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Abstract level of accuracy, they have a limited use in non-coopegativ
scenarios. On the other hand, the less-intrusive modalitie
The 3D face recognition literature has many papers like the face and gait have not reached the desired levels of
that represent facial shapes as collections of curves ef dif accuracy. Since face recognition is contact-less andess i
ferent kinds (level-curves, iso-level curves, radial gy  trusive, itemerges as a more attractive and natural bigenetr
profiles, geodesic polarization, iso-depth lines, isdpsts, ~ for security applications. Unfortunately, image-basezefa
etc.). In contrast with the holistic approaches, the ap- recognition technologies still face difficult challengeslis
proaches that match faces based on whole surfaces, thes lighting conditions, pose variations, occlusions, ad f
curve-based parametrization allows local analysis ofdhci ~ cial expressions. In the last few years, face recognitien us
shapes. This, in turn, facilitates handling of pose varia- ing the 3D shape of face has become a major research area
tions (probe image may correspond to a part of the face) due to its theoretical robustness to lighting condition and
or missing data (probe image is altered by occlusions. An pose variations. However, the problem remains due to vari-
important question is: Does the use of full set of curves ability in facial expressions. Several approaches hava bee
leads to better performances? Among all facial curves, are proposed and applied to deal with deformations caused by
there ones that are more relevant than others for the recog-facial expressions. In the current paper, we focus on those
nition task? We explicitly address these questions in thisapproaches that either use curve-based representations fo
paper. We represent facial surfaces by collections of fadia faces or use some feature selection technique to optimize
curves and iso-level curves, such that shapes of correspondrecognition rates:
ing curves are compared using a Riemmannian framework, A. Curve-based approachesThis kind of method ex-
select the most discriminative curves (geometric feajures tracts representative facial curves from 3D face to alter su
using boosting. The experiment involving FRGCv2 datasetface matching with curve matching for recognition. The
demonstrates the effectiveness of this feature selection bkey problem of these approaches is how to define schemes
achieving98.02% as rank-1 recognition rate. This selec- of curve extraction and matching able to model facial defor-
tion also results in a more compact signature which sig- mations? One earlier and remarkable work in proposed by
nificantly reduces the computational cost and the storage Samir etal.in[19] where 3D faces were instead represented
requirements for the face recognition system. throughiso-depth linesThen, shapes of the iso-depth lines
were compared, exploiting Riemannian shape analysis for
planar closed curves. However, since face expressions in-
1. Introduction and related work duce strong alterations of the iso-depth lines, this apgroa
is likely to be very sensitive to expression changes. An ex-
Biometric recognition aims to use behavioral and/or tension of this work using iso-geodesic curves were pre-
physiological characteristics of people to recognize tbem  sented in [20].
to verify their identities. While some biometric modalities, According toBronstein et al. study [2], the change of
such as fingerprints and iris, have already reached very highthe geodesic distancdue to facial expressions is insignifi-



cant compared to changesmEiiclidean distanceA similar regions matching was proposed. Primary results show sub-
study was followed in [22] by using sample points taken at stantial improvement over matching the shape of a single
the intersection between contour curves and radial profileslarger frontal face regionFaltemier et al. were extended
originated from the nose tip and calculated the euclideanthis method in [9] by considering a set of 38 regions that
distances between corresponding points of different faces densely cover the face and selecting the best-performing
Their approach select subsets of facial curves for effectiv subset of 28 regions to perform matching using the ICP al-
and efficient face matching. Drira et al. [8] explored the gorithm. Cadavid et al.[3] present a novel method for 3D
use of shapes of noses for performing partial human bio-face recognition using adaboosted geodesic distance fea-
metrics. They extract iso-geodesic curves then performstures. They use a generic model and compute the geodesic
differential geometry-driven metrics to construct geodesi distance between anatomical point pairs across each con-
between shapes on a defined Manifold of close curves. Theformed generic model.

