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Boosting 3D-Geometric Features for Efficient Face
Recognition and Gender Classification

Lahoucine Ballihi, Boulbaba Ben Amor, Mohamed Daoudi, Anuy&stava, and Driss Aboutajdine

Abstract—We utilize ideas from two growing but disparate Most existing work on gender classification uses 2D-images
ideas in computer vision — shape analysis using tools from dif- to extract distinctive facial features like hair densitydanner
ferential geometry and feature selection using machine learning morphology of the face, but 3D shape has not yet been

— to select and highlight salient geometrical facial features that d extensively f d lassificati S | ks i
contribute most in 3D face recognition and gender classification. used exiensively Tor gender classincation. several Works In

Firstly, a large set of geometries curve features are extracted PSychology have shown that gender has close relationships
using level sets (circular curves) and streamlines (radial curves) both with 2D information and 3D shape [1][2], and it motivate
of the Euclidean distance functions of the facial surface; toge#tr  the use of 3D shapes for gender classification.

they approximate facial surfaces with arbitrarily high accuracy. . .

Then, we use the well-known Adaboost algorithm for feature The deve_lopment of a _p.ractlcal, hlgh-perform_gncg sy§tem
selection from this large set and derive a composite classifier Tor automatic fa(?e recognition and gender 9|aSS|f|Cat|Oan|S
that achieves high performance with a minimal set of features. important issue in intelligent systems. In this work, weusc
This greatly reduced set, consisting of some level curves on theon a feature selection technique from machine-learningisha
B?OS\?i daer;d :O\%‘?yracd(;ﬁi F)C:Cr;’essié?];thjefogefhgag S”gggegﬁz rgg;ggtslfully automatic and versatile enough for different appticas
classification algorithm for face recognition and gender selection. like face reCOQ”'“O” and gender anSS|f|cat|on. The festur
Itis also efficient in terms of data storage and transmission costs. cOmes from dlff.erent types of faC'fﬂl' curves eXtraCt?d from
Experimental results, carried out using theFRGCv2dataset, yield facial surfaces in an intrinsic fashion, and comparisons of

a rank-1 face recognition rate 0of98% and a gender classification these curve features is based on latest advances in shape

rate of 86% rate. analysis of parameterized curves using tools from difféaén
Index Terms—Face recognition, gender classification, geodesic geometry. In the process we also develop an effective approa
path, facial curves, machine leaming, feature selection. for tackling facial expressions variation, an importardus of
the face recognition grand challenge. Our approach offegs t
l. INTRODUCTION advantage of classifying either facial identity and/or dgm

i o o . both independent of the ethnicity. Specifically, the main-co
Since facial biometrics is natural, contact free, nonsit®, inutions of this paper include:

and psychologically supported, it has emerged as a popular ) ) o
modality in the biometrics community. Unfortunately, the— A Néw geometric feature-selection approach for efficient
technology for 2D image-based face recognition still faces 3D face recognition that seeks most relevant characteris-
difficult challenges, such as pose variations, changes ft-lig tics for recognition while handling the challenge of facial
ing conditions, occlusions, and facial expressions. Duthéo expressions. In particular, we are interested in finding
robustness of 3D observations to lighting conditions ansepo ~ those facial curves that are most suitable for 3D face
variations, face recognition using shapes of facial segac ~ recognition. o _

has become a major research area in the last few years. A New gender classification approach using the 3D face
Many of the state-of-the-art methods have focused on the shape represented by collections of curves. In particular,
variability caused by facial deformations, e.g. those due t W€ are interested in finding those facial curves that are
face expressions, and have proposed methods that are tobust MOst suitable for gender discrimination.

such shape variations. At the same time, gender classificatio The rest of the paper is organized as follows. Section

is emerging as an interesting problem that can be a usefusummarizes existing approaches on 3D face recognition
preprocessing step for face recognition. Gender is similgith an emphasis offiacial curve-basedand facial feature-
to other soft biometric traits, such as skin color, age, eygased methoddt also presents some progress in 3D imaging-
colors, and so on, used by humans to distinguish their pegjgsed gender classification. Section 1l overviews the pseg

approach for both the target applications. In section IV, we
L. Ballihi is with Laboratoire d’Informatique Fondamentale Hille (UMR bp 9 bp

