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Boosting 3D-Geometric Features for Efficient Face
Recognition and Gender Classification

Lahoucine Ballihi, Boulbaba Ben Amor, Mohamed Daoudi, Anuj Srivastava, and Driss Aboutajdine

Abstract—We utilize ideas from two growing but disparate
ideas in computer vision – shape analysis using tools from dif-
ferential geometry and feature selection using machine learning
– to select and highlight salient geometrical facial features that
contribute most in 3D face recognition and gender classification.
Firstly, a large set of geometries curve features are extracted
using level sets (circular curves) and streamlines (radial curves)
of the Euclidean distance functions of the facial surface; together
they approximate facial surfaces with arbitrarily high accuracy.
Then, we use the well-known Adaboost algorithm for feature
selection from this large set and derive a composite classifier
that achieves high performance with a minimal set of features.
This greatly reduced set, consisting of some level curves on the
nose and some radial curves in the forehead and cheeks regions,
provides a very compact signature of a 3D face and a fast
classification algorithm for face recognition and gender selection.
It is also efficient in terms of data storage and transmission costs.
Experimental results, carried out using theFRGCv2dataset, yield
a rank-1 face recognition rate of98% and a gender classification
rate of 86%.

Index Terms—Face recognition, gender classification, geodesic
path, facial curves, machine learning, feature selection.

I. I NTRODUCTION

Since facial biometrics is natural, contact free, nonintrusive,
and psychologically supported, it has emerged as a popular
modality in the biometrics community. Unfortunately, the
technology for 2D image-based face recognition still faces
difficult challenges, such as pose variations, changes in light-
ing conditions, occlusions, and facial expressions. Due tothe
robustness of 3D observations to lighting conditions and pose
variations, face recognition using shapes of facial surfaces
has become a major research area in the last few years.
Many of the state-of-the-art methods have focused on the
variability caused by facial deformations, e.g. those due to
face expressions, and have proposed methods that are robustto
such shape variations. At the same time, gender classification
is emerging as an interesting problem that can be a useful
preprocessing step for face recognition. Gender is similar
to other soft biometric traits, such as skin color, age, eyes
colors, and so on, used by humans to distinguish their peers.
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Most existing work on gender classification uses 2D-images
to extract distinctive facial features like hair density and inner
morphology of the face, but 3D shape has not yet been
used extensively for gender classification. Several works in
psychology have shown that gender has close relationships
both with 2D information and 3D shape [1][2], and it motivates
the use of 3D shapes for gender classification.

The development of a practical, high-performance system
for automatic face recognition and gender classification isan
important issue in intelligent systems. In this work, we focus
on a feature selection technique from machine-learning that is
fully automatic and versatile enough for different applications
like face recognition and gender classification. The features
comes from different types of facial curves extracted from
facial surfaces in an intrinsic fashion, and comparisons of
these curve features is based on latest advances in shape
analysis of parameterized curves using tools from differential
geometry. In the process we also develop an effective approach
for tackling facial expressions variation, an important focus of
the face recognition grand challenge. Our approach offers the
advantage of classifying either facial identity and/or gender,
both independent of the ethnicity. Specifically, the main con-
tributions of this paper include:

→ A new geometric feature-selection approach for efficient
3D face recognition that seeks most relevant characteris-
tics for recognition while handling the challenge of facial
expressions. In particular, we are interested in finding
those facial curves that are most suitable for 3D face
recognition.

→ A new gender classification approach using the 3D face
shape represented by collections of curves. In particular,
we are interested in finding those facial curves that are
most suitable for gender discrimination.

The rest of the paper is organized as follows. Section
II summarizes existing approaches on 3D face recognition
with an emphasis onfacial curve-basedand facial feature-
based methods. It also presents some progress in 3D imaging-
based gender classification. Section III overviews the proposed
approach for both the target applications. In section IV, we
present procedures for extracting facial curves. Section V
recalls the main ideas of the Riemannian geometric shape
analysis framework to compare and match facial curves. In
section VI, we give formulations to the classification problem
and describes the use of the boosting procedure to achieve
the feature selection step, for each of the two applications.
Experimental evaluations and comparative studies to previous
approaches are given in section VII. We conclude in the paper
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with a discussion and summary in Section VIII.

II. RELATED WORK

As the proposed approach combines curve-based face
comparison with feature selection techniques, we mainly
focus on previous methods that primarily uselocal facial
feature-selection andholistic facial curves.

A. Feature selection-based 3D face recognition:Several
methods have been proposed to analyze the discriminative
power of different facial regions or features for face
recognition. Daniyal et al. [3] proposed an algorithm in
which a face is represented as a vector of distances between
pairs of facial landmarks. They selected the landmarks by
exhaustive search over possible combinations of used/unused
landmarks, comparing the recognition rates, and concluded
that the best selection corresponded to the landmarks located
around the eyes and the nose. In the 3D face recognition
approach used by Faltemier et al. [4], the nose tip and 28
small regions were selected automatically for improving
recognition. More recently, Wang et al. [5] computed a signed
shape difference map (SSDM) between two aligned 3D faces
as a intermediate representation for the shape comparison.
Based on the SSDMs, Haar-like, Gabor, and Local Binary
Pattern (LBP) were used to encode both the local similarity
and the change characteristics between facial shapes. The
most discriminative local features were selected optimally
by boosting. Using similar features, Li et al. [6] proposed
to design a feature pooling and ranking scheme in order to
collect various types of low-level geometric features, such as
curvatures, and ranked them according to their sensitivities to
facial expressions. They applied sparse representations to the
collected low-level features and achieved good results on the
GAVAB database. In [7] Ocegueda et al. proposed a Markov
Random Field model for the analysis of lattices (e.g, image
or 3D meshes) in terms of the discrimantive information of
their vertices. They observed that the nose and the eyes are
consistently marked as discriminative regions of the face in a
face recognition system. Li et al. [8] proposed an expression-
robust 3D face recognition approach by learning weighted
sparse representation of encoded normal information, which
they called multi-scale local normal patterns (MS-LNPs)
facial surface shape descriptor. They utilized the learned
average quantitative weights related to different facial physical
components to enhancing the robustness of their system to
expression variations.