same framework allows statistics (means) computation for More recentlyWang et al.[23] compute a signed shape
efficient search in a gallery dataset. In [7], same authorsdifference map (SSDM) between two aligned 3D faces as
proposed similar shape analysis approach on radial curvesa intermediate representation for the shape comparison.
They models elastic deformations of facial surfaces as anBased on the SSDMs, three kinds of features were used to
optimal re-parametrization problem that they solve by Dy- encode both the local similarity and the change character-
namic Programming. Their approach performs promising istics between facial shapes. The most discriminativel loca
results on GAVAB database even where the probe pose isfeatures were selected optimally by boosting and trained as
non-frontal. weak classifiers for assembling three collective strong-cla

Mpiperis et al.proposed an elastically deformable model Sifiers. The individual features were of the type : Haar-
algorithm [18] that establishes correspondence among a sefik€; Gabor, and Local Binary Pattern (LBP). Using simi-
of faces. The main limitation of this approach is the need lar features, the authors in [16] proposed to design a fea-
for a large set which should also be annotated with re- turé pooling and ranking scheme in order to collect vari-
spect to facial expressions. In [1], the authors used the®US types of low-level geometric features, such as curva-
geodesic distance on the face to extigotgeodesic facial ~ tUres and rank them according to their sensitivities to fa-
stripes Equal-width iso-geodesic facial stripes were used Cia! €xpressions. They applied sparse representatiohgto t
as nodes of the graph and edges between nodes were |£0llected low-level features and achieved good results on
beled with descriptors, referred to as 3D Weighted Walk- GAVAB database.
throughs (3DWWs), that captured the mutual relative spa- !N this category of approaches, based on curves, fa-
tial displacement between all the pairs of points of the corre €ial Shape comparison return to shape comparison of their
sponding stripes. Face partitioning into iso-geodesipesr curves. But, does the use of all the curves on the face_lead to
and 3DWWs together provided an approximate representa-better performances?, and among the facial curves is there
tion of local morphology of faces that exhibits smooth vari- &Ny ones more relevant than others?

ations for changes induced by facial expressions. . . .
_ 2. Geometric shape analysis of facial curves
B. Feature selection-based approach8sveral methods

have been proposed to analyze the discriminative power of ~We start by considering a facial cungein R?. It is nat-
different facial parts or features of the fadeaniyal et al. ural to parametrize it using : S' — R3. Note that the pa-

[6] proposed an algorithm in which the face is represented rameterization is not assumed to be arc-length; we allow a
as a vector of distances between pairs of facial landmarkslarger class of parameterizations for improved analysis. T
They selected the landmarks by brute-forcing the possi-analyze the shape ¢f we shall represent it mathematically
ble combinations of used/unused landmarks, compared theising asquare-root velocity functio(SRVF), proposed in
recognition rates, and concluded that the best selection co [12, 21], and denoted by(t), according to:

responded to the landmarks located around the eyes and the

nose. Kakadiaris et al. [13] use an annotated face model q(t) = () (1)
that is deformed elastically to fit each face thus allowing JIB@)||

the annotation of its different anatomical areas such as the

nose, eyes, mouth, etc. To handle with expressions, the Where]||.|| is the Euclidean norm angl(t) is a special
authors classify faces using wavelet coefficients reptesen function that captures the shapedénd is particularly con-

ing face areas that remain unaffected by facial expressionsvenient for shape analysis, as we describe next. The conven-
such as eyes and nose. However, the best recognition ratéonal metric for comparing the elastic shape of the curves
is achieved when the whole face is used, which implies thatbecomes ari.? metric under the representation [12, 21].
rejection of deformable parts of the face leads to the lossDepends on the topology of the curve (close or open), we
of valuable discriminative information. In [4], a multi-se recall following shape analysis foundations of facial @sv



2.1. Radialopen curves
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We define the set of open curves®¥ by C = {q : m\

I — R3|q|| = 1} < L2(I,R3), with theL? metric on P
its tangent spaces, becomes a Riemannian manifold. In ',/‘
particular, since the elements @fhave a unif.? norm,C

is a hypersphere in the Hilbert spacé(7, R?). In order to
compare the shapes of two radial curves, we can compute
the distance between them éhunder the chosen metric.