CNRS/Lille 8022), Villeneuve d’Ascq Cedex France and LRUhité Asso- present prOCEdureS for extracting facial curves. Section V
ciée au CNRST (URAC 29), Faculté des Sciences, Universitéavtoned V  recalls the main ideas of the Riemannian geometric shape
- Agdal, Rabat, Maroc. _ _ _ , . . analysis framework to compare and match facial curves. In
B. Ben Amor and M. Daoudi are with Institut Mines-Télécom/Télé : . . e .
Lille 1 LIFL (UMR CNRS/Lillel 8022), Villeneuve d’Ascq CedeFrance. ~ S€ction VI, we give formulations to the classification peobl
A. Srivastava is with Departement of Statistics, Floridats&taniversity, and describes the use of the boosting procedure to achieve
Tallahassee, FL 32306, USA. y the feature selection step, for each of the two applications.
D. Aboutajdine with is LRIT, Unité Associée au CNRST (URAC)29 . . . . .
Faculté des Sciences, Université Mohammed V - Agdal, Rabatoda Experimental eva'_Uatlo_nS anC_i comparative Studles_ to pusvi
Manuscript received April 19, 2005; revised January 11,7200 approaches are given in section VII. We conclude in the paper
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with a discussion and summary in Section VIII. Euclidean mean and geometric mean. However, there were
no discussion on how to obtain optimal curves. Later in
[11], the same authors used the level curves of the geodesic
distance function that resulted in 3D curves. They used
As the proposed approach combines curve-based facenon-elastic metric and a path-straightening method to
comparison with feature selection techniques, we maintypmpute geodesics between these curves. Here also, the
focus on previous methods that primarily ubxeal facial matching was not studied and the correspondence of curves
feature-selection anbolistic facial curves. and points across faces was simply linear. In [12], Mpiperis
et al. proposed a geodesic polar parametrization of thalfaci
A. Feature selection-based 3D face recognitioBeveral surface. With this parametrization, the intrinsics atttés
methods have been proposed to analyze the discriminatilee not change under isometric deformation when the mouth
power of different facial regions or features for facdés closed. Otherwise, it violates the isometry assumption
recognition. Daniyal et al. [3] proposed an algorithm imnd thus they adapt their geodesic polar parametrization
which a face is represented as a vector of distances betwegndisconnecting the lips. Through this representatiory th
pairs of facial landmarks. They selected the landmarks lpyoposed an elastically deformable model algorithm that
exhaustive search over possible combinations of used/dnusstablishes correspondence among a set of faces. Then, they
landmarks, comparing the recognition rates, and concludeshstruct bilinear models that decouple the identity and
that the best selection corresponded to the landmarkseldcafacial expression factors. The invariance to facial exgicets
around the eyes and the nose. In the 3D face recognitisnobtained by fitting these models to unknown faces. The
approach used by Faltemier et al. [4], the nose tip and B&in limitation of this approach is the need for a large
small regions were selected automatically for improvinget which should also be annotated with respect to facial
recognition. More recently, Wang et al. [5] computed a sineexpressions. In [13], Drira et al. explored the use of shapes
shape difference map (SSDM) between two aligned 3D facek noses for performing partial human biometrics. More
as a intermediate representation for the shape comparis@tently, in [14], the same authors proposed similar shape
Based on the SSDMs, Haar-like, Gabor, and Local Binagnalysis approach this time using radial curves. They model
Pattern (LBP) were used to encode both the local similarigfastic deformations of facial surfaces (including opgnin
and the change characteristics between facial shapes. T mouth) as an optimal re-parametrization (or matching)
most discriminative local features were selected optimalproblem that they solve using the dynamic programming
by boosting. Using similar features, Li et al. [6] proposedigorithm. This approach provided promising results on
to design a feature pooling and ranking scheme in order ®AVAB database even where the probe pose is non-frontal.
collect various types of low-level geometric features,isas In [15], Berretti et al. used the geodesic distance on the fac
curvatures, and ranked them according to their sensitivite to extract iso-geodesic facial stripes. Equal width isoetgsic
facial expressions. They applied sparse representatiotiset facial stripes were used as nodes of the graph and edges
collected low-level features and achieved good resultshen toetween nodes were labeled with descriptors, referred to
GAVAB database. In [7] Ocegueda et al. proposed a Markag 3D Weighted Walkthroughs (3DWWs), that captured
Random Field model for the analysis of lattices (e.g, imagautual relative spatial displacement between all the pairs
or 3D meshes) in terms of the discrimantive information aff points of the corresponding stripes. Face partitioning
their vertices. They observed that the nose and the eyes iate iso-geodesic stripes and 3DWWs together provided an
consistently marked as discriminative regions of the faca inapproximate representation of local morphology of faces
face recognition system. Li et al. [8] proposed an expressicthat exhibits smooth variations for changes induced by
robust 3D face recognition approach by learning weightdédcial expressions. More recently Ballihi et al. [16] prepaa
sparse representation of encoded normal information, twhigew curve selection approach for efficient 3D face recogmitio
they called multi-scale local normal patterns (MS-LNPSs)
facial surface shape descriptor. They utilized the learnedC. Gender classificationThe human face presents a clear
average quantitative weights related to different faciglgical sexual dimorphism that makes face gender classification an
components to enhancing the robustness of their systemesaremely efficient and fast cognitive process [17]. Altgbu
expression variations. a significant progress has been made, the task of automated,
robust face gender classification is still a distant goal. 2D
B. Curve-based face representation:The basic idea of Image-based methods are inherently limited by variability
these approaches is to represent a surface using an indereabjing factors such as illumination and pose. An emerg-
family of curves which provide an approximate represeatati ing solution is to use laser scanners for capturing three-
of the surface. Samir et al. [9], for instance, used th#imensional (3D) observations of human faces, and use this
level curves of the height function to define facial curveslata in performing face gender classification. Bruce et3l. [
Since these curves are planar, they used shape analysipasformed an interesting experiment in which they tested th
planar curves, taken from [10], to compare and defortuman visual system that is accurate at deciding whether
faces; nonlinear matching problem was not studied hefi@ces are male or female, even when cues from hairstyle,
(that is, the mapping was fixed to be linear). The authomsakeup, and facial hair are minimized. The authors found
proposed to compare facial surface by using two metridbiat subjects were considerably less accurate when asked to

II. RELATED WORK
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judge the sex of 3D representations of faces obtained byAs demonstrated later, the proposed approach achieves
laser-scanning, compared photographs that were taken witghest performance for the face recognition task, with the
hair concealed and eyes closed. They proved thahtlegage additional computational advantage of using a compactsign
male face differs from th@veragefemale face by having a ture. Furthermore, it is one of the first approaches to address
more protuberant nose/brow and more prominent chin/jathe gender classification problem using 3D face images. §0 th
The effects of manipulating the shapes of the noses abneést of our knowledge no previous work has proposed a unique
chins of the laser-scanned heads were assessed and signifitamework for 3D face recognition and gender classification
effects of such manipulations on the apparent masculinity o

femininity of the heads were revealed. In O'Toole et al. [2], I1l. OVERVIEW OF THE PROPOSED APPROACH

the authors assumed that the sex of a face is perhaps its Mog, this work. we combine ideas frolshape analysisising

salient feature. They applied principal components amly§,o|s from differential geometry anftature selectiomerived
(PCA) separately to the three-dimensional structure and gm, 1\ machine learning to select and highlight salient 3D
level image data from laser-scanned human heads. The resili§metrical facial features. After preprocessing of 3Dnsca
showed that the three-dimensional head data supported MQEe represent resulting facial surfaces by a finite indexed

accurate sex classification than the gray level image dalyiections of circular and radial curves. The comparisén o

across a range of PCA-compressed (dimensionality-refucgdinyise curves, extracted from faces, is based on shape ana
representations of the heads. Jing et al. [18] investiga

> ) tﬁgs of parameterized curves using differential geometnysto
gender classification based on 2.5D facial surface normfﬂécording to the target application, the extracted featue

