration
method may only be used for calculating the main beam and the nearest sidelobes. An attempt was made
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Figure 2. Horizontal cut of the primary and secondary reflectors of the RATAN-600 radiotelescope (South sector).

Figure 3. Vertical cut of the RATAN-600 radiotelescope S+F antenna system. Distances between the reflectors are not
scaled.

to take diffraction effects into account via Fresnel integrals, with a particular interest for wavelengths
larger than 3 centimeters [4].

The Physical Optics (PO) approximation is of current use for reflector antenna systems analysis,
appearing as a good compromise between the computational feasibility and accuracy requirements. The
“non far field” version of PO surface integrals, complemented with the contribution of Physical Theory
of Diffraction line integrals, can address multireflector problems with sufficient accuracy on the whole
sphere of directions in the three-dimensional space [5]. In the straightforward implementations of the PO
algorithm, the computational cost of surface integrals is of the order of O(N4) with N being the linear
dimension of the radiating surface with respect to the wavelength. For large reflector electrical dimensions
such implementations lead to excessively long computation times. This is especially true when repeated
evaluation of the radiation patterns is required for antenna geometry optimization with multiple primary
sources.
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The fast Multilevel Physical Optics (MLPO) algorithm was introduced in [6] in order to reduce the
complexity of evaluating the PO integrals over arbitrary shaped surfaces to a level comparable to that
of the FFT-based techniques, i.e. O(N2 log N). To analyze the RATAN-600 S+F antenna system, the
conventional MLPO algorithm has been generalized in order to cope with oblong rectangular reflector
shapes, and with complex systems involving more than two reflectors. The “non far field ” formulation
of the PO integrals is used to compute fields radiated by one reflector surface to the other one.

In this paper, we first present the formulation of the conventional MLPO algorithm, used for far
field patterns computations (Section 2). Section 3 is then devoted to the formulation of the generalized
MLPO algorithm used for the RATAN-600 S+F antenna system analysis. Finally, Section 4 presents first
numerical results obtained for the analysis of this system (without the long focus extension).

2. Conventional MLPO algorithm

This section first introduces the far field formulation of Physical Optics (Subsection 2.1), and recalls
some properties of radiation patterns which are used intensively by the MLPO algorithm (Subsection 2.2).
The conventional MLPO algorithm is described in subsection 2.3.

2.1. Far field formulation

Although PO and MLPO have also demonstrated their ability to evaluate the radiation patterns of
dielectric structures, we shall consider here the case of a perfectly conducting surface S illuminated by
incident fields, which is of direct interest in view of future analysis of the RATAN-600 antenna system.
The incident fields create on S a magnetic field distribution denoted by H

s(rs), r
s ∈ S.

The radiation pattern U(θ, φ) is defined via the far field E(r) as

U(θ, φ) = 4πrejkr
E(r) (1)

where (r, θ, φ) are the spherical coordinates of the observation point r and k = 2πf/c is the wavenumber,
with c being the speed of light and f the frequency. Harmonic time dependence ejωt, ω = 2πf , is assumed
and the corresponding term is suppressed in the equations.

In the Physical Optics approximation, the radiation pattern is computed as an integral transform of
the field over the reflector surface:

U(θ, φ) = jkr̂ ×

∫

S

2ηr̂×(n̂s×H
s(rs))ejkr̂.rs

ds (2)

with n̂
s being a unit vector outward normal to S at point r

s, r̂(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ)
the unit vector in the direction of observation, and η the free space wave impedance. For the sake of
simplicity, we shall not introduce in this paper the Physical Theory of Diffraction (PTD) contribution,
which is obtained by line integrals along the rim of the radiating surface, and easily fits into the MLPO
algorithm. The reader is referred to [7] which gives details about this contribution and numerical results
illustrating the accuracy and efficiency of 3D pattern computations obtained with the MLPO including
the PTD integrals.