This distance is defined to be the length of the (shortest) - ‘ k -
geodesic connecting the two pointginSinceC is a sphere, = ;\
the formulas for the geodesic and the geodesic length are Q 2

already well known. The geodesic length between any two
pointsgi, g2 € C is given by:

=
N

|

Figure 1: Examples of intra- and inter-class geodesics be-
) tween facial surfaces and their associated radial curves. T
first two rows give an intra-class (same person, different ex
and the geodesic path: [0, 1] — C, is given by: pressions) geodesic path, whereas the remaining two rows
show an inter-class (different subjects) geodesic path.

de(q,q2) = cos " ({q1. q2)) ,

1 . .
o) = oy (=)0 + s (0)an)

2.2. Iso-levelclosed curves
wheref = d.(q1, ¢2). i
It is easy to see that several elementsatan repre- In the same manner, we define the set of closed curves

sent curves with the same shape. For example, if we ro-iN B> by C = {q = St — R [, q(t)[q(t)]dt =
tate a face inR>, and thus its facial curves, we get dif- 0} C L2(S',R%)}, yvhereIL?(Sl,]R?’) denotes the set
ferent SRVFs for the curves but their shapes remain un-Of &l integrable functions fron§' to R*. The quantity
changed. Another similar situation arises when a curve is Js: 4(1)[a(1)][d is the total displacement iR” while mov-
re-parametrized; a re-parameterization changes the SRvfng from the origin of the curve until the end. When it is
of curve but not its shape. In order to handle this vari- zero, the curve is closed. Thus, theGe¢presents the set of

ability, we define orbits of the rotation groupO(3) and all closed_ curves i3, Itis calleq a pre—shfape space since

the re-parameterization groupas equivalence classes in CUrves wnh same shapes but different orler]tatlons and re-
C. Here,T' is the set of all orientation-preserving diffeo- Parameterizations can be represented by different element
morphisms off (to itself) and the elements dfare viewed ~ Of €. To define a shape, its representation should be in-
as re-parameterization functions. For example, for a curvedependent of its rotations and reparameterization. This is
81— R?and afunctiony € T, the curves, o 7 is a re- obtained mathematically by a removing the rotation group

parameterization of,,. The corresponding SRVF changes *©©O(3) and the re-parameterization grolirom C. As de-

according tar(#) — /A (a(~(1)). We define the equiva-  Scribedin[12, 21], we define the orbits of the rotation group
lent clasgcgqn(tazining az;:( Jaer) a SO(3) and the re-parameterization grolims equivalence

classes irC. The resulting shape space is :
[Q] = {\/ V(t)OQ(V(t)”O € 50(3)7 v E F} ) S = é/(SO(?)) « F) 4)

The set of such equivalence class is called the shape spacg, jefine geodesics on pre-shape and shape spaces we need
S of elastic curves [12]. To obtain geodesics and geodeswa Riemannian metric. For this purpose we inherit the stan-
distances between elements ®f one needs to solve the .41 2 metric the large spade?(S', R?). For anyu,v €

optimization problem. The resulting shape space is the setLg(Sl R?%), the standard.? inner-product is given by:
of such equivalence classes: T

S /500 X 1) - (o) = [ (o). o). ©)
We denote byd,(8.,,fa.,) the geodesic distance be- The computation of geodesics and geodesic distances uti-
tween the corresponding equivalence clagggsand [g:] lize the intrinsic geometries of these spaces. While the de-

in S. The figure 1 illustrates some examples of geodesic tailed description of the geometries 6fand S are given
paths between facial surfaces and associated collectfons oin [12, 21], we briefly mentioned the tangent and normal
radial curves. spaces of . Now, an important tool in our framework is the



construction of a geodesic path between two elemenss of level curves and radial curves are used as the weak classi-
under the Riemannian metric given by equation 5. Given fiers. After M iterations, the most relevaft (T < M)

two curvesB,, andp,,, represented by their SRVF respec- facial curves are returned by the algorithm.