(facial needle-maps) which can be recovered from 2D intgnS}, 5ineq as weak classifiers and the most discriminativeifeat
images using a non-Lambertian Shape-from-shading (SFg) selected optimally by adaptive boosting. For the case of
method. They described a weighted principal geodesic anglyqer recognition, the classification is formulated asaryi
ysis (WPGA) method to extract features from facial Surfaﬁ?roblem (Male/Female classes) and we propose to use the

normals to increase the gender discriminating power in thger ang intra-personal comparisons formulation to esi
leading eigenvectors. They adopted a Bayesian method {gbyre selection for face identification, which is basicall
gender classification. Xiaoguang et al. [19] exploited /Ea 5 \yrti-class classification problem. Fig. 1 overviews the
information of human_ faces for ethn_lcny |de_nt|f|cat|on nipia proposed approach with the target applications, face recog
Support Vector Machine (SVM). An integration scheme is al§Qion and gender classification. Accordingly, it consists
proposed for ethnicity and gender identifications by cornnigin 4, following steps:

the registered range and intensity ima'\ges.. Yuan et al. [20]. The Off-line training step, learns the most salient cir-
proposed a fusion-based gender cIaSS|_f|cat|on_ methoddbase cular and radial curves from the sets of extracted ones
on SVM’ for .?’D front_al neutral expression facial. A ”?eth"d according to each application in a supervised fashion. In
for fusion of information from four regions (upper region of face recognition, for instance, construct feature vedigrs

the face, the lower region of the face, the nose and the left . o .
eye) was proposed comparing pairwise curves extracted from facial surfaces.
o o o Next, feed these examples, together with labels indicating
From the above discussion it is clear that a majority of i they are inter-class or not. Thus, the adaptive boosting
current methods on curve-based 3D face recognition used & selects and learns iteratively the weak classifiers and
holistic representation/parametrization of facial scefa In adding them to a final strong classifier, with suitable
this paper, we consider curves as geometric features that weights. As a result of this step, we keep thearliest
capture local facial shape and we propose to learn the most gglected features for the testing step.
relevant curves using adaptive boosting. Thus, we propose Q The On-line test stepperforms classification of a given
represent a facial surface by two types of facial curvesatad test face. In the identity recognition problem, a probe face
and levels, for 3D face recognition and gender classifinatio is compared to the gallery faces using only individual
This strategy raises a few issues : (i) How to define curves on  scores computed based on selected features which are
facial surfaces?, (i) How to compare shapes of facial sffve  fysed using the arithmetic mean. In the gender recogni-
and (iii) How to select the most relevant curves for 3D face tjgn problem, a test face is compared to computed tem-
recognition and gender classification? To address thegesss plates of Male and Female classes using curves selected
our strategy includes the following steps : for that purpose. The templates are computed, once for

1) A facial surface representation by collection of curves all, within the training stage.

of level sets (circular curves) and streamlines (radial
curves) of a distance function; V. 3D FACIAL CURVES EXTRACTION
2) A geometric shape analysis framework based on Rie-Let S be a facial surface denoting the output of a prepro-
mannian geometry to compare pairwise facial curves;cessing step that crops the mesh, fills holes, removes noise,
3) A boosting method to highlight geometric features a@nd prepares the mesh for curve extraction. We extractlradia
cording to the target application; curves emanating from a reference anchor point (the tip of
4) A through experimental evaluation that compares thbe nose) and circular curves having with the same point as
proposed solution with latest methods on a common ddtee pole, using simple procedures detailed in the following
set and common experimental settings. paragraphs.



JOURNAL OF ETEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Female template

Offline Training ------ ! - -
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Male template

Fig. 1: Overview of the proposed approach, including bo#tyss of training and testing and both target applicatiodgntity
recognition and gender classification.

A. Radial curves

Let g8/, denote the radial curve afi which makes an angle
« with a reference radial curve; the superscripdenotes
that it is a radial curve. The reference curve is chosen to | coarse
be the vertical curve once the face has been rotated to the| s—— J"™"
upright position. In practice, each radial curgg is obtained
by slicing the facial surface by a plang, that has the Firstgalery model
nose tip as its origin and makes an anglewith the plane of FRGCY2
containing the reference curve, as shown in Fig. 3. That [ig. 2: Probe model pose normalization by registration with
the intersection of, with S gives 3],. We repeat this step to first gallery face ofFRGCv2 a coarse alignment is performed
extract radial curves from the facial surface at equal arguby translating the probe face according to the translatemtor
separation. Each curve is indexed by the angleTo avoid formed by the tips of the noses. A fine registration is then
pose variations problem, all probe faces are aligned wi¢h thchieved by the ICP algorithm.
first face model of FRGCv2 database. This step is achieved by
performing a coarse alignment by translating the probe tace

a reference face, using their noses tips. This coarse aighm _ ) )
step is followed by a fine alignment using the ICP algorithnﬂav'ng the reference point as center and variable radid$e

as illustrated in Fig. 2. The process of curve extractiomthdtersection of a given sphere and the facial surface defines
follows. equi-distant points from the reference point, in the swafac

If needed, we can approximately reconstrgcfrom these Fig. 4 iIIustrates resglts _of such extraction p_rocedure.rme_
radial curves according t& ~ U, = Ua{S N Py} as that any points ordering is needed for both kind o_f curvesesin
illustrated in Figure 3. This indexed collection of radiarees "€ Slicing procedure kept edges between points. However,
captures the shape of a facial surface and forms the fifsCurve sub-sampling procedure is introduced to achieve the
mathematical representation of that surface. Eam§ number of points for all curve$0( points per curve
ere).

Similarly to radial curves, we can also approximately recon
struct,S from these circular curves according $o~ Uy 35 =

Let 35 denote the circular curve o8 which makes a U,{SNM,} as illustrated in Fig. 4, we describe the geometric
distance A from the reference point (nose tip). A similarframework which allow matching and comparison of curves.
procedure is employed to extract these curves. The omHig. 5 gives some results of facial curves extraction onrsdve
difference is the slicing function which is now a sphévg, 3D faces.

Registration by
ICP

B. Circular curves
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Collection of We start by considering a curve in R3. While there are
radial curves several ways to analyze shapes of curves, an elastic amnalysi
of the parametrized curves is particularly appropriate im o
application — face analysis under facial expression vaniati
This is because (1) such analysis uses the square-rooityeloc
function representation which allows us to compare local
facial shapes in presence of elastic deformations, (2) this
method uses a square-root representation under which the
elastic metric reduces to the standdrd metric and thus
simplifies the analysis, (3) under this metric the Riemamnia
distance between curves is invariant to the re-paramétiza

Fig. 3: Procedure for extraction of radial curves, a cute 14 analyze the shape 6t we shall represent it mathematically
is obtained by slicing the facial surface B3, defined by the using a square-root representation ffas follows ; for an

anglea with the vertical plane and having as origin the NOSRarval I — [0,1], let 3 : I — R® be a curve and define

Preprocessed face

* q: I — R3 to be its square-root velocity function (SRVF),
Collostion of given by:
seherevit radus <A 4 A so-lovel curves :
T e e B @
1B()]