B. Curve-based face representation:The basic idea of
these approaches is to represent a surface using an indexed
family of curves which provide an approximate representation
of the surface. Samir et al. [9], for instance, used the
level curves of the height function to define facial curves.
Since these curves are planar, they used shape analysis of
planar curves, taken from [10], to compare and deform
faces; nonlinear matching problem was not studied here
(that is, the mapping was fixed to be linear). The authors
proposed to compare facial surface by using two metrics:

Euclidean mean and geometric mean. However, there were
no discussion on how to obtain optimal curves. Later in
[11], the same authors used the level curves of the geodesic
distance function that resulted in 3D curves. They used
a non-elastic metric and a path-straightening method to
compute geodesics between these curves. Here also, the
matching was not studied and the correspondence of curves
and points across faces was simply linear. In [12], Mpiperis
et al. proposed a geodesic polar parametrization of the facial
surface. With this parametrization, the intrinsics attributes
do not change under isometric deformation when the mouth
is closed. Otherwise, it violates the isometry assumption
and thus they adapt their geodesic polar parametrization
by disconnecting the lips. Through this representation, they
proposed an elastically deformable model algorithm that
establishes correspondence among a set of faces. Then, they
construct bilinear models that decouple the identity and
facial expression factors. The invariance to facial expressions
is obtained by fitting these models to unknown faces. The
main limitation of this approach is the need for a large
set which should also be annotated with respect to facial
expressions. In [13], Drira et al. explored the use of shapes
of noses for performing partial human biometrics. More
recently, in [14], the same authors proposed similar shape
analysis approach this time using radial curves. They model
elastic deformations of facial surfaces (including opening
the mouth) as an optimal re-parametrization (or matching)
problem that they solve using the dynamic programming
algorithm. This approach provided promising results on
GAVAB database even where the probe pose is non-frontal.
In [15], Berretti et al. used the geodesic distance on the face
to extract iso-geodesic facial stripes. Equal width iso-geodesic
facial stripes were used as nodes of the graph and edges
between nodes were labeled with descriptors, referred to
as 3D Weighted Walkthroughs (3DWWs), that captured
mutual relative spatial displacement between all the pairs
of points of the corresponding stripes. Face partitioning
into iso-geodesic stripes and 3DWWs together provided an
approximate representation of local morphology of faces
that exhibits smooth variations for changes induced by
facial expressions. More recently Ballihi et al. [16] propose a
new curve selection approach for efficient 3D face recognition.

C. Gender classification.The human face presents a clear
sexual dimorphism that makes face gender classification an
extremely efficient and fast cognitive process [17]. Although
a significant progress has been made, the task of automated,
robust face gender classification is still a distant goal. 2D
Image-based methods are inherently limited by variabilityin
imaging factors such as illumination and pose. An emerg-
ing solution is to use laser scanners for capturing three-
dimensional (3D) observations of human faces, and use this
data in performing face gender classification. Bruce et al. [1]
performed an interesting experiment in which they tested the
human visual system that is accurate at deciding whether
faces are male or female, even when cues from hairstyle,
makeup, and facial hair are minimized. The authors found
that subjects were considerably less accurate when asked to
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judge the sex of 3D representations of faces obtained by
laser-scanning, compared photographs that were taken with
hair concealed and eyes closed. They proved that theaverage
male face differs from theaveragefemale face by having a
more protuberant nose/brow and more prominent chin/jaw.
The effects of manipulating the shapes of the noses and
chins of the laser-scanned heads were assessed and significant
effects of such manipulations on the apparent masculinity or
femininity of the heads were revealed. In O’Toole et al. [2],
the authors assumed that the sex of a face is perhaps its most
salient feature. They applied principal components analysis
(PCA) separately to the three-dimensional structure and gray
level image data from laser-scanned human heads. The results
showed that the three-dimensional head data supported more
accurate sex classification than the gray level image data,
across a range of PCA-compressed (dimensionality-reduced)
representations of the heads. Jing et al. [18] investigated
gender classification based on 2.5D facial surface normals
(facial needle-maps) which can be recovered from 2D intensity
images using a non-Lambertian Shape-from-shading (SFS)
method. They described a weighted principal geodesic anal-
ysis (WPGA) method to extract features from facial surface
normals to increase the gender discriminating power in the
leading eigenvectors. They adopted a Bayesian method for
gender classification. Xiaoguang et al. [19] exploited the range
information of human faces for ethnicity identification using a
Support Vector Machine (SVM). An integration scheme is also
proposed for ethnicity and gender identifications by combining
the registered range and intensity images. Yuan et al. [20]
proposed a fusion-based gender classification method, based
on SVM, for 3D frontal neutral expression facial. A method
for fusion of information from four regions (upper region of
the face, the lower region of the face, the nose and the left
eye) was proposed.

From the above discussion it is clear that a majority of
current methods on curve-based 3D face recognition used a
holistic representation/parametrization of facial surfaces. In
this paper, we consider curves as geometric features that
capture local facial shape and we propose to learn the most
relevant curves using adaptive boosting. Thus, we propose to
represent a facial surface by two types of facial curves, radials
and levels, for 3D face recognition and gender classification.
This strategy raises a few issues : (i) How to define curves on
facial surfaces?, (ii) How to compare shapes of facial curves?,
and (iii) How to select the most relevant curves for 3D face
recognition and gender classification? To address these issues,
our strategy includes the following steps :

1) A facial surface representation by collection of curves
of level sets (circular curves) and streamlines (radial
curves) of a distance function;

2) A geometric shape analysis framework based on Rie-
mannian geometry to compare pairwise facial curves;

3) A boosting method to highlight geometric features ac-
cording to the target application;

4) A through experimental evaluation that compares the
proposed solution with latest methods on a common data
set and common experimental settings.

As demonstrated later, the proposed approach achieves
highest performance for the face recognition task, with the
additional computational advantage of using a compact signa-
ture. Furthermore, it is one of the first approaches to address
the gender classification problem using 3D face images. To the
best of our knowledge no previous work has proposed a unique
framework for 3D face recognition and gender classification.

