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Quasiparticle dynamics in a Bose insulator probed by inter-band Bragg spectroscopy
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We investigate experimentally and theoretically the dynamical properties of a Mott insulator in
decoupled one-dimensional chains. Using a theoretical analysis of the Bragg excitation scheme we
show that the spectrum of inter-band transitions holds information on the single-particle Green’s
function of the insulator. In particular the existence of particle-hole coherence due to quantum
fluctuations in the Mott state is clearly seen in the Bragg spectra and quantified. Finally we
propose a scheme to directly measure the full, momentum resolved spectral function as obtained in
angle-resolved photoemission spectroscopy of solids.

PACS numbers: 37.10.Jk, 67.85.Hj, 67.85.De

The observation of the superfluid (SF) to Mott insu-
lator (MI) transition of bosons in optical lattices [1] has
received considerable attention as a paradigmatic exam-
ple of a quantum phase-transition driven by interactions.
The properties of lattice bosons in this strongly corre-
lated regime have been probed using several methods [2–
10]. For example, time-of-flight experiments were used
to study the development of spatial first-order coherence
over increasing length-scales inside the Mott state upon
approaching the transition to the SF state [3]. In a quan-
tum system, the emergence of such spatial correlations
must go hand in hand with increasing temporal correla-
tions. Near the quantum critical point the precise rela-
tion between the two is determined by the dynamical crit-
ical exponent of the transition (see e.g. Ref. [11]). Away
from the transition, where critical properties are not yet
apparent, the temporal first-order coherence lends in-
sight on the nature of the quasi-particle excitations of
the strongly correlated state.

So far however, most of the dynamical experiments in
the Mott regime using schemes of lattice modulation and
Bragg spectroscopy have focused on excitation frequen-
cies matching transition within the lowest-energy Bloch
band [2, 7]. In this case, the external perturbation is
coupled to density fluctuations and in the linear response
regime the absorption spectrum is directly related to the
dynamical structure factor S(q, ω) of collective excita-
tions, or particle-hole spectra [12–14].

In this Letter, we show how inter-band Bragg spec-
troscopy [7, 15] supplemented by a theoretical model
of the Mott insulator can be used to extract proper-
ties of single-particle excitations in the many-body state.
We then suggest a refined approach for directly mea-
suring the single-particle Green’s function in a model-
independent way.

The MI state is realized in decoupled one-dimensional
(1D) chains of interacting bosons, as represented in
Fig. 1. We excite the system with two simultaneous laser
pulses (Bragg beams) which induce an energy transfer
~ω = ~(ω1 − ω2) (ω1,2 being the laser beams frequen-

FIG. 1: (color online) An array of 1D gases created by a
2D optical lattice is driven into the MI by a third OL in the
Ox direction. The energy band structure in the 1D lattice
is depicted on the left with red solid lines. The lowest band
corresponds to particles in the MI and above it are the higher
single-particle energy bands. Two laser beams (Bragg beams,
green) excite the initial MI by transferring a particle to a
high-energy band and leaving a hole in the many-body state.

cies) and a momentum transfer ~q = ~q1 − ~q2 = ~qex
along the axis of the 1D chains (q1 and q2 being the
wave-vectors of the Bragg photons). We measure the
energy absorption spectrum D(ω) at a fixed momentum
transfer q . π/a, where a is the periodicity of the lat-
tice along the chains. We show how, with the precise
knowledge of the particle dispersion in the high band
[16, 17], it is possible to obtain information about quasi-
particle structure and dynamics in the MI. Moreover, a
refined scheme would give access to a momentum resolved
absorption rate D(k, ω), which we show is directly re-
lated to the single-particle spectral function A(k, ω) in
the lowest-energy band. From the latter, one obtains the
Green’s function (GF) of the MI, lending information on
both spatial and temporal coherence of quasiparticles.
Such a measurement is analogous to angle-resolved pho-
toemission spectroscopy used in solid-state [18], recently
extended to ultracold gases through Raman [19, 20] and
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rf spectroscopy [21].