Heret is a parametee I and|- | is the Euclidean norm in
v R3. We note thaty(¢) is a special function that captures the
_di shape of3 and is particularly convenient for shape analysis,
Preprocessed face S~UM\ 5 aswe describe next. The classical elastic metric for comgar
shapes of curves becomes thé&-metric under the SRVF

Fig. 4: Procedure for extraction of circular curves, a cyfge 'ePresentation [24]. This pointis very important as it siffgs

is obtained by slicing the facial surface Iy defined by the the calculus of elastic metric to the well-known calculus of
radius A and having as center the nose tip. functional analysis under tHe?-metric. Also, the squareti?-

norm of g, given by:||q|[2 = [, (a(t), (1)) dt = []|3(t)]|dt ,

is the length ofg. If we set||q|| = 1, implying all curves are
rescaled to unit length, then translation and scaling laditia
have been removed by this mathematical representation of
curves.

Consider the two curves in Figure 6.a., let us fix the
parametrization of the top curve to be arc-length, i.e.erse
that curve with a constant speed equal to one. In order to
better match that curve with the bottom one, one should know
at what rate we are going to move along the bottom curve so
that points reached at the same time on two curves are as close

Fig. 5: Examples of facial representation by circular ardiada as possible under some geometric criterion. In other Wo_rds,
curves. The first row illustrates preprocessed faces of m%%aks and valleys should be reached at the same time. Figure

subjects, the second row gives preprocessed faces of fematé llustrates Fhe matching where point 1 on the top curve
matches to point 11 on the bottom curve. The part between

the point 1 and 2 on the top curve shrinks on the curve 2.
Therefore, the point 2 matches the point 22 on the second
curve. An elastic metric is the measure of that shrinking.

In the last few years, many approaches have been developed
to analyze shapes of 2D curves. We can cite approaches ba&eﬁa dialopen curves
on Fourier descriptors, moments or the median axis. Mor P
recent works in this area consider a formal definition of shap The set of all unit-length curves iR? is given byC =
spaces as a Riemannian manifold of infinite dimension diq : I — R3|||¢|| = 1} < L2?(Z,R?). With the L2-metric on
which they can use the classic tools for statistical analysits tangent spaces, becomes a Riemannian manifold. Since
The recent results of Michor and Mumford [21], Klassen @he elements of have a unitl.? norm,C is a hypersphere in
al. [10], and Yezzi and Mennucci [22] show the efficiencyhe Hilbert spacel.?(I,R?). In order to compare the shapes
of this approach for 2D curves. Joshi et al. [23], [24] havef two radial curves, we can compute the distance between
recently proposed a generalization of this work to the cdisetbem inC under the chosen metric. This distance is found to
curves defined ifR™. We will adopt this work to our problem be the length of the minor arc connecting the two elements
since our 3D curves are defined Tit¥. in C. SinceC is a hypersphere, the formulas for the geodesic

V. GEOMETRIC SHAPE ANALYSIS OF FACIAL CURVES
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B. Circular closedcurves

We will use 3§ to denote the circular closed curves. Using
SRVF representation as earlier, we can define the set ofctlose
curves inR3 by C = {q: I — R3| [, q(t)|q(t)|dt = 0, ||q|| =
1} < L2(I,R*)}. The quantity [, q(t)|q(t)|d¢ is the total
displacement irR? while moving from the origin of the curve
until the end. If it is zero, the corresponding curve is cthse

@ ®) Thus, the setC represents the set of all closed curves in
Fig. 6: lllustration of elastic metric. In order to compateet R®. It is called a pre-shape space since curves with same
two curves in (a), some combination of stretching and bendighapes but different orientations and re-parameterizsioan
are needed. The elastic metric measures the amounts of tHeésgepresented by different elementsCofTo define a shape,
deformations. The optimal matching between the two curvé§ representation should be independent of its rotatiosh an
is illustrated in (b). re-parameterization. This is obtained mathematically bg-a
moving the rotation grouyO(3) and the re-parameterization
groupI” from C. As described in [23], [24], we define the orbits

and the geodesic length are already well known. The geodegfdhe rotation grouO(3) and the re-parameterization group

length between any two points, ¢» € C is given by: I" as equivalence classes@n The resulting shape space is :
S=C/(SO(3) xT) (4)
_ —1
de(q1, q2) = cos™ ({q1, 42)) , ) 10 define geodesics on pre-shape and shape spaces we need :

Riemannian metric. For this purpose we inherit the standard
L2-metric of the large spacé.?(I,R3). For any u,v €
L2(I,R3), the standard.? inner-product is given by:

1 . .
ol7) = gy G0 = D0 +sin@0)) - (3) ((u,v)) = /I (u(t), v(t)) dt (5)

whered = d.(q1, ¢2)- The computation of geodesics and geodesic distanceseutiliz
It is easy to see that several elementsCo€an represent the intrinsic geometries of these spaces. While the detailed
curves with the same shape. For example, if we rotate a fagscription of the geometries ¢f and S are given in [23],
in R3, and thus its facial curves, we get different SRVFER4], we briefly mention the tangent and normal spaces.of
for the curves but their shapes remain unchanged. Anothiecan be shown that the set of all functions normaltat a
similar situation arises when a curve is re-parametrized;paint ¢ are given by:

and the geodesic path: [0,1] — C, is given by:

re-parameterization changes the SRVF of curve but not its B g (t) ‘
shape. In order to handle this variability, we define orbits 0 N,(C) = sparq(t), | (t)|q<t) +lq(t)le’li =1,2,3}  (6)
the rotation groupO(3) and the re-parameterization grolip a

as equivalence classesdnHere,T" is the set of all orientation- where {e', e, e’} form an orthonormal basis G&*. Thus,
preserving diffeomorphisms df(to itself) and the elements of the tangent space at any point C is given by:

I' are viewed as re-parameterization functions. For example, N 3 5

for a curveB, : I — R3 and a functiony € T, the curve Ty(€) ={v: I = Rv L No(C)} Q)
Ba o7y is are-parameterization of,. The corresponding SRVF Now, an important tool in our framework is the construction
changes according to(t) — +/4(t)q(y(t)). We define the of a geodesic path between two elementsSpfunder the

equivalent class containing as: Riemannian metric given by Eqg. 5. Given two cury&s and
B, represented by their SRVF respectively and g2, we
ld] = {V/7()0a(~(1))|0 € SO(3), ve€T}, need to find a geodesic path between the orfgits and [g»]