III. OVERVIEW OF THE PROPOSED APPROACH

In this work, we combine ideas fromshape analysisusing
tools from differential geometry andfeature selectionderived
from machine learning to select and highlight salient 3D
geometrical facial features. After preprocessing of 3D scans,
we represent resulting facial surfaces by a finite indexed
collections of circular and radial curves. The comparison of
pairwise curves, extracted from faces, is based on shape anal-
ysis of parameterized curves using differential geometry tools.
According to the target application, the extracted features are
trained as weak classifiers and the most discriminative features
are selected optimally by adaptive boosting. For the case of
gender recognition, the classification is formulated as a binary
problem (Male/Female classes) and we propose to use the
inter- and intra-personal comparisons formulation to achieve
feature selection for face identification, which is basically
a Multi-class classification problem. Fig. 1 overviews the
proposed approach with the target applications, face recog-
nition and gender classification. Accordingly, it consistson
the following steps:

• The Off-line training step, learns the most salient cir-
cular and radial curves from the sets of extracted ones,
according to each application in a supervised fashion. In
face recognition, for instance, construct feature vectorsby
comparing pairwise curves extracted from facial surfaces.
Next, feed these examples, together with labels indicating
if they are inter-class or not. Thus, the adaptive boosting
selects and learns iteratively the weak classifiers and
adding them to a final strong classifier, with suitable
weights. As a result of this step, we keep theT -earliest
selected features for the testing step.

• The On-line test step, performs classification of a given
test face. In the identity recognition problem, a probe face
is compared to the gallery faces using only individual
scores computed based on selected features which are
fused using the arithmetic mean. In the gender recogni-
tion problem, a test face is compared to computed tem-
plates of Male and Female classes using curves selected
for that purpose. The templates are computed, once for
all, within the training stage.

IV. 3D FACIAL CURVES EXTRACTION

Let S be a facial surface denoting the output of a prepro-
cessing step that crops the mesh, fills holes, removes noise,
and prepares the mesh for curve extraction. We extract radial
curves emanating from a reference anchor point (the tip of
the nose) and circular curves having with the same point as
the pole, using simple procedures detailed in the following
paragraphs.
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Fig. 1: Overview of the proposed approach, including both stages of training and testing and both target applications : identity
recognition and gender classification.

A. Radial curves

Let βr
α denote the radial curve onS which makes an angle

α with a reference radial curve; the superscriptr denotes
that it is a radial curve. The reference curve is chosen to
be the vertical curve once the face has been rotated to the
upright position. In practice, each radial curveβr

α is obtained
by slicing the facial surface by a planePα that has the nose tip
as its origin and makes an angleα with the plane containing
the reference curve, as shown in Fig. 3. That is, the intersection
of Pα with S givesβr

α. We repeat this step to extract radial
curves from the facial surface at equal angular separation.Each
curve is indexed by the angleα. To avoid pose variations
problem, all probe faces are aligned with the first face model
of FRGCv2 database. This step is achieved by performing a
coarse alignment by translating the probe face to a reference
face, using their noses tips. This coarse alignment step is
followed by a fine alignment using the ICP algorithm, as
illustrated in Fig. 2.

If needed, we can approximately reconstructS from these
radial curves according toS ≈ ∪αβ

r
α = ∪α{S ∩ Pα} as

illustrated in Figure 3. This indexed collection of radial curves
captures the shape of a facial surface and forms the first
mathematical representation of that surface.

B. Circular curves

Let βc
λ denote the circular curve onS which makes a

distanceλ from the reference point (nose tip). A similar
procedure is employed to extract these curves. The only
difference is the slicing function which is now a sphereMλ

having the reference point as center and variable radiusλ. The

Coarse 

alignment

First gallery model

of FRGCv2

Registration by 

ICP

Fine

alignment

Fig. 2: Probe model pose normalization by registration withthe
first gallery face ofFRGCv2, a coarse alignment is performed
by translating the probe face according to the translation vector
formed by the tips of the noses. A fine registration is then
achieved by the ICP algorithm.

intersection of a given sphere and the facial surface defines
equi-distant points from the reference point, in the surface.
Fig. 4 illustrates results of such extraction procedure. Wenote
that any points ordering is needed for both kind of curves since
the slicing procedure kept edges between points. However,
a curve sub-sampling procedure is introduced to achieve the
same number of points for all curves (100 points per curve
here).

Similarly to radial curves, we can also approximately recon-
structS from these circular curves according toS ≈ ∪λβ

c
λ =

∪λ{S∩Mλ} as illustrated in Fig. 4, we describe the geometric
framework which allow matching and comparison of curves.
Fig. 5 gives some results of facial curves extraction on several
3D faces.
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Fig. 3: Procedure for extraction of radial curves, a curveβr
α

is obtained by slicing the facial surface byPα defined by the
angleα with the vertical plane and having as origin the nose
tip.

Preprocessed face

Nose tip

Collection of 

Iso-level curves
Sphere with radius = 

Fig. 4: Procedure for extraction of circular curves, a curveβc
λ

is obtained by slicing the facial surface bySλ defined by the
radiusλ and having as center the nose tip.

Fig. 5: Examples of facial representation by circular and radial
curves. The first row illustrates preprocessed faces of male
subjects, the second row gives preprocessed faces of females.

V. GEOMETRIC SHAPE ANALYSIS OF FACIAL CURVES

In the last few years, many approaches have been developed
to analyze shapes of 2D curves. We can cite approaches based
on Fourier descriptors, moments or the median axis. More
recent works in this area consider a formal definition of shape
spaces as a Riemannian manifold of infinite dimension on
which they can use the classic tools for statistical analysis.
The recent results of Michor and Mumford [21], Klassen et
al. [10], and Yezzi and Mennucci [22] show the efficiency
of this approach for 2D curves. Joshi et al. [23], [24] have
recently proposed a generalization of this work to the case of
curves defined inRn. We will adopt this work to our problem
since our 3D curves are defined inR3.