2.2. Radiation pattern properties

Property 1: Radiation pattern sampling [8,9]
The electrical size of a radiating surface S is defined as N = kR with R being the radius of its smallest

circumscribing sphere. The far field pattern radiated by S is expressed as a function of the spherical
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angular coordinates, θ and φ, defining the radiation directions r̂ = (sin θ cos φ, sin θ sin φ, cos θ) in a given
coordinate system S. If S has its origin at the center of the smallest sphere circumscribing S, this pattern
is sufficiently sampled along the angular variable β (β = θ or φ) by sampling the observation range along
β, βmax − βmin, with the number of points:

Nβ(N) = ⌈ΩN(βmax − βmin)/π⌉ + Cβ (3)

where ⌈ ⌉ denotes ”the smallest integer larger than”, Ω > 1 is an oversampling factor, and Cβ the minimum
number of points which guarantees a sufficient sampling of infinitesimal source patterns.

Property 2: Expression of a far field pattern in a translated coordinate system
Let us denote S a coordinate system with origin O and S ′ a coordinate system with origin O′ obtained

by translating S. Let U(r̂) and U
′(r̂), denote the far field patterns of a radiating object in coordinate

systems S and S ′, respectively, with a given r̂ defining the same observation direction in both coordinate

systems (far field approximation). Then: U
′(r̂) = U(r̂) exp (−jkr̂ ·

−−→
OO′).

2.3. MLPO algorithm

The MLPO algorithm takes advantage of Property 1 by replacing a PO surface integration on a large
surface by PO integrals on small subdomain surfaces and subsequent aggregation of the elemental patterns
of these small subdomains. To this end, a multilevel hierarchical subdivision of the radiating surface of
interest into subdomains of decreasing size is performed, until the subdomain size is of the order of the
wavelength.

The hierarchical subdivision of the radiating surface S is performed from level L = 0 (no subdivision)
to level L = M (smallest subdomains). A surface subdomain obtained after L subdivisions of the surface
is denoted by SL

n , n = 1 to NL
s , with NL

s the number of surface subdomains at level L. The subdivision
process at level L subdivides each subdomain SL−1

m of level L − 1 into smaller subdomains SL
n . In the

following, SL−1
m will be called the “parent” of the SL

n resulting from its subdivision. In a binary scheme,
the electrical size N = kRL

n of a level L subdomain SL
n is approximately equal to one half of the size

kRL−1
m of its parent of level L − 1.
For reflectors whose surface projects onto a rectangle (resp. a disk) in a plane perpendicular to the

antenna axis, the natural choice is to parameterize the surface with cartesian (resp. polar) coordinates
in that plane. In the conventional MLPO algorithm, the hierarchical surface subdivision is performed
according to a binary scheme. When the reflector surface projects on a rectangle with its length not
larger than twice its width (non elongated geometry), the binary scheme is implemented by subdividing
the two variable ranges of every subdomain of level L−1 by a factor two, thus generating four “children”
subdomains of level L, for L = 0 to M .

After a pre-processing phase devoted to this hierarchical subdivision, the multilevel algorithm starts
with the PO surface integration over each of the elemental subdomains (or “patches”) of level M . Due to
the size of these patches, their radiated patterns in self-centered coordinate systems (i.e., with the origin
at the center of the smallest sphere circumscribing the considered patch) are fully described by sampling
the directions of observation very coarsely, according to Property 1. In the MLPO algorithm, we use the
same grid of directions {θL

i , φL
j } with i = 1, . . . , NL

θ and j = 1, . . . , NL
φ , to sample the patterns of all

patches at a given level. NL
β denotes the number of samples along the angular variable β at level L. At

level M , we take NM
θ = Nθ(N) and NM

φ = Nφ(N), using N = kRM in formula (3). For successively

decreasing levels, we take NL
β = NM

β 2M−L. It was shown in [10] that starting with a sufficiently sampled
coarse grid at level M and doubling the number of points in the grid for each of the variables θ and φ
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leads to sufficient sampling at all levels since RL−1 ≤ 2RL.