We start by briefly describing the experimental setup
used to obtain the inter band spectra (details can be
found in [7, 22]). We load a Bose-Einstein condensate
of 87Rb in a 3D optical lattice at the wavelength λL =
830 nm. The amplitudes Vi of the lattices along each
axis i = x, y, z are expressed in units of the recoil energy
ER = h2/(2mλ2L), Vi = siER, where m denotes the mass
of 87Rb. The optical lattices are ramped up to their final
values si with an exponential ramp of duration 140ms
and time constant 30ms. Two lattice amplitudes (sy =
sz = 35) are fixed to create an array of 1D chains. The
amplitude of the third lattice sx is varied to tune the
ratio between the on-site interaction energy U and the
tunneling amplitude J1 between Wannier states of the
lowest Bloch band in each 1D MI chain from U/2J1 ≃ 7
to U/2J1 ≃ 42.

The Bragg beams are derived from a laser at 780 nm,
detuned by ∼ 200GHz from the D2 line of 87Rb. In this
work we fix q = 0.96π/a and we measure the amount
of excitations induced by the Bragg beams as a function
of their frequency difference ω. The measured quantity
D(ω) is the mean square width of the zero-momentum
peak in a phase-coherent lattice-gas obtained after low-
ering the 3D optical lattices. Timing and details of the
experimental procedure can be found in [22], in partic-
ular the way D(ω) is re-scaled with the parameters of
the Bragg beams to allow a relative comparison of the
different spectra. In [22], we also verified that D(ω) is
proportional to the energy transferred to the gas so that
it can be written as D(ω) = C ωS(q, ω) where C is a
constant independent of the lattice strength [23].

In Fig. 2(a) we show an example of the spectra ob-
tained for lattice of amplitude sx =9 at frequencies res-
onant with transitions to the second and third Bloch
bands. The total spectral weight W =

∫

dωD(ω) of tran-
sitions to the third band as a function of sx is shown in
Fig. 2(b). The suppression of spectral weight is due to re-
duction of the matrix element, or Frank-Condon overlap,
between wavefunctions of the two bands with increas-
ing lattice strength. The distribution of spectral weight
within each band is primarily determined by two factors
(i) the density of final states (DOS) in that band and
(ii) the particle hole coherence in the Mott ground state
driven by quantum fluctuations about the classical state
with precisely n (integer) particles on each site. The
peaks seen at the band edges, e.g., are the result of the
divergent DOS there. Furthermore we quantify the asym-
metry of the spectra about the band centers through the
skewness (third moment) [24] of S(q, ω). This is shown
in Fig. 2(c) and (d) for the second and third band as a
function of sx. A positive skewness corresponds to an
imbalance towards lower energies. Using a theoretical
model we shall relate the skewness and its variation with
band index and lattice amplitude, to the particle-hole
coherence in the Mott state.

FIG. 2: (color online) Inter-band Bragg spectra.(a) En-
ergy absorption rate D(ω) over the energy range of the sec-
ond and third Bloch band for a Bragg momentum transfer
q = 0.96π/a and for a lattice depth sx = 9. The (blue
and green) dots are the experimental data with error bars
indicating statistical uncertainties after averaging over 4 to 5
experimental acquisitions, the black lines are the theoretical
predictions for D(ω). (b) Integrated spectral weight W in the
third band. (c) and (d) Skewness (third moment) of S(q, ω) in
the second (c) and third (d) band. The measured values are
compared to the theoretical prediction including particle-hole
coherence (thick lines) and to the contribution of the single-
particle density of states alone (thin lines). The shaded area
indicates the systematic uncertainty in determination of sx in
the experiment.

The Bragg perturbation couples to the particle-density
and, in the linear response regime, the excitation rate
D(ω) is directly related to the dynamic structure factor