We start by considering a curveβ in R
3. While there are

several ways to analyze shapes of curves, an elastic analysis
of the parametrized curves is particularly appropriate in our
application – face analysis under facial expression variations.
This is because (1) such analysis uses the square-root velocity
function representation which allows us to compare local
facial shapes in presence of elastic deformations, (2) this
method uses a square-root representation under which the
elastic metric reduces to the standardL2 metric and thus
simplifies the analysis, (3) under this metric the Riemannian
distance between curves is invariant to the re-parametrization.
To analyze the shape ofβ, we shall represent it mathematically
using a square-root representation ofβ as follows ; for an
interval I = [0, 1], let β : I −→ R

3 be a curve and define
q : I −→ R

3 to be its square-root velocity function (SRVF),
given by:

q(t)
.
=

β̇(t)
√

|β̇(t)|
(1)

Heret is a parameter∈ I and | · | is the Euclidean norm in
R

3. We note thatq(t) is a special function that captures the
shape ofβ and is particularly convenient for shape analysis,
as we describe next. The classical elastic metric for comparing
shapes of curves becomes theL2-metric under the SRVF
representation [24]. This point is very important as it simplifies
the calculus of elastic metric to the well-known calculus of
functional analysis under theL2-metric. Also, the squaredL2-
norm of q, given by:‖q‖2 =

∫

I
〈q(t), q(t)〉 dt =

∫

‖β̇(t)‖dt ,
is the length ofβ. If we set‖q‖ = 1, implying all curves are
rescaled to unit length, then translation and scaling variability
have been removed by this mathematical representation of
curves.

Consider the two curves in Figure 6.a., let us fix the
parametrization of the top curve to be arc-length, i.e. traverse
that curve with a constant speed equal to one. In order to
better match that curve with the bottom one, one should know
at what rate we are going to move along the bottom curve so
that points reached at the same time on two curves are as close
as possible under some geometric criterion. In other words,
peaks and valleys should be reached at the same time. Figure
6.b illustrates the matching where point 1 on the top curve
matches to point 11 on the bottom curve. The part between
the point 1 and 2 on the top curve shrinks on the curve 2.
Therefore, the point 2 matches the point 22 on the second
curve. An elastic metric is the measure of that shrinking.

A. Radialopencurves

The set of all unit-length curves inR3 is given by C =
{q : I → R

3|‖q‖ = 1} ⊂ L
2(I,R3). With theL

2-metric on
its tangent spaces,C becomes a Riemannian manifold. Since
the elements ofC have a unitL2 norm,C is a hypersphere in
the Hilbert spaceL2(I,R3). In order to compare the shapes
of two radial curves, we can compute the distance between
them inC under the chosen metric. This distance is found to
be the length of the minor arc connecting the two elements
in C. SinceC is a hypersphere, the formulas for the geodesic
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Fig. 6: Illustration of elastic metric. In order to compare the
two curves in (a), some combination of stretching and bending
are needed. The elastic metric measures the amounts of these
deformations. The optimal matching between the two curves
is illustrated in (b).

and the geodesic length are already well known. The geodesic
length between any two pointsq1, q2 ∈ C is given by:

dc(q1, q2) = cos−1(〈q1, q2〉) , (2)

and the geodesic pathα : [0, 1] → C, is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) , (3)

whereθ = dc(q1, q2).
It is easy to see that several elements ofC can represent

curves with the same shape. For example, if we rotate a face
in R

3, and thus its facial curves, we get different SRVFs
for the curves but their shapes remain unchanged. Another
similar situation arises when a curve is re-parametrized; a
re-parameterization changes the SRVF of curve but not its
shape. In order to handle this variability, we define orbits of
the rotation groupSO(3) and the re-parameterization groupΓ
as equivalence classes inC. Here,Γ is the set of all orientation-
preserving diffeomorphisms ofI (to itself) and the elements of
Γ are viewed as re-parameterization functions. For example,
for a curveβα : I → R

3 and a functionγ ∈ Γ, the curve
βα◦γ is a re-parameterization ofβα. The corresponding SRVF
changes according toq(t) 7→

√

γ̇(t)q(γ(t)). We define the
equivalent class containingq as:

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} ,

The set of such equivalence class is called the shape space
S of elastic curves [23]. To obtain geodesics and geodesic
distances between elements ofS, one needs to solve the
optimization problem. The resulting shape space is the set of
such equivalence classes:

S
.
= C/(SO(3)× Γ) (4)

We denote byds(βα1
, βα2

) the geodesic distance between
the corresponding equivalence classes[q1] and [q2] in shape
spaceS. In Fig. 7 we show geodesic paths between radial
curves and the facial surfaces obtained by Delaunay triangu-
lation of the set of points of radial curves. In 7a we show a
geodesic path between two facial surfaces of the same person,
while in 7b we show the same for faces belonging to different
persons.

B. Circular closedcurves

We will useβc
λ to denote the circular closed curves. Using

SRVF representation as earlier, we can define the set of closed
curves inR3 by C̃ = {q : I → R

3|
∫

I
q(t)|q(t)|dt = 0, ‖q‖ =

1} ⊂ L
2(I,R3)}. The quantity

∫

I
q(t)|q(t)|dt is the total

displacement inR3 while moving from the origin of the curve
until the end. If it is zero, the corresponding curve is closed.
Thus, the setC̃ represents the set of all closed curves in
R

3. It is called a pre-shape space since curves with same
shapes but different orientations and re-parameterizations can
be represented by different elements ofC̃. To define a shape,
its representation should be independent of its rotation and
re-parameterization. This is obtained mathematically by are-
moving the rotation groupSO(3) and the re-parameterization
groupΓ from C̃. As described in [23], [24], we define the orbits
of the rotation groupSO(3) and the re-parameterization group
Γ as equivalence classes iñC. The resulting shape space is :

S̃
.
= C̃/(SO(3)× Γ) (5)

To define geodesics on pre-shape and shape spaces we need a
Riemannian metric. For this purpose we inherit the standard
L
2-metric of the large spaceL2(I,R3). For any u, v ∈

L
2(I,R3), the standardL2 inner-product is given by:

〈〈u, v〉〉 =

∫

I

〈u(t), v(t)〉 dt . (6)

The computation of geodesics and geodesic distances utilize
the intrinsic geometries of these spaces. While the detailed
description of the geometries of̃C and S̃ are given in [23],
[24], we briefly mention the tangent and normal spaces ofC̃.
It can be shown that the set of all functions normal toC̃ at a
point q are given by:

Nq(C̃) = span{q(t),
qi(t)

|q(t)|
q(t) + |q(t)|ei|i = 1, 2, 3} (7)

where{e1, e2, e3} form an orthonormal basis ofR3. Thus,
the tangent space at any pointq ∈ C̃ is given by:

Tq(C̃) = {v : I → R
3|v ⊥ Nq(C̃)} (8)

