
HAL Id: hal-00726082
https://hal.science/hal-00726082v1

Submitted on 29 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Which 3D Geometric Facial Features Give Up Your
Identity ?

Lahoucine Ballihi, Ben Amor Boulbaba, Mohamed Daoudi, Anuj Srivastava,
Driss Aboutajdine

To cite this version:
Lahoucine Ballihi, Ben Amor Boulbaba, Mohamed Daoudi, Anuj Srivastava, Driss Aboutajdine.
Which 3D Geometric Facial Features Give Up Your Identity ?. International Conference on Bio-
metrics, Mar 2012, New Delhi, India. pp.119-124, �10.1109/ICB.2012.6199768�. �hal-00726082�

https://hal.science/hal-00726082v1
https://hal.archives-ouvertes.fr


Which 3D Geometric Facial Features Give Up Your Identity ?

Lahoucine Ballihi
LIFL (UMR USTL/CNRS 8022)

Université de Lille 1, France.
LRIT, Unité Associée au CNRST (URAC 29)

Université Mohammed V - Agdal, Maroc.
http://www.telecom-lille1.eu/people/ballihi/

Boulbaba Ben Amor, Mohamed Daoudi
LIFL (UMR USTL/CNRS 8022)

Institut TELECOM/TELECOM Lille 1, France.

Anuj Srivastava
Departement of Statistics

FSU, Tallahassee, FL 32306, USA.

Driss Aboutajdine
LRTT, Unité Associée au CNRST (URAC 29)

Université Mohammed V Agdal, Maroc.

Abstract

The 3D face recognition literature has many papers
that represent facial shapes as collections of curves of dif-
ferent kinds (level-curves, iso-level curves, radial curves,
profiles, geodesic polarization, iso-depth lines, iso-stripes,
etc.). In contrast with the holistic approaches, the ap-
proaches that match faces based on whole surfaces, the
curve-based parametrization allows local analysis of facial
shapes. This, in turn, facilitates handling of pose varia-
tions (probe image may correspond to a part of the face)
or missing data (probe image is altered by occlusions. An
important question is: Does the use of full set of curves
leads to better performances? Among all facial curves, are
there ones that are more relevant than others for the recog-
nition task? We explicitly address these questions in this
paper. We represent facial surfaces by collections of radial
curves and iso-level curves, such that shapes of correspond-
ing curves are compared using a Riemmannian framework,
select the most discriminative curves (geometric features)
using boosting. The experiment involving FRGCv2 dataset
demonstrates the effectiveness of this feature selection by
achieving98.02% as rank-1 recognition rate. This selec-
tion also results in a more compact signature which sig-
nificantly reduces the computational cost and the storage
requirements for the face recognition system.

1. Introduction and related work

Biometric recognition aims to use behavioral and/or
physiological characteristics of people to recognize themor
to verify their identities. While some biometric modalities,
such as fingerprints and iris, have already reached very high

level of accuracy, they have a limited use in non-cooperative
scenarios. On the other hand, the less-intrusive modalities
like the face and gait have not reached the desired levels of
accuracy. Since face recognition is contact-less and less in-
trusive, it emerges as a more attractive and natural biometric
for security applications. Unfortunately, image-based face
recognition technologies still face difficult challenges such
as lighting conditions, pose variations, occlusions, and fa-
cial expressions. In the last few years, face recognition us-
ing the 3D shape of face has become a major research area
due to its theoretical robustness to lighting condition and
pose variations. However, the problem remains due to vari-
ability in facial expressions. Several approaches have been
proposed and applied to deal with deformations caused by
facial expressions. In the current paper, we focus on those
approaches that either use curve-based representations for
faces or use some feature selection technique to optimize
recognition rates:

A. Curve-based approaches. This kind of method ex-
tracts representative facial curves from 3D face to alter sur-
face matching with curve matching for recognition. The
key problem of these approaches is how to define schemes
of curve extraction and matching able to model facial defor-
mations? One earlier and remarkable work in proposed by
Samir et al.in [19] where 3D faces were instead represented
throughiso-depth lines. Then, shapes of the iso-depth lines
were compared, exploiting Riemannian shape analysis for
planar closed curves. However, since face expressions in-
duce strong alterations of the iso-depth lines, this approach
is likely to be very sensitive to expression changes. An ex-
tension of this work using iso-geodesic curves were pre-
sented in [20].