The gist of the MLPO algorithm is the multilevel aggregation of partial patterns, which successively
computes fields radiated by level L−1 subdomains from fields radiated by level L subdomains, for L = M
to 1. Let us consider the level L subdomains SL

n (with n = 1 to 4 in the simple conventional algorithm),
which are ”children” of the same level L−1 subdomain SL−1

m . The ”children” patterns will be aggregated
to obtain the pattern radiated by their ”parent” patch SL−1

m , but this “aggregation” is not a simple
addition:
– The sampling density of the “parent” pattern must be increased with respect to that of the “children”

patterns, due to their respective sizes (Property 1 ). In a binary scheme, the sampling density along
each angular variable is doubled. A low order interpolation algorithm can be used to that end, if
the “children” subdomains patterns are computed in their respective self-centered coordinate systems,
ensuring that they vary slowly with respect to observation directions (Property 1 ).

– To allow for “children” pattern summations, Property 2 is used to express the patterns of “sibling”
subdomains (i.e. subdomains with the same “parent”) in their common “parent” coordinate system.

The aggregation of the patterns of “sibling” subdomains is thus performed in three steps: (a) interpolation
of the “children” patterns, (b) expression of the “children” patterns in the “parent” coordinate systems,
(c) summation of the resulting “children” patterns.

The asymptotic complexity of the whole algorithm was demonstrated to be of O(N2 log N) with N the
linear dimension of the radiating surface with respect to the wavelength [6,10].

3. MLPO algorithm generalization

A multireflector system such as the RATAN-600 S+F antenna system cannot be analyzed by simply
using the conventional algorithm described above. Firstly, the fields radiated by the whole antenna system
can be considered, in a first approximation, as being radiated by the primary feed to a first reflector,
then successively radiated by a reflector to the “following” one, until the final reflexion towards the sky.
Physical Optics integrals can be used to compute fields radiated by a reflector onto another one, if the
non far field expression of these integrals is used. MLPO however relies on the validity of the “sampling
theorem”, and on the use of successive interpolations to retrieve large surface radiated fields from those
radiated by its elemental subdomains. The validity of this approach in the non far field case will be
examined. Secondly, oblong reflector surfaces impose constraints both on radiating surface multilevel
subdivision and on observation domain sampling (reflector surfaces are both radiating and “observation”
surfaces in multi-reflector systems). We present in the following subsections generalizations of the MLPO
algorithm which address these constraints.

3.1. Non far field formulation

Let us consider a surface S′ radiating fields on the surface S which is not situated in its far field,
and which will be subsequently considered as a radiating surface. In such a context, the PO or MLPO
algorithm must compute the magnetic fields radiated by S′ on a sufficiently sampled grid of points on
the surface S.

It must be noted that in all cases, S is in the far field of the level M subdomains of the surface S′,
due to their small size (linear size of the order of a wavelength). The PO integrals on these subdomains
of the surface S′ can thus be performed using the far field expressions given in (1) and (2), the magnetic
field being easily deduced from the electric field.
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Below a certain level of subdivision of the surface S′, however, subdomains are too large for the surface
S to be in their far field. The following approximation will be used to express the magnetic fields on S:

H(r) =

∫

S′

h(r, rs)
e−jk|r−r

s|

|r − rs|
ds (4)

with h(r, rs) = −
jk

2π
r̂ × [n̂(rs) × H

s(rs)]

(
1 +

1

jk|r − rs|

)
(5)

Notations are similar to the ones previously introduced, with r the vector position of a point on S and r̂

the unit vector directed from a source point on S′ with position vector r
s to an observation point on S:

r̂ = r−r
s

|r−r
s| .

The “sampling theorem” which is at the root of Property 1 is also valid for sampling fields on surfaces
which are not located in the far field of sources [8,9]. The basic principle of the MLPO algorithm, consisting
of coarsely sampling the fields radiated by the elemental subdomains, then hierarchically aggregating the
subdomain fields at all levels, thus remains pertinent.