. . in the spaceS. We use in this context, a nhumerical method
The set of such equivalence class is called the shape SP&Sfied thepath-straighteningnethod [25] which connects the

S of elastic curves [23]. To obtain geodesics and geodesjg, points[¢:] and [¢] an arbitrary pathy and then updates

distances between elements 8f one needs to solve theyis nath repeatedly in the negative direction of the gradie
optimization problem. The resulting shape space is the fset energy given by:

such equivalence classes:

We denote byl (5., , Ba,) the geodesic distance between Ela] = = / ((a(s), a(s)))ds (8)
the corresponding equivalence clas§@s and [¢2] in shape 2 Js
spaceS. In Fig. 7 we show geodesic paths between radial It has been proven in [25] that the critical points &f
curves and the facial surfaces obtained by Delaunay trianglefined by Eq. 8 are geodesic paths $n We denote by
lation of the set of points of radial curves. In 7a we show &;(0,,, 8\,) the geodesic distance between the corresponding
geodesic path between two facial surfaces of the same perseguivalence classelg;| and [gz] in S. In Fig. 8 we show
while in 7b we show the same for faces belonging to differegeodesic paths between circular curves and the facialcasgfa
persons. obtained by Delaunay triangulation of the set of points of
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PR EEDDDBBEe

(b)

Fig. 7: 7a shows intra-class geodesics between facialasgfand their associated radial curves. 7b shows intes-glsdesics
between facial surfaces and their associated radial curves

Fig. 8: 8a shows intra-class geodesics between facialcagfand their associated circular curves. 8b shows inassgjeodesics
between facial surfaces and their associated circularesurv

circular curves. In 8a we show a geodesic path between tand Schapire in [26]. Recall that, boosting is based ontitera
facial surfaces of the same person, while in 8b we show tkelection of weak classifiers by using a distribution of tiragn
same for faces belonging to different persons. samples. At each iteration, the best weak classifier is peavid
and weighted by the quality of its classification. In pragtithe
individual circular curves and radial curves are used askwea

. ) classifiers. After)M iterations, the most relevafit (T' < M)
In this section we extend our study from shapes of curvesfgiia| curves are returned by the algorithm.

shapes of facial surfaces. We represent the surface of¢red fa
surfaceS by a collection of 3D circular and radial curves,
A. Face recognition

C. Extension to facial surfaces shape analysis

N Nao
~ c r To train and test Adaboost classifier for this applicatior, w
S~ U , 9 T
{ )\L=Jl gy {aL:Jl Pal ) use the 3D face models of FRGCv2 dataset. For each radial

. ) ) .. and circular curve, we compute tiAdl vs. All (4007 x 4007)
where [ represents the circular curvel), is the cardinality gjmjjarity matrix. We then split the matrices as we keep the

of the set of circular curvest;, represents the radial curve angs 516y ys. Probef size466x 3541 for the testing and uses the

Na is the cardinality of the set of radial curves. Two shapes pfainingprobe vs. Probesub-matrices, of the size 6641 x
facial surfaces are compared by comparing their correspgndss 11 oy the training. Thus, we separate the training and the
facial curves. The distance between two facial surf&eand testing samples (the set of individual distances relatdddial

% could be defined by : curves) and these disjoint sets serve as inputs to Adaba®st,
illustrated in Fig. 9.
Lo 1 Yo Loy 1 2 el oo From these areas of the matrices, we extract two kinds
(5%, 5%) = 5 > dl Byt By + deé( N BYT)  of scores(i) the match scoreg(intra-personal comparisons)
¢ a=1 A= (10) and (ii) the non-match scoreginter-personal comparison).
Together these scores form an input to the boosting algorith
More formally, we consider a set of pail®?,y,)1<n<n
corresponding to similarity scores between radial or ¢incu
Radial and circular curves capture locally the shape of tlcarves at the same level, with= r or & = ¢. y,, can take
faces. However, their comparison under different expoassi two values:0 in the case ofmon-match scoreand 1 in the
runs into trouble. In fact, their shapes are affected by ghan case ofmatch score For each circular or radial curve, the
in facial expressions. For that purposes, we introducetarfea weak classifier determines the optimal threshold classifica
selection step to identify (or localize) the most stable arfdnction such that the minimum number of samples are
most discriminative curves. We propose to use the well knovmisclassified. Each weak classifigf(2%) will take a value
machine learning algorithm AdaBoost introduced by Freuraf distance computed based on a radial or circular curve,

VI. BOOSTING FOR GEOMETRIC FEATURE SELECTION
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Probe

(3541) x curves on different sessions of the same person with differe
N\ so-level curves expressions, whereas, the second row gives curves loaation
H \ 4 different subjects. We note that the boosting algorithnectsl
Nfodialeurves—jso-curves located on the nasal region, which is stable unde
h expressions and radial curves avoiding two parts. The first
Testing one is the lower part of the face since its shape is affected
o by expressions, particularly when the mouth is open. The
second area corresponds to the eye/eyebrow regions. Shapes
of radial curves passing throw these regions change when
conveying expressions. In contrast, the most stable anesr co
the nasal/forehead regions.

A

>

Gallery
Earliest scans (466)

Probe

—— (3541) ——p grmrreee

Training

@ Match score Emn

O Non-match score yu}
LA111

Fig. 9: All vs. Probedistance matrices splitting ; the Gallery
vs. Probe distance matrix is kept for testing, as suggested i
the FRGC evaluation protocol and the remaining sub-matrice
Probe vs. Probere used for training.

threshold it, and classify the comparison as positive (intra
class) or negative (inter-class), depending on the distsalue Fig. 10: The most discriminative radial and circular curves

being under or over the threshaotd selected by Boosting for face recognition, given on diffeere
- ) faces.
hi (k) = {1 if z < 6 (intra-personal)
I\tn) ; ;
0 otherwise. (inter-personal) To demonstrate the usefulness of the curve selection step,

where, i, denotes for the weak hypothesis given hy : different graphs in Fig. 11 plot the rate of False Acceptance
X — {0,1}. The final strong classifier is defined by a setersus the rate of False Rejection for different configoredi

of a weak classifiers weighted by a set of weights = These curves are produced from fPwbe vs. Probenatrices
{win},<,<n- The pseudo-code of AdaBoost algorithm ii.e using the training §et). As shown in Fig. 11(b), minimum
summarized in algorithm 1. errors are given by fusing scores of selected radial andteele
circular curves. We note also that the selection performed o
Algorithm 1 AdaBoost algorithm radial curves only or circular curves only minimizes theoesr