S(q, ω) =
∑

m

|〈m|ρq|0〉|2δ(ω − ωm0) = Im[Π(q, ω)], (1)

where ρq is the density operator at momentum q [25].
The sum runs over excited states and ~ωm0 is the asso-
ciated excitation energy.
The response function Π(q, ω) is represented graphi-

cally by the bubble diagram in Fig 3(a): (i) the vertex
describes the coupling of the Bragg beams to the density
operator ρq; (ii) the full line is the GF of the hole pro-
duced in the lowest band by the Bragg excitation; (iii)
the dashed line represents the GF of the particle excited
to the nth band; (iv) the filled area is the T -matrix for
scattering of the upper-band particle with the hole in the
lowest band. We explain how we evaluate each part of
the diagram, showing that for excitations to the higher
bands the contribution of the final-state interaction can
be neglected, hence the process can be well described by
the bare bubble shown in Fig. 3(c). Since without this
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FIG. 3: Response functions. (a) Diagram describing the
Bragg excitation in the linear response. The black squares
describe the coupling of the Bragg beams to the density fluc-
tuations. The full (dashed) lines denote the GF of a hole in
the MI (of an upper band particle). The gray area Γ stands
for the final-state interactions between the upper band par-
ticle and the MI hole. (b) In a T -matrix approximation the
final state interaction gives rise to a ladder diagram where the
wiggly lines denote the interaction between upper band parti-
cle and the hole. (c) In the absence of final state interactions
the bare bubble describes the experimental response.

interaction the propagation of the upper-band particle
can be calculated as the one of a free particle, the exper-
iment effectively probes the remaining unknown which is
related to the single-particle GF.
Let us first consider the edge vertices which correspond

to the matrix element for the excitation of a particle from
the lowest to the upper band by the density operator. To
find this matrix element we express the field operators in
terms of creation operators in Wannier states of the lat-
tice sites, so that ρ(x) =

∑

ij,nm w∗
mj(x)wni(x)b

†
nibmj,

where n,m are band indices, i, j site indices and wni(x)
the respective Wannier functions. From now on we as-
sume that the lattice is sufficiently deep that the overlap
between Wannier functions of neighboring sites can be
neglected in the density operator. In addition, we focus
on the component of the density operator that induces
transitions from the lowest to the nth band:

ρn(q) = ρ̄F1n(q)
∑

i

e−iqRib†nib1i, (2)

where Ri is the position at site i and ρ̄ the filling of the
MI. F1n(q) is the matrix element

F1n(q)=

∫

dxw1i(x)e
−iqxwni(x) ≈

(−iql0)n√
2nn!

e−
(ql0)2

4 .

(3)
To get a simple expression for the dependence of F1n(q)
on the lattice strength we approximated the Wannier
states by those of a harmonic well with oscillator length

l0 = λ/(2πs
1/4
x ); however for the comparison with exper-

imental results we use the exact Wannier functions [17].
To describe the hole propagation in the MI we use the

generalized Bogoliubov theory [14, 26], which accounts
for quadratic quantum fluctuations (i.e. virtual parti-
cle and holes) about the classical (Gutzwiller) ground-
state. The particle operator in the lowest band can

be represented in terms of the Bogoliubov quasi-particle
and quasi-hole excitations as bk =

√

f(k)(β†
h,k + βp,k),

which are a combination of an added particle (dou-
blon) and removed hole on the Mott background, e.g.,

β†
p,k = ukp

†
k + vkh−k and f(k) = (uk − vk)

2. The ground
state is the vacuum of the operators βp/h,k. Therefore

f(k) = 〈b†kbk〉 is simply the momentum distribution. Ac-
cordingly the single particle Green’s function in the low-
est Bloch band is given by:

G1(k, iω) =
f(k)

iω − ωp(k)
+

f(k)

−iω − ωh(k)
≡ Gp +Gh. (4)

ωp(k) (resp. ωh(k)) denotes the dispersion relation of
a particle (resp. a hole) in the lowest Bloch band. The
momentum distribution f(k) stems from quasiparticle co-
herence factors and within the Bogoliubov theory it is

f(k) =
1

√

1− J1

Jc
cos k

. (5)

Here Jc is the critical hopping strength at the Mott tran-
sition. We shall restrict ourselves to using the Bogoli-
ubov theory deep in the Mott insulator where it provides
a good approximation of the single particle Green’s func-
tion [27]. In this regime f(k) ≈ 1 + 1

2
(J1/Jc) cos k to

leading order in J1/Jc.
The GF of a single particle in the nth upper band

is taken to be that of a free particle with appropriate
band dispersion ω̃n(k). We take into account a slightly
renormalized dispersion due to interaction with the back-
ground of filled sites of the MI [28].
The interaction between the particle in the upper band

and the hole in the lowest band is included in the full T -
matrix (filled box in Fig. 3(a)). In general this leads
to a complicated sum of diagrams including all possible
sequences of multiple collisions through the interaction
term U1nb