Now, an important tool in our framework is the construction
of a geodesic path between two elements ofS̃, under the
Riemannian metric given by Eq. 6. Given two curvesβc

λ1
and

βc
λ2

, represented by their SRVF respectivelyq1 and q2, we
need to find a geodesic path between the orbits[q1] and [q2]
in the spaceS̃. We use in this context, a numerical method
called thepath-straighteningmethod [25] which connects the
two points[q1] and [q2] an arbitrary pathα and then updates
this path repeatedly in the negative direction of the gradient
of energy given by:

E[α] =
1

2

∫

s

〈α̇(s), α̇(s)〉 ds (9)

It has been proven in [25] that the critical points ofE
defined by Eq. 9 are geodesic paths iñS. We denote by
ds̃(βλ1

, βλ2
) the geodesic distance between the corresponding

equivalence classes[q1] and [q2] in S̃. In Fig. 8 we show
geodesic paths between circular curves and the facial surfaces
obtained by Delaunay triangulation of the set of points of
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(a) (b)

Fig. 7: 7a shows intra-class geodesics between facial surfaces and their associated radial curves. 7b shows inter-class geodesics
between facial surfaces and their associated radial curves.

(a) (b)

Fig. 8: 8a shows intra-class geodesics between facial surfaces and their associated circular curves. 8b shows inter-class geodesics
between facial surfaces and their associated circular curves.

circular curves. In 8a we show a geodesic path between two
facial surfaces of the same person, while in 8b we show the
same for faces belonging to different persons.

C. Extension to facial surfaces shape analysis

In this section we extend our study from shapes of curves to
shapes of facial surfaces. We represent the surface of the facial
surfaceS by a collection of 3D circular and radial curves,

S ≈ {

Nλ
⋃

λ=1

βc
λ} ∪ {

Nα
⋃

α=1

βr
α} , (10)

whereβc
λ represents the circular curves,Nλ is the cardinality

of the set of circular curves,βr
α represents the radial curve and

Nα is the cardinality of the set of radial curves. Two shapes of
facial surfaces are compared by comparing their corresponding
facial curves. The distance between two facial surfacesS1 and
S2 could be defined by :

d(S1, S2) =
1

Nα

Nα
∑

α=1

ds(β
r,1
α , βr,2

α ) +
1

Nλ

Nλ
∑

λ=1

ds̃(β
c,1
λ , βc,2

λ )

(11)

VI. B OOSTING FOR GEOMETRIC FEATURE SELECTION

Radial and circular curves capture locally the shape of the
faces. However, their comparison under different expressions
runs into trouble. In fact, their shapes are affected by changes
in facial expressions. For that purposes, we introduce a feature
selection step to identify (or localize) the most stable and
most discriminative curves. We propose to use the well known
machine learning algorithm AdaBoost introduced by Freund

and Schapire in [26]. Recall that, boosting is based on iterative
selection of weak classifiers by using a distribution of training
samples. At each iteration, the best weak classifier is provided
and weighted by the quality of its classification. In practice, the
individual circular curves and radial curves are used as weak
classifiers. AfterM iterations, the most relevantT (T < M)
facial curves are returned by the algorithm.

A. Face recognition

To train and test Adaboost classifier for this application, we
use the 3D face models of FRGCv2 dataset. For each radial
and circular curve, we compute theAll vs. All (4007× 4007)
similarity matrix. We then split the matrices as we keep the
Gallery vs. Probeof size466×3541 for the testing and uses the
remainingProbe vs. Probesub-matrices, of the size of3541×
3541, for the training. Thus, we separate the training and the
testing samples (the set of individual distances related tofacial
curves) and these disjoint sets serve as inputs to Adaboost,as
illustrated in Fig. 9.

From these areas of the matrices, we extract two kinds
of scores(i) the match scores(intra-personal comparisons)
and (ii) the non-match scores(inter-personal comparison).
Together these scores form an input to the boosting algorithm.
More formally, we consider a set of pairs(xk

n, yn)1≤n≤N

corresponding to similarity scores between radial or circular
curves at the same level, withk = r or k = c. yn can take
two values:0 in the case ofnon-match scoreand 1 in the
case ofmatch score. For each circular or radial curve, the
weak classifier determines the optimal threshold classification
function such that the minimum number of samples are
misclassified. Each weak classifierhj(x

k
n) will take a value

of distance computed based on a radial or circular curve,
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Match score

Non-match score
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(3
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Fig. 9: All vs. Probedistance matrices splitting ; the Gallery
vs. Probe distance matrix is kept for testing, as suggested in
the FRGC evaluation protocol and the remaining sub-matrices
Probe vs. Probeare used for training.

threshold it, and classify the comparison as positive (intra-
class) or negative (inter-class), depending on the distance value
being under or over the thresholdθ.

hj(x
k
n) =

{

1 if xk
n < θ (intra-personal)

0 otherwise. (inter-personal)
(12)

where,ht denotes for the weak hypothesis given byht :
X → {0, 1}. The final strong classifier is defined by a set
of a weak classifiers weighted by a set of weightsW =
{wt,n}1≤n≤N

. The pseudo-code of AdaBoost algorithm is
summarized in algorithm 1.

Algorithm 1 AdaBoost algorithm

• Input: A set of samples(xk
1 , y1), .., (x

k
N , yN ) wherexk

i is the score
of similarity of the circular or radial curvesk (1 ≤ k ≤ λ0) and
yn = {0, 1}.

• Let m be the number of non-match score andl be the number of match
score.
Initialisation of weightsw1,n = 1

2m
, 1
2l

it depends on the value ofyn
wheren ∈ 1..N .
λ0 = Nλ +Nα

• For t = 1, ...,M :
1- Normalize the weightswt,n such that

∑N
n=1 wt,n = 1.

2- For each curveβj (feature), train a weak classifierhj that uses
a single curve. The errorǫj of classifierhj is determined with the
corresponding weightwt,1, ..., wt,N :

ǫj =
N
∑

n

wt,n|hj(x
j
n)− yn|

3- Choose the classifierhj with the lowest error.
4- Update the weightswt+1,n = wt,nγ

1−en
t , whereγt = ǫt

1−ǫt
and en = 0, if the samplexn is correctly classified byht and 1
else.