According toBronstein et al.study [2], the change of
thegeodesic distancedue to facial expressions is insignifi-
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cant compared to changes ofEuclidean distance. A similar
study was followed in [22] by using sample points taken at
the intersection between contour curves and radial profiles
originated from the nose tip and calculated the euclidean
distances between corresponding points of different faces.
Their approach select subsets of facial curves for effective
and efficient face matching. Drira et al. [8] explored the
use of shapes of noses for performing partial human bio-
metrics. They extract iso-geodesic curves then performs
differential geometry-driven metrics to construct geodesics
between shapes on a defined Manifold of close curves. The
same framework allows statistics (means) computation for
efficient search in a gallery dataset. In [7], same authors
proposed similar shape analysis approach on radial curves.
They models elastic deformations of facial surfaces as an
optimal re-parametrization problem that they solve by Dy-
namic Programming. Their approach performs promising
results on GAVAB database even where the probe pose is
non-frontal.

Mpiperis et al.proposed an elastically deformable model
algorithm [18] that establishes correspondence among a set
of faces. The main limitation of this approach is the need
for a large set which should also be annotated with re-
spect to facial expressions. In [1], the authors used the
geodesic distance on the face to extractiso-geodesic facial
stripes. Equal-width iso-geodesic facial stripes were used
as nodes of the graph and edges between nodes were la-
beled with descriptors, referred to as 3D Weighted Walk-
throughs (3DWWs), that captured the mutual relative spa-
tial displacement between all the pairs of points of the corre-
sponding stripes. Face partitioning into iso-geodesic stripes
and 3DWWs together provided an approximate representa-
tion of local morphology of faces that exhibits smooth vari-
ations for changes induced by facial expressions.

B. Feature selection-based approaches. Several methods
have been proposed to analyze the discriminative power of
different facial parts or features of the face.Daniyal et al.
[6] proposed an algorithm in which the face is represented
as a vector of distances between pairs of facial landmarks.
They selected the landmarks by brute-forcing the possi-
ble combinations of used/unused landmarks, compared the
recognition rates, and concluded that the best selection cor-
responded to the landmarks located around the eyes and the
nose. Kakadiaris et al. [13] use an annotated face model
that is deformed elastically to fit each face thus allowing
the annotation of its different anatomical areas such as the
nose, eyes, mouth, etc. To handle with expressions, the
authors classify faces using wavelet coefficients represent-
ing face areas that remain unaffected by facial expressions,
such as eyes and nose. However, the best recognition rate
is achieved when the whole face is used, which implies that
rejection of deformable parts of the face leads to the loss
of valuable discriminative information. In [4], a multi-nose

regions matching was proposed. Primary results show sub-
stantial improvement over matching the shape of a single
larger frontal face region.Faltemier et al. were extended
this method in [9] by considering a set of 38 regions that
densely cover the face and selecting the best-performing
subset of 28 regions to perform matching using the ICP al-
gorithm. Cadavid et al.[3] present a novel method for 3D
face recognition using adaboosted geodesic distance fea-
tures. They use a generic model and compute the geodesic
distance between anatomical point pairs across each con-
formed generic model.

More recently,Wang et al.[23] compute a signed shape
difference map (SSDM) between two aligned 3D faces as
a intermediate representation for the shape comparison.
Based on the SSDMs, three kinds of features were used to
encode both the local similarity and the change character-
istics between facial shapes. The most discriminative local
features were selected optimally by boosting and trained as
weak classifiers for assembling three collective strong clas-
sifiers. The individual features were of the type : Haar-
like, Gabor, and Local Binary Pattern (LBP). Using simi-
lar features, the authors in [16] proposed to design a fea-
ture pooling and ranking scheme in order to collect vari-
ous types of low-level geometric features, such as curva-
tures, and rank them according to their sensitivities to fa-
cial expressions. They applied sparse representations to the
collected low-level features and achieved good results on
GAVAB database.

In this category of approaches, based on curves, fa-
cial shape comparison return to shape comparison of their
curves. But, does the use of all the curves on the face lead to
better performances?, and among the facial curves is there
any ones more relevant than others?