†
nibni(p

†
ipi − h†ihi). Here we represented the

interaction in terms of actual particles and holes in the
classical ground state, where U1n is the interaction ma-
trix element betweenWannier states of the lowest and the
nth band. The interaction looks more complicated when
expressed in terms of the Bogoliubov quasi-particles and
quasi-holes. However, the sum simplifies in the strong
lattice limit when vk ≪ uk. Then, to leading order in vk
we can include only the ladder diagrams shown in Fig.
3(b), which are easily summed up as a geometric series
[28]. The result of the interaction, treated by the lad-
der summation, is to induce a bound state between the
upper band particle and the hole in the MI [28]. For
the experimental parameters the weight carried by this
bound state (< 1%) is too small to affect the measure-
ments. We conclude that to an excellent approximation
we can use the bare bubble diagram shown in Fig. 3(c)
to compute the structure factor.
The structure factor computed from the bare bubble
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diagram is given by

S(q, ω) = ρ̄2|F1n|2
∫

dk

2π
,Ah(k − q, ω − ω̃n(k)) (6)

where Ah(k, ω) = −π−1ImGh(k, ω + i0+) is the hole
spectral function in the Mott insulator. In particular,
the spectral function obtained from the generalized Bo-
goliubov theory of the Mott insulator is Ah(k, ω) =
f(k)δ[ω − ωh(k)].
This is the formula we use to compare with the ex-

periment. However to clearly reveal the two important
factors in the spectra it is worth making another simplifi-
cation. In the regime of interest, of strong optical lattice,
the bandwidth of the hole in the lowest band can be ne-
glected compared to the dispersion of a particle in the
excited band and we can take ωh(k) = ω0. This leads to

S(q, ω) ≈ ρ̄2|F1n(q)|2ρn(ω − ω0)f(kn(ω − ω0)− q), (7)

ρn(ω) being the single particle DOS in the nth band and
kn(ω) the inverse function of the dispersion in that band
ωn(k).
In the limit of infinitely deep lattice f(k) → 1 and

the observed line-shape is determined solely by the sin-
gle particle DOS. With reduction of the lattice amplitude
(increased hopping) f(k) becomes more strongly peaked
near k = 0 and therefore contributes more significantly
to the line-shape. Specifically it gives increased weight to
frequencies resonant with transitions that create a Mott
hole near k = 0 and an excited nth band particle with
quasi-momentum q. If we take q ≈ π/a, as in the exper-
iment, this effect enhances the weight of transitions that
create a higher band particle near the Brillouine zone
edge. From the band structure shown in Fig. 1 it is
clear that in this way the momentum distribution skews
the spectra of the second band toward lower energies and
those of the third band toward higher energies. It should
be noted however that the single-particle DOS is itself
not symmetric about the band centers. In particular for
both the second and third band the peak of the DOS is
skewed toward lower energies (positive skewness). There-
fore, the effect of coherence in the Mott insulator is to
increase the skewness of the second band and decrease it
in the third band spectra.
Using Eq. (6) we calculate the experimental observ-

able D(ω) = CωS(q, ω). The proportionality constant
C is fixed by matching the integrated spectral weight of
excitations to the third band W for a single value of the
lattice strength (sx = 10). We use the same constant
to compute the spectra for all other lattice amplitudes
and for all the bands. In addition, we broaden the delta-
function in Eq. (6) to effectively account for the trap
confining potential.
The spectrum obtained in this way is presented and

compared to the experimental results in Fig. 2(a) for sx =
9. Note that there are no free parameters except the

overall proportionality constant C which was calibrated
once. We attribute the relative shift of the spectra to
the systematic uncertainty in the actual lattice amplitude
in the experiment[29]. The calculated total weight of
absorption W , shown in Fig. 2(b), is in good agreement
with the experimental data. The reduction of W with
increasing lattice strength is due to suppression of the
Frank-Condon factor F1n.