However, the magnetic field given by (4) exhibits not only phase variations with respect to the obser-
vation point position r, as is the case for far field patterns, but also amplitude variations, which cannot
be compensated by expressing the subdomain radiated fields in their self-centered coordinate systems. A

new “compensated field”, denoted by H̃(r), is thus introduced as an intermediate set of vector values
which can be easily interpolated. Considering the magnetic field radiated by the level L subdomain Sm,
with center rm and “radius” Rm, this new “field” is given by:

H̃(r, rm) = r̃(r, rm)ejkr̃(r,rm)
H(r) with r̃(r, rm) =

√
|r − rm|2 + R2

m/2 (6)

This “compensated field” is defined at all points of the observation grid of level L, represented by the
position vector r in the formula, and it is easily interpolated to the points of the grid of level L − 1.
Magnetic field values on the latter grid are then obtained by restoring the phase and amplitude variations
as follows:

H(r) =
e−jkr̃(r,rm)

r̃(r, rm)
H̃(r, rm) (7)

where the position vector r now represents the points of the observation grid of level L− 1. The validity
of this “non far field” MLPO approach has already been checked in the case of a dual reflector antenna
[11].

3.2. Oblong reflector surface

In the following, we consider as a special case of oblong geometry, a reflector surface which projects
on an oblong rectangle, i.e. with its length larger than twice its width. In such a case, the radius of the
smallest sphere circumscribing the surface is of the order of the rectangle half-length L0/2, independent of
the rectangle width l0. Application of the simple binary scheme used in the conventional MLPO algorithm
leads to a number of subdivision levels M with L0/2M of the order of λ, to a number of subdivisions of
the order of L2

0 at level M , and to an asymptotic complexity of O(N2
0 log N0) with N0 the electrical size

of the reflector surface.
An alternative subdivision scheme consists in subdividing only along the rectangle length until the

subdomains are no longer elongated, proceeding further with the conventional scheme. In this way, the
number of subdomains at the highest level M is equal to 2M+M ′

where L0/2M and l0/2M ′

of the order
of λ. The number of subdomains of level M is thus reduced by a factor roughly equal to L0/l0, by
comparison with the conventional scheme, and so are the number of operations in the integration and

7



aggregation phases of the MLPO algorithm. The asymptotic complexity of the MLPO algorithm in that
case is O(αN2

0 log N0) with α = l0/L0 the inverse of the rectangle elongation factor.
Also, when the MLPO algorithm is used to compute fields radiated on a reflector surface of oblong

shape, the oversampling along the variable describing the “short” dimension is large with respect to
the sufficient one, for the highest levels. Interpolating along the other variable only, for these levels, until
obtaining oversampling values of the same order for both variables, leads to reduced algorithm complexity
and memory savings.

4. Numerical results obtained for the RATAN-600 S+F system

This section presents results illustrating the use of the MLPO algorithm for a multireflector system
involving extremely large reflectors with elongated geometry. The presented results have been obtained for
the sub-system composed of the feed, the secondary reflector, and the main reflector of the RATAN-600
South sector antenna system (cf. description in the Introduction, and Figs. 1 to 3).

The computations are performed for an operating wavelength of λ =8mm, corresponding to 37.5GHz,
in the 33-38GHz band of interest. A complex source point with collimation distance b =2.44mm and
horizontal polarization is used to represent the feed, its Gaussian radiation pattern being very similar to
the exact feed pattern. The elevation angle of the source beam axis is 65◦, yielding an approximate -10dB
taper along the top and bottom edges of the secondary reflector. Fig. 4 presents a map of the magnitude
of the tangent magnetic field on the surface of the secondary reflector, as a function of the x horizontal
and y vertical coordinates in a projected vertical plane.

Figure 4. Tangent magnetic field magnitude on the surface of the secondary reflector (represented in a projected vertical
plane).