tively ¢; andgz, we need to find a geodesic path betweenthe  To train and test the boosting algorithm, we use the
orbits [¢:] and[g2] in the spaceS. We use in this context, FRGCv2 dataset which contains more th#0 scans of

a numerical method called thgath-straighteningnethod 466 subjects. For each curve (radial or iso-level), we com-
[15] which connects the two poinfg;] and[q2] an arbitrary  pute the All vs. All similarity matrices. We then discard
patha and then updates this path repeatedly in the negativethe parts of these matrices corresponding to comparisons
direction of the gradient of energy given by: of neutral scan versus remaining comparisons to be used
for the On-line testing phase. Remaining parts are used to
train the boosting algorithm. Thus, we disjoint the tragin
and the testing sets.In these areas of the matrices, we ex-
tract two kind of score§i) the match scoregintra-personal
comparisons) angli) the non-match scoreénter-personal
comparison). Both scores lists represent the input of the
boosting algorithm. More formally, we consider a set of
pairs(z2*, y, ) 1<n< N Wherez is a similarity score be-
tween two curves at the same lewel\ andy,, can take two
values:0 in the case ohon-match scorand1 in the case

of match score For each curved;, the weak learner de-
termines the optimal threshold classification functiorghsu
that the minimum number of samples are misclassified. A

> . ’/ ‘ o weak classifief; (z¥) thus consists of a geometric feature
@@@@@@ 3, and a threshold, such that
: :

1 if 2¥ < ¢ (intra-personal
hj(zk) = 9 (intra-p ) Q)
0 otherwise. (inter-personal)

Figure 2: Examples of intra- and inter-class geodesics be-
tween facial surfaces and their associated iso-level surve
The first two rows give an intra-class (same person, differ-
ent expressions) geodesic path, whereas the remaining tw
rows show an inter-class (different subjects) geodesic. pat

h; denotes for the weak hypothesis given/Qy: X —
0,1}. The output oBoostingalgorithm is a set of" weak
lassifiers based on selected iso-level or radial curves. Th
set of selected curves is given in figure 3. The first row
It has been proven in [15] that the critical points Bf of this figure shows location of selgcteq curves on diff(_er-
ent sessions of the some person with different expressions

are geodesic paths if. We denote bydz (8., Br,) the
geodesic distance between the corresponding equivalenC(\évhereas the second row gives curves location on different
classesq,] and|gs] in $. The figure 2 illustrates some ex- Subjects. We note that the boosting algorithm selects iso-

curves on the nasal region, which is stable under expres-
amples of geodesic paths between facial surfaces and assa

sions and radial curves avoiding two parts. The first one
ciated collections of iso-level curves.

is the lower part of the face since its shape is affected by
expressions, particularly when the mouth is open. The sec-
ond area corresponds to the eye/eyebrow regions. Shapes of
Radial and iso-level curves capture locally the shape of radial curves passing throw this regions changes when con-
the faces. However, their comparison under different ex- vey expressions. In contrast, the most stable area cover the
pressions runs into trouble. In fact, their shapes aretaffiec  nasal/forehead regions.
by changes in facial expressions. For that purposes, we in- To show performances improvement of the curve selec-
troduce a feature selection step to identify (or localibe) t  tion step, different graphs in figure 4 plot the rate of False
most stable and most discriminative curves. We propose toAcceptance versus the rate of False Rejection (ROC/DET
use the well-known machine learning algorithm, AdaBoost, curves) for different configurations. Minimum errors are
introduced byFreund and Schapirén [10]. Boosting is given by fusing scores of selected radial and selected iso-
based on iterative selection of weak classifiers by using alevel curves (black curve in figure 4). We note also that
distribution of training samples. At each iteration, thstbe the selection performed on radial curves only or iso-level
(relevant) weak classifier is provided and weighted by the curves only minimizes the errors compared to the use of all
quality of its classification. In practice, the individuabt radial curves or iso-level curves, respectively.

3. Boosting for geometric feature selection



curves and radial curves, selected using Machine Learning
technique on training dataset, the proposed algorithm out-
performs most of related work. Wang et al. [23] achieved
the best result 98.3% which means ten more recognized
probes in comparison to our approach. We recall that their
method uses boosting technique to select among other king
of descriptors (Haar-like, Gabor, and Local Binary Pattern
(LBP)) computed on thé&hape Difference Mapetween
faces.