2. Geometric shape analysis of facial curves

We start by considering a facial curveβ in R
3. It is nat-

ural to parametrize it usingβ : S1 → R
3. Note that the pa-

rameterization is not assumed to be arc-length; we allow a
larger class of parameterizations for improved analysis. To
analyze the shape ofβ, we shall represent it mathematically
using asquare-root velocity function(SRVF), proposed in
[12, 21], and denoted byq(t), according to:

q(t)
.
=

β̇(t)
√

‖β̇(t)‖
(1)

Where‖.‖ is the Euclidean norm andq(t) is a special
function that captures the shape ofβ and is particularly con-
venient for shape analysis, as we describe next. The conven-
tional metric for comparing the elastic shape of the curves
becomes anL2 metric under the representation [12, 21].
Depends on the topology of the curve (close or open), we
recall following shape analysis foundations of facial curves.



2.1. Radialopen curves

We define the set of open curves inR3 by C = {q :
I → R

3|‖q‖ = 1} ⊂ L
2(I,R3), with theL2 metric on

its tangent spaces,C becomes a Riemannian manifold. In
particular, since the elements ofC have a unitL2 norm,C
is a hypersphere in the Hilbert spaceL

2(I,R3). In order to
compare the shapes of two radial curves, we can compute
the distance between them inC under the chosen metric.
This distance is defined to be the length of the (shortest)
geodesic connecting the two points inC. SinceC is a sphere,
the formulas for the geodesic and the geodesic length are
already well known. The geodesic length between any two
pointsq1, q2 ∈ C is given by:

dc(q1, q2) = cos−1(〈q1, q2〉) , (2)

and the geodesic pathα : [0, 1] → C, is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) ,

whereθ = dc(q1, q2).
It is easy to see that several elements ofC can repre-

sent curves with the same shape. For example, if we ro-
tate a face inR3, and thus its facial curves, we get dif-
ferent SRVFs for the curves but their shapes remain un-
changed. Another similar situation arises when a curve is
re-parametrized; a re-parameterization changes the SRVF
of curve but not its shape. In order to handle this vari-
ability, we define orbits of the rotation groupSO(3) and
the re-parameterization groupΓ as equivalence classes in
C. Here,Γ is the set of all orientation-preserving diffeo-
morphisms ofI (to itself) and the elements ofΓ are viewed
as re-parameterization functions. For example, for a curve
β : I → R

3 and a functionγ ∈ Γ, the curveβα ◦ γ is a re-
parameterization ofβα. The corresponding SRVF changes
according toq(t) 7→

√

γ̇(t)q(γ(t)). We define the equiva-
lent class containingq as:

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} ,

The set of such equivalence class is called the shape space
S of elastic curves [12]. To obtain geodesics and geodesic
distances between elements ofS, one needs to solve the
optimization problem. The resulting shape space is the set
of such equivalence classes:

S
.
= C/(SO(3)× Γ) (3)

We denote byds(βα1
, βα2

) the geodesic distance be-
tween the corresponding equivalence classes[q1] and [q2]
in S. The figure 1 illustrates some examples of geodesic
paths between facial surfaces and associated collections of
radial curves.

Figure 1: Examples of intra- and inter-class geodesics be-
tween facial surfaces and their associated radial curves. The
first two rows give an intra-class (same person, different ex-
pressions) geodesic path, whereas the remaining two rows
show an inter-class (different subjects) geodesic path.

2.2. Iso-levelclosed curves

In the same manner, we define the set of closed curves
in R

3 by C̃ = {q : S
1 → R

3|
∫

S1
q(t)‖q(t)‖dt =

0} ⊂ L
2(S1,R3)}, whereL2(S1,R3) denotes the set

of all integrable functions fromS1 to R
3. The quantity

∫

S1
q(t)‖q(t)‖dt is the total displacement inR3 while mov-

ing from the origin of the curve until the end. When it is
zero, the curve is closed. Thus, the setC̃ represents the set of
all closed curves inR3. It is called a pre-shape space since
curves with same shapes but different orientations and re-
parameterizations can be represented by different elements
of C̃. To define a shape, its representation should be in-
dependent of its rotations and reparameterization. This is
obtained mathematically by a removing the rotation group
SO(3) and the re-parameterization groupΓ from C̃. As de-
scribed in [12, 21], we define the orbits of the rotation group
SO(3) and the re-parameterization groupΓ as equivalence
classes iñC. The resulting shape space is :

S̃
.
= C̃/(SO(3)× Γ) (4)

To define geodesics on pre-shape and shape spaces we need
a Riemannian metric. For this purpose we inherit the stan-
dardL2 metric the large spaceL2(S1,R3). For anyu, v ∈
L
2(S1,R3), the standardL2 inner-product is given by:

〈〈u, v〉〉 =

∫

S1

〈u(t), v(t)〉 dt . (5)

The computation of geodesics and geodesic distances uti-
lize the intrinsic geometries of these spaces. While the de-
tailed description of the geometries ofC̃ and S̃ are given
in [12, 21], we briefly mentioned the tangent and normal
spaces of̃C. Now, an important tool in our framework is the



construction of a geodesic path between two elements ofS̃,
under the Riemannian metric given by equation 5. Given
two curvesβλ1

andβλ2
, represented by their SRVF respec-

tively q1 andq2, we need to find a geodesic path between the
orbits [q1] and [q2] in the spaceS̃. We use in this context,
a numerical method called thepath-straighteningmethod
[15] which connects the two points[q1] and[q2] an arbitrary
pathα and then updates this path repeatedly in the negative
direction of the gradient of energy given by:

E[α] =
1

2

∫

s

〈〈α̇(s), α̇(s)〉〉ds (6)

Figure 2: Examples of intra- and inter-class geodesics be-
tween facial surfaces and their associated iso-level curves.
The first two rows give an intra-class (same person, differ-
ent expressions) geodesic path, whereas the remaining two
rows show an inter-class (different subjects) geodesic path.

It has been proven in [15] that the critical points ofE
are geodesic paths iñS. We denote byds̃(βλ1

, βλ2
) the

geodesic distance between the corresponding equivalence
classes[q1] and[q2] in S̃. The figure 2 illustrates some ex-
amples of geodesic paths between facial surfaces and asso-
ciated collections of iso-level curves.

3. Boosting for geometric feature selection

Radial and iso-level curves capture locally the shape of
the faces. However, their comparison under different ex-
pressions runs into trouble. In fact, their shapes are affected
by changes in facial expressions. For that purposes, we in-
troduce a feature selection step to identify (or localize) the
most stable and most discriminative curves. We propose to
use the well-known machine learning algorithm, AdaBoost,
introduced byFreund and Schapirein [10]. Boosting is
based on iterative selection of weak classifiers by using a
distribution of training samples. At each iteration, the best
(relevant) weak classifier is provided and weighted by the
quality of its classification. In practice, the individual iso-

level curves and radial curves are used as the weak classi-
fiers. AfterM iterations, the most relevantT (T < M)
facial curves are returned by the algorithm.

To train and test the boosting algorithm, we use the
FRGCv2 dataset which contains more than4000 scans of
466 subjects. For each curve (radial or iso-level), we com-
pute the All vs. All similarity matrices. We then discard
the parts of these matrices corresponding to comparisons
of neutral scan versus remaining comparisons to be used
for the On-line testing phase. Remaining parts are used to
train the boosting algorithm. Thus, we disjoint the training
and the testing sets.In these areas of the matrices, we ex-
tract two kind of scores(i) thematch scores(intra-personal
comparisons) and(ii) thenon-match scores(inter-personal
comparison). Both scores lists represent the input of the
boosting algorithm. More formally, we consider a set of
pairs(xα,λ

n , yn)1≤n≤N wherexα,λ
n is a similarity score be-

tween two curves at the same levelα, λ andyn can take two
values:0 in the case ofnon-match scoreand1 in the case
of match score. For each curveβj , the weak learner de-
termines the optimal threshold classification function, such
that the minimum number of samples are misclassified. A
weak classifierhj(x

k
n) thus consists of a geometric feature

βj and a thresholdθ, such that

hj(x
k
n) =

{

1 if xk
n < θ (intra-personal)

0 otherwise. (inter-personal)
(7)

ht denotes for the weak hypothesis given byht : X →
{0, 1}. The output ofBoostingalgorithm is a set ofT weak
classifiers based on selected iso-level or radial curves. The
set of selected curves is given in figure 3. The first row
of this figure shows location of selected curves on differ-
ent sessions of the some person with different expressions
whereas, the second row gives curves location on different
subjects. We note that the boosting algorithm selects iso-
curves on the nasal region, which is stable under expres-
sions and radial curves avoiding two parts. The first one
is the lower part of the face since its shape is affected by
expressions, particularly when the mouth is open. The sec-
ond area corresponds to the eye/eyebrow regions. Shapes of
radial curves passing throw this regions changes when con-
vey expressions. In contrast, the most stable area cover the
nasal/forehead regions.