• The final hypothesis is a weighted linear combinations of theT
hypotheses where the weights are inversely proportional tothe training
errors. The strong classifier is given by:

H(x) =

{

1 if
∑T

t=1 log
1
γt

ht(x) ≥
1
2

∑T
t=1 log(

1
γt

);

0 else.

The set of selected curves returned by Adaboost is shown
in Fig. 10. The first row shows the locations of the selected

curves on different sessions of the same person with different
expressions, whereas, the second row gives curves locationon
different subjects. We note that the boosting algorithm selects
iso-curves located on the nasal region, which is stable under
expressions and radial curves avoiding two parts. The first
one is the lower part of the face since its shape is affected
by expressions, particularly when the mouth is open. The
second area corresponds to the eye/eyebrow regions. Shapes
of radial curves passing throw these regions change when
conveying expressions. In contrast, the most stable area cover
the nasal/forehead regions.

Fig. 10: The most discriminative radial and circular curves
selected by Boosting for face recognition, given on different
faces.

To demonstrate the usefulness of the curve selection step,
different graphs in Fig. 11 plot the rate of False Acceptance
versus the rate of False Rejection for different configurations.
These curves are produced from theProbe vs. Probematrices
(i.e using the training set). As shown in Fig. 11(b), minimum
errors are given by fusing scores of selected radial and selected
circular curves. We note also that the selection performed on
radial curves only or circular curves only minimizes the errors
compared to the use of all radial curves or circular curves,
respectively.

The on-line testing step consists on comparing facesS1

andS2 by the fusion of scores related to selected curves as
following:

d(S1, S2) =
1

Nαs

Nαs
∑

α=1

ds(β
r,1
α , βr,2

α ) +
1

Nλs

Nλs
∑

λ=1

ds̃(β
c,1
λ , βc,2

λ )

(13)
whereNλs

is the cardinality of the set of selected circular
curves andNαs

the cardinality of the set of selected radial
curves.

B. Gender classification

For 3D face-based gender classification task, we first
compute Male and Female representative templates using
the geometric shape analysis framework for open and closed
curves. In fact, this framework allows us to compute intrinsic
means (Karcher mean) of curves that we extend to facial
surfaces. Then, within the training step, we compute intra-
class (same gender) and inter-class (different gender) pairwise
distances (for each curve index) between sample faces and
the templates. Finally, the most discriminative geometric
features are selected optimally by boosting as done in face
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Fig. 11: ROC curves produced from the training set(a) all radial and circular curves(b) selected radial and selected level
curves(c) all radial curves(d) selected circular curves(e) selected radial curves(f) all circular curves.

recognition application. For the testing step, distances to male
and female templates are computed (based only on selected
features), and the nearest neighbor algorithm denotes the
class (Male/Female) membership. Different steps are detailed
in the following:

Male/Female geometric templates computation.One ad-
vantage of the proposed geometrical framework for shape
analysis of curves is to calculate some statistics as the "mean"
of facial curves and to extend it to facial surfaces, called
Karcher mean[24]. The Riemannian structure defined on a
Riemannian manifold enables us to perform such statistical
analysis for computing faces mean and variance. There are at
least two ways of defining a mean value for a random variable
that takes values on a nonlinear manifold. The first definition,
called extrinsic mean, involves embedding the manifold in a
larger vector space, computing the Euclidean mean in that
space, and then projecting it down to the manifold. The other
definition, called theintrinsic mean or the Karcher mean
utilizes the intrinsic geometry of the manifold to define and
compute a mean on that manifold. It is defined as follows:
Let dC(βα

i , β
α
j ) denotes the length of the geodesic path from

curves inC. To calculate the Karcher mean of facial curves
{βα

1
, ..., βα

n} in C, we define the variance function:

V : C → R,V(µ) =

n
∑

i=1

dC(β
α
i , β

α
j )

2 (14)

The Karcher mean is then defined by:

βα = argmin
µ∈C

V(µ) (15)

The intrinsic mean may not be unique, i.e. there may be a
set of points inC for which the minimizer ofV is obtained.
βα is an element ofC that can be seen as the smallest
geodesic path length from all given facial surfaces. We present
a commonly used algorithm for finding Karcher mean for
a given set of facial surfaces (by using their curves). This
approach, presented in algorithm 2 uses the gradient ofV,
in the spaceTµ(C), to iteratively update the current meanµ.
The same pseudo-algorithm will be obtained for radial curves
defined in the shape spacẽC.

Algorithm 2 Karcher mean algorithm

Set k = 0. Choose some time incrementǫ ≤ 1
n

. Choose a pointµ0 ∈ C
as an initial guess of the mean. (For example, one could just take µ0 =
S1.)

1- For eachi = 1, ..., n choose the tangent vectorfi ∈ Tµk
(C) which

is tangent to the geodesic fromµk to Si. The vectorg =
∑i=n

i=1 fi is
proportional to the gradient atµk of the functionV .
2- Flow for time ǫ along the geodesic which starts atµk and has velocity
vectorg. Call the point where you end upµk+1.
3- Setk = k + 1 and go to step 1.

Male template facial surface is computed by averaging ten
males facial surfaces of different person as shown in Fig. 12.
Female template facial surface is computed by averaging ten
females facial surfaces of different person as shown in Fig.
13.

Geometric feature selection.To train and test the boosting
algorithm for this application, we use 20 previous 3D faces of
the FRGCv1 dataset for training and466 subjects of FRGCv2
for testing. Firstly, we selected a subset of faces of men
and women (ten from each class) from FRGCv1, to calcu-
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(b) Male template face

(Karcher mean)

(a) Sample faces (from FRGCv1) used 

to compute the template face

Fig. 12: Different facial surfaces of different males persons
taken from FRGCv1 and their Karcher mean

(b) Female template face
(Karcher mean)

(a) Sample faces (from FRGCv1) 

used to compute the template face

Fig. 13: Different facial surfaces of different females persons
taken from FRGCv1and their Karcher mean

late the templates for both male and female classes denoted
respectivelyTmale andT female. Then, we computed pairwise
distances (based on curves) between test images and both
of templates. Thus, we obtained a matrix containing feature
vectors (distance based on curves) wich will be used to train
Ababoost algorithm, as illustrated in table I. From this matrix,
we extract two kinds of scores(i) the match scores(intra-
gender comparisons) and(ii) the non-match scores(inter-
gender comparison).