As discussed above, the skewness of the structure fac-
tor relative to that of the pure single particle density of
states is a direct measure of the quasi-particle coherence
factor in the Mott insulator. Fig. 2 (c) and (d) com-
pares the measured skewness [24] of S(q, ω) in the second
and third bands to that calculated from the theoretical
spectra (thick lines). Both are compared to the skewness
of the single particle DOS in the corresponding bands.
As anticipated, the actual skewness is consistently higher
than the pure DOS effect in the second band and lower
than the DOS effect in the third band and this effect is
observed in a systematic way for different lattice ampli-
tude. This is a clear indication of coherence effects inside
the MI.

To conclude, we have shown that the inter-band Bragg
absorption spectrum, in the linear response regime, gives
information on particle Green’s function. In particu-
lar we have quantified the single hole coherence through
analysis of the asymmetry of the spectra.

It is important to note that the structure is related,
through Eq. (6) to a rather complicated weighted sum
over the hole spectral function and is not proportional to
the spectral function itself. For this reason input from
a theoretical model of the Green’s function in the Mott
insulator was needed to extract a measure of the hole
coherence. For this we used a Bogoliubov-like theory
that takes into account zero-point fluctuations around
the mean field Mott wave function. The non-trivial hole
coherence stems from these zero point fluctuations.

It would be interesting to directly measure the single
hole spectral function and thereby obtain quasi-particle
energies, coherence factors and decay times in a model
independent way. We suggest that in principle this can be
done using a band mapping technique [30]. By counting
how many particles are excited to a particular k state
in the upper band we would eliminate the k integral in
Eq. (6). Then the response function corresponding to
the excitation rate per final momentum k would be

S1n(q, k, ω) = ρ̄2|F1n(q)|2Ah(k − q, w − ω̃n(k)). (8)

This theoretical description of the measurement process
is identical to the description of angle-resolved photoe-
mission spectroscopy [31, 32], a method that is currently
used extensively to measure the electronic spectral func-
tion of interesting materials [18]. Our proposed scheme
could also be implemented on more complex many-body
ground-states in a lattice.
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MEAN-FIELD THEORY FOR THE MOTT INSULATOR

The Mott insulator which is realized in the deep lattice limit U ≫ J1 can be described using a strong-coupling
mean-field approach [1]. In spirit it is similar to the Bogoliubov theory for weakly interacting particles

β†
p,k = ukp

†
k + vkh−k,

β†
h,k = −vkpk − ukh

†
−k,

uk = cosh

{

1

2
atanh

[

J1

Jc

cos(k)

2− J1

Jc

cos(k)

]}

, (1)

vk = sinh

{

1

2
atanh

[

J1

Jc

cos(k)

2− J1

Jc

cos(k)

]}

,

b†1,i ≈ p†i + hi, and b†1,ib1,i = ρ̄+ p†ipi−h
†
ihi.

Here, β†

p/h,k create a quasi-particle and a quasi-hole excitation, respectively. The parameters uk, vk behave as uk → 1

and vk → 0 for J1/U → 0 and the combination ukvk reflects the coherence in the Mott insulator. The operators p†i (h
†
i )

create a state with an additional (missing) particle at site i on top of the classical Gutzwiller state ∝
∏

i(b
†
1,i)

ρ̄|vac〉.
Within a mean-field approach the effective Hamiltonian for the Mott insulator reads

HMI =
∑

k

ωh(k)β
†
h,kβh,k + ωp(k)β

†
p,kβp,k, (2)

ωp/h(k) =
U

2

√

1− (J1/Jc) cos(ka)± µ, (3)

where Jc ≈ 8Uρ̄ is the critical hopping for the formation of the Mott state with filling ρ̄ and µ denotes the chemical
potential. Note, that since the gap cuts off the infra-red divergencies characteristic of gapless 1d systems, the mean
field theory is expected to work well inside the Mott phase. Details about the mean-field approach can be found in
Ref. [1].