The radius of the smallest sphere circumscribing the secondary reflector is equal to 655λ for λ =8mm.
As can be seen on Figs. 2 and 3, the reflector surface projects in a vertical plane on a rectangle of
horizontal and vertical dimensions 8.2m and 5.5m, respectively. The number of decomposition levels is
M = 10 along both dimensions, yielding subdomains of radii ranging between 0.6λ and 0.75λ at level
10. The PO integrals on these subdomains use a 6-point Gauss quadrature rule along each variable. The
“non far field” formulations are used for these PO integrals, as well as for the multilevel aggregation in
the MLPO algorithm.

The main reflector surface, which projects on a rectangle of horizontal and vertical dimensions 330m
and 7.4m, respectively, is clearly of oblong geometry. From the focus of the secondary reflector, this
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surface is seen under angles of 120◦ in azimuth and 3◦ in elevation. The coarse observation grid on the
main reflector (used to represent the magnetic fields radiated by the secondary reflector subdomains of
level 10) comprises 16 (resp. 1) point(s) along the “long” horizontal axis x (resp. “short” vertical axis
y). The final grid of points on the main reflector surface comprises 16384 points along x and 256 points
along y. The interval between two neighboring point coordinates in the coarse grid is 20.625m along x
and 7.4m along y; in the final fine grid, these intervals are 2.01cm and 2.89cm along x and y, respectively.
These grids correspond to oversampling values of 9.8 and 24.5 along x and y respectively, at level 10. The
multilevel algorithm is optimized (cf. last paragraph of subsection 3.2) to reduce the oversampling along
the short dimension (y variable): interpolations at levels 10 and 9 are performed only along x, yielding
oversampling values of 11.3 along x and 7.1 along y in the final grid (level 0).

Fig. 5 shows the magnitude of the magnetic field computed with the MLPO algorithm on the main
reflector surface, represented in a projected vertical plane. The measured computation time on a single
processor Intel X5472 @ 3.0GHz is of about one hour. Diffraction effects are visible on this map, contrary
to the results previously obtained via Geometrical Optics. In Fig. 6 are presented the variations of the
magnetic field components along the wide horizontal dimension on the main reflector, as a function of the
variable x in the projected plane, at mid-height of the reflector (y =2.75m). These curves clearly exhibit
the influence of the finite size of the secondary reflector, yielding diffraction of the feed radiation. Accurate
information on field polarization can be especially useful to optimize complex focal systems, as will be
the case for the millimetric range extension of the RATAN-600 S+F antenna system (cf. Section 1).

Figure 5. Magnetic field magnitude on the surface of the main reflector (represented in a projected vertical plane).

Figure 6. Magnitude of the magnetic field cartesian components on the surface of the main reflector, along the mid-height
horizontal line (y =2.75m) in a projected vertical plane.
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5. Conclusion

The MLPO algorithm is a fast Physical Optics algorithm allowing to evaluate PO integrals over large
arbitrary shaped surfaces with an asymptotic complexity comparable to that of the FFT-based techniques.
The algorithm has been adapted to the case of complex antenna systems comprising very large surfaces
with oblong shape. The non far field version of the algorithm, which had already been validated for
moderate size dual reflector antennas, has been used to analyze a sub-system of the extremely large
RATAN-600 S+F antenna system in the millemetric range, providing accurate information about de-
polarization as well as diffraction effects.

The next steps in this work will aim at simulating the far field pattern of the antenna system without and
with the periscope reflector, and finally of the extended system with tertiary reflector and focal receiver
array. The MLPO algorithm was shown to be well suited for parallelization, which is an elegant way of
addressing the problem of memory requirements in problems involving very large radiating surfaces, while
accelerating further the execution [12]. A parallelized implementation of the algorithm used to analyze
the RATAN-600 antenna system would then allow for better optimization of the long focal multireceiver
focal system, as well as for full 3D pattern simulations, including spillover and PTD contributions.
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