TABLE I: Input feature vectors of Boosting algorithm for
gender classification.

For each curve Face male1 Face female1 ...
Tmale {xα,λ

n , 1} {xα,λ
n , 0} ...

T female {xα,λ
n , 0} {xα,λ

n , 1} ...

Both score lists represent the input of the boosting
algorithm. More formally, we consider a set of pairs
(xα,λ

n , yn)1≤n≤N wherexα,λ
n is a similarity score between two

curves at the same levelα, λ and yn can take two values:0
in the case ofnon-match scoreand 1 in the case ofmatch
score. For each curveβj , the weak learner determines the op-
timal threshold classification function, such that the minimum
number of samples are misclassified. A weak classifierhj(x

k
n)

thus consists of a geometric featureβj and a thresholdθ, such
that:

hj(x
k
n) =

{

1 if xk
n < θ (intra-gender)

0 otherwise. (inter-gender)
(16)

Fig. 15 shows the location of selected curves on different

Fig. 14: The most discriminative radial and circular curvesse-
lected by Boosting for gender classification, given on different
female faces.

sessions of some male faces whereas, Fig. 14 shows the
location of selected curves on different sessions of some
female faces.

Fig. 15: The most discriminative radial and circular curvesse-
lected by Boosting for gender classification, given on different
male faces.

We note that the boosting algorithm selects iso-curves on
the cheeks region, which is discriminative shape of 3D face
for gender classification and radial curves avoiding two parts.
The most stable areas for gender classification cover the
cheeks/sellion regions.

Classification. As described in table I, this time round,
we calculated different matrices of distances of all selected
circular and radial curves between template faces and the
466 test faces of FRGCv2. The pseudo-code of the proposed
gender classification algorithm is given in algorithm 3.

VII. E XPERIMENTAL RESULTS

In the following, we present conducted experiments and the
obtained results with the proposed methods. In particular,we
report 3D face recognition performances on FRGCv2 [27] and
provide a comparative study with state-of-the-art. FRGCv2
dataset contains4, 007 3D scans of466 people, in which
more than40% of the models are non-neutral. A standard
evaluation protocol for identification and verification biometric
scenarios supports this data set. Furthermore, we give gender
classification performances achieved by our approach, using
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Algorithm 3 Gender classification algorithm

• Input: A set of curvesci where ci is either circular curves or radial
curves.Ns is the total number of selected circular and Radial curves.

• For each face requestSk k = 1, ..., 466 :
1- Calculate the geodesic distances :

Ns

∑

i=0

dk(T
male, Fk) and

Ns

∑

i=0

dk(T
female, Fk)

• The final decisionD(Fk) for classification is given by :

D(Fk) =

{

1
∑Ns

i=0 dk(T
male, Fk) <

∑Ns

i=0 dk(T
female, Fk)

0 else.

the same dataset. We note that the subjects in FRGCv2 dataset
are57% male and43% female.

A. 3D Face Recognition Results

1) Identification: For testing onFRGCv2dataset, only the
identification evaluation was carried out. In fact, as mentioned
in section VI since our approach requires a training stage, it
was tested on a subset of this dataset following theFRGC
evaluation protocol for the identification scenario, as follow-
ing. We kept, for the test, theGallery vs. Probe(of size
466x3541) similarity matrices. The remaining sub-matrices
(i.e Probe vs. Probesimilarity scores) were used to train the
feature selection step by boosting algorithm. This means that
disjointly similarity vectors are used for the training andthe
test. Following these settings, our approach achieved98.02%
as rank-1 recognition rate and reached99% in rank-5 as
illustrated in the CMC plot (Cumulative Match Characteristic)
given by 16. We recall that the approach used here is based
on both radial and circular facial curves selection.
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Fig. 16: The Cumulative Match Characteristic curve for se-
lected radial and level curves.

As shown in table II, the selected curves provides better
recognition rate that using radial or circular individually. We
point out that the most relevant circular curves are locatedon
the nasal region, which means that the nasal shape significantly
contribute to face recognition. This is due to to the fact that

TABLE II: Rank-1/Computation cost (in sec) for different
configurations.

Performance All Selected
Rank-1 Time(s) Rank-1 Time(s)

Radial 88.65% 1.6 89.04% 0.48
circular 66.51% 1.04 85.65% 0.20

Fusion based on Eq. 13 91.81% 2.64 98.02% 0.68

its shape is stable to facial expressions. We note also that the
use combining all the curves by using Eq. 13 provides the best
recognition rate.

In addition to performance improvement, the curve selection
results on a more compact biometric signature which reduce
the time-processing of one-to-one face matching.

2) Comparative study with state-of-the-art:Following the
FRGC standard protocol for the identification scenario, the
table III shows identification results of previous approaches
(curve-based, feature selection-based, and others) by keeping
the earliest scan of the466 subjects in the gallery and the
remaining for testing. We note that experiments reported in
[28] and [15] follow a modified protocol by keeping the
earliest neutral scan in the gallery and the remaining as test
images. It is clear that the proposed method outperforms
the majority of state-of-the-art methods. Only the approach
proposed recently byWang et al. [5], based on boosting
of descriptors (Haar-like, Gabor, and Local Binary Pattern
(LBP)) computed on theShape Difference Mapbetween faces,
achieved a better result98.3% which means that ten more faces
are recognized by this approach.

As shown in table III, the proposed approach outperforms
the state-of-the-art except the work of [5] .

B. Gender classification

The proposed gender classification of 3D face scans has
been experimented using the FRGCv2 database. This was
motivated by the fact that this dataset contains the largest
number of subjects compared to existing 3D face datasets as
Bosphorus, BU-3DFE, etc. To evaluate the proposed approach,
we have considered466 3D images related to the466 subjects
of FRGCv2 data set. Thus, if several sessions exist in the
dataset, we select the earliest (neutral or non-neutral) one
for our experiment. We use also few 3D images taken from
FRGCv1 to compute male and female templates, as described
in section VI. The difficulty encountered to compare our
approach to related work, is there is no standard protocol to
compare gender classification results, unlike FRGC standard
protocol for 3D face recognition. Most of previous approaches
[34],[18],[20] reported classification results on a subsettaken
from FRGCv1 dataset.