FINAL STATE INTERACTIONS

Let us now turn to the higher Bloch bands and the interaction effects therein. We treat the interactions by
splitting the field operators into Wannier states for the lowest band and keep continuum states for the higher bands
ψ†(x) =

∑

iw1i(x)b
†
1i + ψ̃†(x). The part of the interaction which describes scattering between the final state and the

remaining particles in the lower band is:

Hint =
2πas~

2

m

∫

dx
∑

i

w2
1,i(x)b

†
1ib1iψ̃

†(x)ψ̃(x). (4)

For later convenience let us also express the density operator in the lowest band in terms of the particle and hole
fluctuation operators:

b†1ib1i = 〈b†1ib1i〉+ (b†1ib1i − 〈b†1ib1i〉)

= ρ̄+ p†ipi − h†ihi. (5)

Hartree shift. The Hartree approximation of the final state interaction consists of replacing the density operator
in the lower band by its average (i.e. neglecting the particle and hole fluctuations.

Veff(x) =

∫

dx

[

Vlatt(x) +
2πρ̄as~

2

m
w2

1i(x)

]

ψ̃†(x)ψ̃(x).

The effective potential obtained in this way is shown for 87Rb at sx = 10 and ρ̄ = 2 in Fig. 1(a). The addition of the
Hartree term has two effects. First, it shifts the excited Bloch bands to slightly higher energies (by ∼ 0.2ER for the
third band) due to the repulsive interaction with the Mott insulating state. Second, the bandwidth of the high bands
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FIG. 1. (color online) Final state interactions. (a) The effective potential for higher Bloch bands due to the underlying
Mott insulator. (b)–(e) Scattering processes due to the inter-band interactions. A full line denotes a particle in the excited
Bloch band, a black (gray) dashed line a quasi-hole (quasi-particle) in the Mott insulator. Note that quasi-holes and excited-
band particles attract each other. (f) Polarization bubble corresponding to Sn(q, ω). (g) Interaction corrections to Sn(q, ω)
leading to a bound state, a Mahan-exciton.

is enhanced by a few percent. This comes about as the combined effective potential is less confining than the pure
sinusoidal optical lattice, see Fig. 1(a).
By including the Hartree shift we obtain a new effective Hamiltonian for the particles in the upper bands:

Heff =
∑

n>1,k

en(k)b
†
nkbnk (6)

Note that the Bose operators in the upper band are defined using the Wannier states in the effective potential Veff :

ψ̃†(x) =
∑

n>1

w̃ni(x)b
†
ni. (7)

Quasi-particle scattering. We now turn to the residual interactions which include scattering of particles in the
upper band on particles and holes in the lowest band, which is represented by

Hres =
∑

n>1

U1n(p
†
ipi − h†ihi)b

†
nibni, (8)

with

U1n =
2πρ̄as~

2

m

∫

dxw2
1,i(x)w̃

2
n,i(x). (9)

Since we are interested in one particular Bloch band, we now suppress the index n from the Bose operators of the
upper band and we write V = U1n. We can now write the inter-band interaction using the Bogoliubov quasiparticles
of the lowest band defined in 5. This gives

Hres =
V

N2

∑

k1,k2,q

sk1+q/2,k1
b†k2−q/2bk2 (10)

× (β†

p,k1+q/2βp,k1 − β†

h,−k1−q/2βh,−k1),

+
V

N2

∑

k1,k2,q

rk1+q/2,k1
b†k2−q/2bk2

× (β†

p,k1+q/2β
†
h,−k1

+ βp,k1+q/2βh,−k1).

where the interaction coefficients are given by

sp,q = upuq − vpvq
J1/U→0

= 1, (11)

rp,q = upvq − uqvp
J1/U→0

= 0. (12)
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The different scattering processes included in the above equations are illustrated in Fig 1(b)–(e).
We note that processes (b) and (c) are proportional to u2 whereas (d) and (e) scale as uv and are therefore strongly

suppressed deep in the Mott phase. Furthermore process (c) vanishes identically because there is only a quasi-hole in
the lower band. So, only process (b) contributes significantly to the final state interaction. The contribution of this
scattering process to Π(q, w) can be computed exactly by resummation of the ladder diagrams shown in Fig. 1(g).
The resummation reveals the presence of a bound state of a quasi-hole with the high-band particle [2] at energy of

order V below the bottom of the two-particle continuum. The spectral weight of the bound state scales as (V/Jn)
2 ≪ 1,

where Jn is the band-width of the n-the Bloch band. We can therefore safely neglect its contribution to S(q, ω).
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