« Input: A set of samplegat, 1), .. (X , y) wherez® is the score compared to the use of all radial curves or circular curves,

of similarity of the circular or radial curveg (1 < k < o) and TE€SPECtively.
yn = {0,1}. The on-line testing step consists on comparing fagés
e be the number of non-match score drise the number of match 44 62 by the fusion of scores related to selected curves as
Initialisation of weightsw: », = 5., 3; it depends on the value gf, following:
wheren € 1..N.
Ao = Nx+ Na
o Fort=1,...,M: 1 @2 1 oy 1 2 1 o c,1 pe,2
1- Normalize the weightsut,,, such thats Y, wy,, = 1. d(s+,5%) = N Z ds(By", By™) + N Z ds(BY", BY7)
2- For each curves; (feature), train a weak classifiér; that uses As =1 As y—1
a single curve. The errar; of classifierh; is determined with the (12)

corresponding weightoy, 1, ..., we, - where Ny is the cardinality of the set of selected circular
N _ curves andN,, the cardinality of the set of selected radial
€ = Zwt,n\hj(iﬁi) — Yn| curves.

3- Choose the classifigt; with the lowest error. o

4- Update the weights;41,n = we,ny, ", wherey, = ;< B. Gender classification

2{;‘;6” = 0, if the samplezn, is correctly classified byi; and 1 o 3D face-based gender classification task, we first
compute Male and Female representative templates using

e The final hypothesis is a weighted linear combinations of fe ’ -
hypotheses where the weights are inversely proportiondiedraining the geometric shape analysis framework for open and closed

errors. The strong classifier is given by: curves. In fact, this framework allows us to compute intnsi
He) = 1 it log%ht(@ > %Zlelog(%); means (Karcher njean) of curves that we extend to _faC|aI
0 else. surfaces. Then, within the training step, we compute intra-

class (same gender) and inter-class (different gendenyisair
distances (for each curve index) between sample faces and
The set of selected curves returned by Adaboost is shotive templates. Finally, the most discriminative geometric
in Fig. 10. The first row shows the locations of the selectddatures are selected optimally by boosting as done in face
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100
951 *
90 (b) ,
851 ©) B
& sor ]
g (d)
§ 75 (@) =——{B,} + {B} .
@ (b) — {Bk}kselected + {Ba}agelected
< 70 () —— (B} il
g 65 (d) — {Bk}}\’selected |
C (e) — { Ba}aselected
60 (f) — { B,} .
551 B
50 L L L PRI | L L L PRI | L L L PR R
107 10° 10’ 10°

False Acceptance (%)

Fig. 11: ROC curves produced from the training &t all radial and circular curveéb) selected radial and selected level
curves(c) all radial curveqd) selected circular curve®) selected radial curved) all circular curves.

recognition application. For the testing step, distanoasid@le The intrinsic mean may not be unique, i.e. there may be a

and female templates are computed (based only on selectet of points inC for which the minimizer ofV is obtained.

features), and the nearest neighbor algorithm denotes ffe is an element ofC that can be seen as the smallest

class (Male/Female) membership. Different steps are lddtaigeodesic path length from all given facial surfaces. Weenres

in the following: a commonly used algorithm for finding Karcher mean for
a given set of facial surfaces (by using their curves). This

Male/Female geometric templates computatio®ne ad- approach, presented in algorithm 2 uses the gradient,of

vantage of the proposed geometrical framework for shapethe spacel),(C), to iteratively update the current mean

analysis of curves is to calculate some statistics as thariine The same pseudo-algorithm will be obtained for radial csirve

of facial curves and to extend it to facial surfaces, calledefined in the shape space

Karcher mean[24]. The Riemannian structure defined on a

Riemannian manifold enables us to perform such statistigalgorithm 2 Karcher mean algorithm

analysis for computing faces mean and variance. There ar&gty - o choose some time increment L Choose a pointiy € C

least two ways of defining a mean value for a random varialde an initial guess of the mean. (For example, one could just jiak =

that takes values on a nonlinear manifold. The first definjtioS-)

called extrinsic meaninvolves embedding the manifold in a 1 For achi = 1,...,n choose the tangent vectdi € Ty, (C) which

. . . is tangent to the geodesic fromy, to S*. The vectorg = > '—7 f; is

larger vector space, computing the Euclidean mean in thagroportiona to the gradient at;, of the function). v

space, and then projecting it down to the manifold. The other- Flow for time e along the geodesic which startsat and has velocity

definition, called theintrinsic meanor the Karcher mean  Yectorg. Call the point where you end yp.1.

L S . . 3- Setk = k+ 1 and go to step 1.

utilizes the intrinsic geometry of the manifold to define and

compute a mean on that manifold. It is defined as follows:

Let dc(B¢, 3¢) denotes the length of the geodesic path from Male template facial surface is computed by averaging ten

curves inC. To calculate the Karcher mean of facial curvegales facial surfaces of different person as shown in Fig. 12

{BL, ..., B} in C, we define the variance function: Female template facial surface is computed by averaging ten
females facial surfaces of different person as shown in Fig.
= 13.
. _ a pay2
Vi€ R V() = ;dC( 57 (13) Geometric feature selectionlo train and test the boosting

algorithm for this application, we use 20 previous 3D facks o
the FRGCv1 dataset for training add6 subjects of FRGCv2

for testing. Firstly, we selected a subset of faces of men
and women (ten from each class) from FRGCv1, to calcu-

The Karcher mean is then defined by:

B = arg min V) (4) (14)
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(a) Sample faces (from FRGCv1) used (b) Male template face
to compute the template face (Karcher mean)

Fig. 12: Different facial surfaces of different males perso o ) )
taken from FRGCv1 and their Karcher mean Fig. 14: The most discriminative radial and circular curses

lected by Boosting for gender classification, given on défe
female faces.

sessions of some male faces whereas, Fig. 14 shows the
location of selected curves on different sessions of some
female faces.