1) Classification results:We conducted experiments by first
computing Male{Tmale} and Female{T female} templates
using sample 3D scans taken from FRGCv1. Then, compar-
isons between those templates{Tmale, T female} and the466
test images (of FRGCv2) based on their circular and radial
curves were computed to build the feature vectors. Finally,
two experiments, detailed below, were carried out:
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TABLE III: Comparison with state-of-the-art approaches onFRGCv2 (Rank-1 recognition rate).

Methods
A. Curve-based representation B. Feature selection-based Others

ter Haar Berretti(∗) Mpiperis Drira Faltemier Kakadiaris Wang Huang Mian(∗) Cook
[29] [15] [12] [30] [4] [31] [5] [32] [28] [33]

Rank-1 97% 94.1% - 97.2% 97.2% 97% 98.3% 97.2% 91.9% 92.9%

Our 98.02%
(∗) "E-N-S" means the earliest neutral scan in the gallery and the remaining as probes.

• Experiment 1. Curve selection-based. To select the most
relevant combination of curves using Adaboost algorithm,
we first use10 male 3D face models and10 female
models from FRGCv1 to compute the male and female
templates. Then, we compute pairwise curve distances
between the same sample models and the templates,
in order to build feature vectors, used for the training
step. Now, given new test face from the466 3D models
of FRGCv2, we compute the pairwise distances to the
templates then make the decision as result of the nearest
neighbor algorithm. Following this setting, our approach
achieved84.12% as average gender classification rate.
We note that, in this experiment, after feature selection
step, accumulated distances from selected curves only are
used and classification is achieved by nearest neighbor
classification. As reported in table IV, we note also
that using the combination of selected circular curves
and selected radial curves achieved better performances
compared to selected circular curves or selected radial
curves, taken individually.

TABLE IV: An experimental comparison of gender classifica-
tions methods using different types of selected curves.

Methods Curve selection-based 3
circular Radial circular and
curves curves radial curves

Gender Classification Rate79.40% 80.69% 84.12%

• Experiment 2. Classifier decision-based. In order to
evaluate the boosting classifier results, we have con-
ducted, following the same setting, experiments using two
machine learning methods, SVM and Neural Network.
Instead of feature selection step, we consider the final
classifier decision. For example, we consider the binary
decision of the strong classifier of Adaboost. Table V
summarizes the obtained results. Training and testing
steps are carried out using a 10-fold cross-validation
experiment. According to this, the466 subjects are splited
into disjoint subsets for training and test. Using10-fold
cross validation, training is repeated10 times, with each
of the 10 subsets used exactly once as the test data.
Finally, the results from the ten steps are averaged to
produce a single estimation of the performance of the
classifier for the experiment. In this way, all observations
are used for both training and test, and each observation
is used for test exactly once.

2) Comparative study with state-of-the-art:Table VI shows
gender classification results compared to previous approaches
tested on different subsets. In [35] the authors used a subset of

TABLE V: An experimental comparison of gender classifica-
tions methods using different machine learning techniques.

Methods Classifier decision-based
AdaBoost(∗) SVM(∗) Neural(∗)

Network

Gender Classification Rate 86.05% 83.91% 83.05%
(∗) Results for 10-fold cross-validation.

FRGCv1, six female subjects and four male subjects, while in
[19] a subset of FRGCv1 is used with only 28 female subjects
and 80 male subjects. However they used more than one
session of each subject. Note that this ad-hoc division doesnot
guarantee that all subjects will have a neutral expression,some
FRGCv2 subjects are scanned with arbitrary facial expression.

Fig. 17: Different female 3D faces misclassified by our ap-
proach. The first row shows 3D data, the second shows the
corresponding texture of 3D data.

The analysis of some misclassified examples given by Fig.
17 and 18 shows that there are two major reasons of this
misclassification. The first one is the bad quality of 3D scans,
such as some occlusions in relevant regions which affected
the shape of curves. The second reason lies in the fact that
only based on the shape information, there is some confusion
(even for a person), to recognize correctly the gender of the
person. One solution of this problem and for improving the
proposed approach is to introduce the texture information,
which contains complementary (as hair density, etc.) in order
to consolidate the classifier decision.

The figure 19 shows some faces with selected iso-level
and radial curves for both applications face recognition and
gender classification, the blue curves are selected for 3-D face
gender classification, the red curves are selected for 3-D face
recognition while the black curves are the common selected
curves for both classifications.

VIII. C ONCLUSION

In this paper, by combining tools from Riemannian geome-
try and the well-known Adaboost algorithm, we have proposed
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TABLE VI: Gender classification results, comparison to state-of-the-art results.

Approach Dataset
Number of Subjects

Classification rate
All Subjects Female SubjectsMale Subjects

[35] FRGCv1 10 6 4 69.7%
[19] FRGCv1 376 139 237 85.4%
[20] FRGCv1 108 28 80 94.3%
Our FRGCv2 466 202 264 86.05%/84.12%

Fig. 18: Different male 3D faces misclassified by our approach.
The first row shows 3D data, the second row shows the
corresponding texture of 3D data.

Fig. 19: Examples of selected circular and radial curves for
different applications. The first row shows different sessions
for different male persons, the second shows different sessions
for different female persons.

to select the most discriminative curves for facial recognition
and gender classification. The experiments, carried out on
FRGCv2 including neutral and non-neutral images, demon-
strate the effectiveness of the proposed approach. Based only
on 17 curves, including 12 radial curves and 5 circular curves,
our fully automatic approach achieved rank-1 recognition rate
of 98.02%. For gender classification, 19 curves with 12 radial
and 7 circular, were selected and achieved a classification
rate of 86.05%. The algorithm computation time was on the
order of 0.68 second (for recognition rate) and0.76 second
(for gender classification) to compare two faces with selected
curves instead of2.64 second with all curves. The boosting
selects those curves passing through stable regions on the face
for different applications. This approach is efficient in terms
of computation time, data storage and transmission costs.

The proposed approach can be extended in different direc-
tions in order to improve the performances and to address
other important classification tasks. For example, the texture
information could be associated to shape information to con-

solidate the classifier decision. In fact, texture channel provides
additional informations which could be complementary to the
shape. Additionally, more facial attributes recognition,such
as ethnicity and age estimation could be addressed using the
same framework.
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