Another interesting result of the present approach is re-
ported in Table 2. This table shows performances and
time performances of different configurations. The pro-
posed approach achieved the best performances using com-
95¢ ] pact signature which has direct impact in the computational
efficiency of the face recognition system in term of stor-
age requirement and computational time (0.68(s) instead of
8s¢ 7 1.6(s)). We also find that the radial curves give better per-
a0l | formance compared to the iso-level curves. The number
of radial curves, that pass through the region of the mouth,

Figure 3: The most discriminative radial and iso-level
curves selected by Boosting, given on different faces.

100
100

90~ B

1 - False rejection (%)

= — B+ 7 the region where the curves change seriously it shapes, is

7ol — P, 3, soeten + {[ } soecen | smaller than the total number of radial curves. However, the
—{B} most of the iso-level curves passes through this regiom(ope

% —{p, }, setots ] mouth), this is why all selected iso-level curves are from th

60 —{B} solectd ] nasal region, this confirms the robustness of this region to
— {B?}a facial expressions.
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50 e o ppe 5. Conclusions and future directions

False Acceptance (%)
In this paper we demonstrate the effectiveness of facial
curves selection before performing faces analysis and com-
Figure 4: ROC curves produced from the training se{®r  parison. The main ingredient is the use of Machine Learn-

All curves radial ans iso-level curvéss) Selected curvefg)  ing technique (Boosting) to select relevant features under
selected radia(d) selected iso-levefe) radial only(f) iso-  expressions. First, we consider both radial and iso-level
level only. curves which are significantly used in the literature. Then,

most discriminative curves (features) are selected offiima

Once, the training step ended and most stable and dis_by boosting and trained as weak classifiers for building a

L . strong classifier. The experiments, carried out on FRGCv2
criminative curves selected, we can move to the on-line test . f .
. : : 5 including neutral and non-neutral images, demonstrates th
ing step. It consists on comparing facdsand s? by the . :
. o effectiveness of the proposed study. With 17 curves 12 ra-
fusion of scores related to selected curves as following: . . .
dial and 5 iso-level, a rank-1 recognition rate 38.02%
was achieved, the algorithm execution time was on the or-
d(s!, $2) = der of 0.68 seconde to compare two faces with selected
Y N curves instead dt.64seconde with all curves. The boosting
(8) selects those curves passing through stable regions on the
) face. As future direction, this approach could be used for fa
4. Experimental results cial curves selection in expression recognition and ex¢énd
to include in addition to boosting other Machine Learning
techniques.

du(BL, B2)dr+ / ds (8L, 2)do

selected Qselected

We conducted identification experiments following the
FRGCv2 protocol which consist to keep in the Gallery the
earliest scang66 and consider remaining scans as test im-
ages (Probe). Our approach achieved 98.02% as rank_lAcknowledgements
recognition rate which is competitive compared to state-  This research is supported in part by the ANR under the
of-the-art performances. The table 1 gives identifications projects ANR FAR 3D ANR-07-SESU-004 and 3D Face
results of previous approaches. Using a combination of iso-Analyzer ANR 2010 INTB 0301 02.



Table 1: Comparison with state-of-the-art approaches cBEG®R (rank-1 recognition rate).

A. Curve-based representation B. Feature selection-based Others
Methods| ter Haar| Berretti™) | Mpiperis | Faltemier| Kakadiaris| Wang | Hang | Mian™ | Cook
[22] (1] [18] [9] [14] (23] | [11] | [17] [5]
[Rank-1] 97% [ 941% [ - [ 972% | 97% [98.3%[97.2%] 91.9% [ 92.9%|
[ Our | 98.02% |

(*) "E-N-S" means the earliest neutral scan in the gallery and the remaisinphes.

Table 2: Rank-1/Computation Cost (in sec) for different [11] D.Huang, M. Ardabilian, Y. Wang, and L. Chen. A novel ge-

configurations.
Rank-1/Time(s) All Selected
Radial 88.65% /1.6 || 89.04%/0.48
Iso-level 66.51% / 1.04|| 85.65% /0.20
Fusion 91.81% / 2.64|| 98.02%/0.68
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