To show performances improvement of the curve selec-
tion step, different graphs in figure 4 plot the rate of False
Acceptance versus the rate of False Rejection (ROC/DET
curves) for different configurations. Minimum errors are
given by fusing scores of selected radial and selected iso-
level curves (black curve in figure 4). We note also that
the selection performed on radial curves only or iso-level
curves only minimizes the errors compared to the use of all
radial curves or iso-level curves, respectively.



Figure 3: The most discriminative radial and iso-level
curves selected by Boosting, given on different faces.

Figure 4: ROC curves produced from the training set for(a)
All curves radial ans iso-level curves(b) Selected curves(c)
selected radial(d) selected iso-level(e) radial only(f) iso-
level only.

Once, the training step ended and most stable and dis-
criminative curves selected, we can move to the on-line test-
ing step. It consists on comparing facess1 ands2 by the
fusion of scores related to selected curves as following:

d(s1, s2) =

∫

λselected

ds(β
1

α, β
2

α)dλ+

∫

αselected

ds̃(β
1

λ, β
2

λ)dα.

(8)

4. Experimental results

We conducted identification experiments following the
FRGCv2 protocol which consist to keep in the Gallery the
earliest scans466 and consider remaining scans as test im-
ages (Probe). Our approach achieved 98.02% as rank-1
recognition rate which is competitive compared to state-
of-the-art performances. The table 1 gives identifications
results of previous approaches. Using a combination of iso-

curves and radial curves, selected using Machine Learning
technique on training dataset, the proposed algorithm out-
performs most of related work. Wang et al. [23] achieved
the best result 98.3% which means ten more recognized
probes in comparison to our approach. We recall that their
method uses boosting technique to select among other king
of descriptors (Haar-like, Gabor, and Local Binary Pattern
(LBP)) computed on theShape Difference Mapbetween
faces.

Another interesting result of the present approach is re-
ported in Table 2. This table shows performances and
time performances of different configurations. The pro-
posed approach achieved the best performances using com-
pact signature which has direct impact in the computational
efficiency of the face recognition system in term of stor-
age requirement and computational time (0.68(s) instead of
1.6(s)). We also find that the radial curves give better per-
formance compared to the iso-level curves. The number
of radial curves, that pass through the region of the mouth,
the region where the curves change seriously it shapes, is
smaller than the total number of radial curves. However, the
most of the iso-level curves passes through this region(open
mouth), this is why all selected iso-level curves are from the
nasal region, this confirms the robustness of this region to
facial expressions.

5. Conclusions and future directions

In this paper we demonstrate the effectiveness of facial
curves selection before performing faces analysis and com-
parison. The main ingredient is the use of Machine Learn-
ing technique (Boosting) to select relevant features under
expressions. First, we consider both radial and iso-level
curves which are significantly used in the literature. Then,
most discriminative curves (features) are selected optimally
by boosting and trained as weak classifiers for building a
strong classifier. The experiments, carried out on FRGCv2
including neutral and non-neutral images, demonstrates the
effectiveness of the proposed study. With 17 curves 12 ra-
dial and 5 iso-level, a rank-1 recognition rate of98.02%
was achieved, the algorithm execution time was on the or-
der of 0.68 seconde to compare two faces with selected
curves instead of2.64seconde with all curves. The boosting
selects those curves passing through stable regions on the
face. As future direction, this approach could be used for fa-
cial curves selection in expression recognition and extended
to include in addition to boosting other Machine Learning
techniques.
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Table 1: Comparison with state-of-the-art approaches on FRGCv2 (rank-1 recognition rate).

Methods
A. Curve-based representation B. Feature selection-based Others
ter Haar Berretti(∗) Mpiperis Faltemier Kakadiaris Wang Hang Mian(∗) Cook

[22] [1] [18] [9] [14] [23] [11] [17] [5]

Rank-1 97% 94.1% - 97.2% 97% 98.3% 97.2% 91.9% 92.9%

Our 98.02%
(∗) "E-N-S" means the earliest neutral scan in the gallery and the remaining as probes.

Table 2: Rank-1/Computation Cost (in sec) for different
configurations.

Rank-1/Time(s) All Selected
Radial 88.65% / 1.6 89.04% / 0.48

Iso-level 66.51% / 1.04 85.65% / 0.20
Fusion 91.81% / 2.64 98.02% / 0.68
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