(a) Sample faces (from FRGCv1)  (b)Female template face
used to compute the template face (Karcher mean)

Fig. 13: Different facial surfaces of different females gmars
taken from FRGCvland their Karcher mean

late the templates for both male and female classes denot
respectivelyl™¢ andTf¢"e¢ Then, we computed pairwise
distances (based on curves) between test images and b
of templates. Thus, we obtained a matrix containing feature
vectors (distance based on curves) wich will be used to tr
Ababoost algorithm, as illustrated in table I. From this rixat
we extract two kinds of score@) the match scoregintra-
gender comparisons) an(i) the non-match scoreginter-
gender comparison).

aliri]g. 15: The most discriminative radial and circular curses
lected by Boosting for gender classification, given on dffe
male faces.

We note that the boosting algorithm selects iso-curves on
TABLE [: Input feature vectors of Boosting algorithm forthe cheeks region, which is discriminative shape of 3D face
gender classification. for gender classification and radial curves avoiding twdsar
The most stable areas for gender classification cover the

For each curvel| Face malel|| Face femalel| cheeks/sellion regions
Tmale {.’175’)\, 1} {13%’/\, 0} g .
Tjemale {m%’)‘,O} {x%’A,l}

Classification. As described in table |, this time round,
Both score lists represent the inout of the boostinwe calculated different matrices of distances of all seléct
P P ""drcular and radial curves between template faces and the

algorithm. More formally, we consider a set of PaI'Y 66 test faces of FRGCv2. The pseudo-code of the proposed

) 1 U
éﬁ?vésygiltghneggaﬁiei\:f& )\'Saidsgn'Igg:]ytzgiv\?:t\\gjg;)wogender classification algorithm is given in algorithm 3.
o n

in the case ofnon-match scoreand 1 in the case ofmatch

: VII
score For each curved;, the weak learner determines the op-
timal threshold classification function, such that the imiam
number of samples are misclassified. A weak classifjér”)
thus consists of a geometric featytgand a threshold, such

. EXPERIMENTAL RESULTS

In the following, we present conducted experiments and the
obtained results with the proposed methods. In particwar,
report 3D face recognition performances on FRGCv2 [27] and

that: provide a comparative study with state-of-the-art. FRGCv2
dataset containg, 007 3D scans of466 people, in which

. 1 if 28 < 6 (intra-gender) more than40% of the models are non-neutral. A standard
hj(wy) = 0 otherwise. (inter-gender) (15)  evaluation protocol for identification and verification fietric

scenarios supports this data set. Furthermore, we giveegend
Fig. 15 shows the location of selected curves on differenlassification performances achieved by our approachgusin
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Algorithm 3 Gender classification algorithm TABLE II: Rank-1/Computation cost (in sec) for different

o Input: A set of curvesc; wherec; is either circular curves or radial Conf'guratlons'
curves.N¥¢ is the total number of selected circular and Radial curves

All Selected
o ForeachfacerequeSi k = 1,...,466: Performance
1- Calculate the geodesic distances : Radial 583'2';;/10 TIT%(S) ggagla(,;/lo Tlg]fés)
N* . N* . circular 66.51%|| 1.04 85.65%]|| 0.20
D Ak (T, Fy) and Y dy(TF™, Fy,) Fusion based on Eq. 12|| 91.81%]|| 2.64 || 98.02% ]| 0.68
=0 i=0

« The final decisionD(F}) for classification is given by :

1 SN d(rmete, By < SN dy(rfemate ) its shape is stable to facial expressions. We note also ftleat t
0 else. use combining all the curves by using Eq. 12 provides the best
recognition rate.

In addition to performance improvement, the curve selectio
results on a more compact biometric signature which reduce
the same dataset. We note that the subjects in FRGCv2 dat@s€ttime-processing of one-to-one face matching.
are57% male andd3% female. 2) Comparative study with state-of-the-arfEollowing the

FRGC standard protocol for the identification scenario, the
A. 3D Face Recognition Results table 1l shows identification results of previous apprasch

1) Identification: For testing onFRGCv2dataset, only the (Curve-based, feature selection-based, and others) hpiripe
identification evaluation was carried out. In fact, as mevatp (N€ €arliest scan of theé66 subjects in the gallery and the
in section VI since our approach requires a training S,[(,ige,rc-pmaining for testing. We note that experiments reported in
was tested on a subset of this dataset following FRGC [28] and [15] follow a modified protocol by keeping the
evaluation protocol for the identification scenario, adoigt ~ €@rliest neutral scan in the gallery and the remaining as test
ing. We kept, for the test, th&allery vs. Probe(of size 'Mages. IF is clear that the proposed method outperforms
466x3541) similarity matrices. The remaining sub-matriced® majority of state-of-the-art methods. Only the apphoac
(i.e Probe vs. Probesimilarity scores) were used to train thePoPosed recently bywang et al.[5], based on boosting
feature selection step by boosting algorithm. This meaas tpf descriptors (Haar-like, Gabor, and Local Binary Pattern
disjointly similarity vectors are used for the training ate  (LBP)) computed on th&hape Difference Mapetween faces,
test. Following these settings, our approach achie&d2% achieved a_better res@l&i’)% which means that ten more faces
as rank-1 recognition rate and reache@ in rank-5 as are recognized by this approach.
illustrated in the CMC plot (Cumulative Match Charactégst  AS Shown in table IlI, the proposed approach outperforms
given is Fig. 16. We recall that the approach used here iglbad® State-of-the-art except the work of [5] .
on both radial and circular facial curves selection.

D(Fy) = {

04— B. Gender classification

996 The proposed gender classification of 3D face scans has

been experimented using the FRGCv2 database. This was
motivated by the fact that this dataset contains the largest
number of subjects compared to existing 3D face datasets as
Bosphorus, BU-3DFE, etc. To evaluate the proposed approach
we have considerets6 3D images related to th&6 subjects
of FRGCv2 data set. Thus, if several sessions exist in the
dataset, we select the earliest (neutral or non-neutrad) on
for our experiment. We use also few 3D images taken from
FRGCv1 to compute male and female templates, as described
in section VI. The difficulty encountered to compare our
approach to related work, is there is no standard protocol to
%y 4 6 8 10 12 14 16 18 20 22 24 26 28 30 compare gender classification results, unlike FRGC standard
RANK protocol for 3D face recognition. Most of previous appraegch

[34],[18],[20] reported classification results on a sulis&en
Fig. 16: The Cumulative Match Characteristic curve for s&om FRGCv1 dataset.

lected radial and level curves.

99.4

99.2

929

98.8

98.6

Recognition Rate (%)

984

98.2

1) Classification resultsWe conducted experiments by first
computing Male{T™a¢} and Female{7/°™ ¢} templates

As shown in table Il, the selected curves provides bettasing sample 3D scans taken from FRGCv1. Then, compar-
recognition rate that using radial or circular individyaWe isons between those templatgg™e!, Tfemalel and the466
point out that the most relevant circular curves are located test images (of FRGCv2) based on their circular and radial
the nasal region, which means that the nasal shape sigiificacurves were computed to build the feature vectors. Finally,
contribute to face recognition. This is due to to the fact théwo experiments, detailed below, were carried out:
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TABLE lll; Comparison with state-of-the-art approachesEFRGCv2 (Rank-1 recognition rate).

A. Curve-based representation B. Feature selection-based Others
Methods| ter Haar| Berretti*) | Mpiperis| Drira | Faltemier| Kakadiaris| Wang | Huang| Mian®™) | Cook
[29] [15] [12] [30] [4] [31] [5] [32] [28] [33]
[Rank-1] 97% | 94.1% | - | 97.2%] 97.2% | 97% |98.3%] 97.2%] 91.9% | 92.9%]
[ our | 98.02% ]

(*) "E-N-S" means the earliest neutral scan in the gallery and the remaisipgohes.

. Experiment 1. Curve selection-basedo select the most 'ABLE V: An experimental comparison of gender classifica-
relevant combination of curves using Adaboost algorithrfonS methods using different machine learning techniques.

we first use10 male 3D face models and0 female Method Classifier decision-based
models from FRGCv1 to compute the male and femalg ethods AdaBoost” [ SVM™ | Neural™
templates. Then, we compute pairwise curve distances Network

between the same sample models and the templat¢§ender Classification Rafe 86.05% [ 83.91%] 83.05% |

in order to build feature vectors, used for the training™) Results for 10-fold cross-validation.

step. Now, given new test face from tH66 3D models

of FRGCv2, we compute the pairwise distances to the

templates then make the decision as result of the neareRGCV1, six female subjects and four male subjects, while in
neighbor algorithm. Following this setting, our approacﬁlg] a subset of FRGCv1 is used with only 28 female subjects
achieveds84.12% as average gender classification rat@nd 80 male subjects. However they used more than one
We note that, in this experiment, after feature selectigigssion of each subject. Note that this ad-hoc division does
step, accumulated distances from selected curves only gHarantee that all subjects will have a neutral expressiome
used and classification is achieved by nearest neighbdRGCV2 subjects are scanned with arbitrary facial expoessi
classification. As reported in table IV, we note also
that using the combination of selected circular curves £
and selected radial curves achieved better performances
compared to selected circular curves or selected radial
curves, taken individually.

TABLE IV: An experimental comparison of gender classifica-
tions methods using different types of selected curves.

Curve selection-based 3

circular | Radial | circular and . . . o
curves | curves | radial curves Fig. 17: Different female 3D faces misclassified by our ap-

ificati 0 0 0 . i i , i
[Gender Classification Raie79.40%]| 80.60%| 84.12% | proach. The first row gives 3D data, the second gives the
corresponding texture of 3D data.

Methods

o Experiment 2. Classifier decision-basedin order to ) ) N ) )
evaluate the boosting classifier results, we have con-The analysis of some misclassified examples given by Fig.
ducted, following the same setting, experiments using twid and 18 shows that there are two major reasons of this
machine learning methods, SVM and Neural Networlnisclassification. The first one is the bad quality of 3D scans
Instead of feature selection step, we consider the firdich as some occlusions in relevant regions which affected
classifier decision. For example, we consider the binal}e shape of curves. The second reason lies in the fact that
decision of the strong classifier of Adaboost. Table gnly based on the shape information, there is some confusion
summarizes the obtained results. Training and testikgven for a person), to recognize correctly the gender of the
steps are carried out using a 10-fold cross-validatig¥erson. One solutlon. of th!s problem and for improving t.he
experiment. According to this, thi6 subjects are splited prqposed approach is to introduce the texture mfor_matlon,
into disjoint subsets for training and test. Usibgrfold Which contains complementary (as hair density, etc.) ireord
cross validation, training is repeated times, with each 0 consolidate the classifier decision.
of the 10 subsets used exactly once as the test data.

Finally, the results from the ten steps are averaged to VIII. CONCLUSION

produce a single estimation of the performance of the In this paper, by combining tools from Riemannian geome-

classifier for the experiment. In this way, all observationgy and the well-known Adaboost algorithm, we have proposed

are used for both training and test, and each observatignselect the most discriminative curves for facial exporss

is used for test exactly once. and gender classification. The experiments, carried out on

2) Comparative study with state-of-the-afftable VI shows FRGCv2 including neutral and non-neutral images, demon-

gender classification results compared to previous appesacstrate the effectiveness of the proposed approach. Badgd on
tested on different subsets. In [35] the authors used a sabseon 17 curves, including 12 radial curves and 5 circular csirve
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TABLE VI: Gender classification results, comparison to estaf-the-art results.

Number of Subjects P
Approach | Dataset All Subjects] Female SubjectsMale Subjects Classification ratg
[35] FRGCv1 10 6 4 69.7%
[19] FRGCv1 376 139 237 85.4%
[20] FRGCv1 108 28 80 94.3%
Our FRGCv2 466 202 264 86.05%/84.12%

Fig. 18: Different male 3D faces misclassified by our apphoac
The first rows give 3D data, the second give the corresponding
texture of 3D data. (1]

our fully automatic approach achieved rank-1 recognitide ra 2]
of 98.02%. For gender classification, 19 curves with 12 radial
and 7 circular, were selected and achieved a classificatidi
rate of 86.05%. The algorithm computation time was on the
order of 0.68 second (for recognition rate) and76 second

(for gender classification) to compare two faces with selkct [4]
curves instead 0£.64 second with all curves. The boosting
selects those curves passing through stable regions oadge f s
for different applications. This approach is efficient imnts
of computation time, data storage and transmission costs.

(9]

(10]

—Selected Curves for 3D face Gender Classification
—— Selected Curves for 3D face Recognition
— Selected Curves for both applications

(11]

Fig. 19: Examples of selected circular and radial curves fE)er]
different applications. The first rows give different sessi for
different male persons, the second give different sesdimns
different female persons.

(23]

(14]

The proposed approach can be extended in different direc-
tions in order to improve the performances and to address]
other important classification tasks. For example, theutext
information could be associated to shape information to cofg
solidate the classifier decision. In fact, texture channaliges
additional informations which could be complementary te th[l7]
shape. Additionally, more facial attributes recogniticoch

same framework.
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