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Abstract

This paper introduces a novel distance measure for clustering high dimensional

data based on the hitting time of two Minimal Spanning Trees (MST) grown

sequentially from a pair of points by Prim’s algorithm. When the proposed

measure is used in conjunction with spectral clustering, we obtain a powerful

clustering algorithm that is able to separate neighboring non-convex shaped

clusters and to account for local as well as global geometric features of the data

set. Remarkably, the new distance measure is a true metric even if the Prim

algorithm uses a non-metric dissimilarity measure to compute the edges of the

MST. This metric property brings added flexibility to the proposed method. In

particular, the method is applied to clustering non Euclidean quantities, such

as probability distributions or spectra, using the Kullback-Liebler divergence as

a base measure. We reduce computational complexity by applying consensus

clustering to a small ensemble of dual rooted MSTs. We show that the resultant

consensus spectral clustering with dual rooted MST is competitive with other
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clustering methods, both in terms of clustering performance and computational

complexity. We illustrate the proposed clustering algorithm on public domain

benchmark data for which the ground truth is known, on one hand, and on

real-world astrophysical data on the other hand.

Key words: Non-metric clustering; minimal spanning tree; Prim’s algorithm;

affinity measure; co-association measure; consensus clustering

1. Introduction

The process of clustering partitions a set of data into non-overlapping sub-

sets. The partitions are determined such that patterns belonging to the same

cluster share more similarity with each other than with patterns belonging to

different clusters [30]. Such problems have been investigated in many fields of

research including: data mining [6], pattern recognition [46], image segmenta-

tion [51], computer vision [41] and bio-informatics [53]. There are a wide range

of clustering methods available, e.g. , hierarchical clustering, spectral cluster-

ing, graph partitioning algorithms and k-means [26] (see e.g. [25, 31, 46] for a

review of clustering approaches). In this paper we introduce a new clustering

method that uses dual rooted trees combined with consensus methods. The

approach is closely related to level-set methods [44] and entropy minimization

[27]. However, dual rooted trees have advantageous mathematical properties

and their performance is competitive with the state-of-the art.

A crucial issue in designing a clustering algorithm is the choice of dissimilar-

ity measure between data points. This measure determines how the clustering

algorithm differentiates pairs of points within the same cluster (high similarity)

from pairs of points in different clusters (low similarity). In many cases using

Euclidean distance to measure dissimilarities between data points is insufficient.

This has motivated spectral diffusion methods of clustering [34, 37, 42, 52]. The
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original spectral method used a Gaussian kernel on a Euclidean distance to con-

struct a more discriminating dissimilarity measure [37]. In [34] the Gaussian

kernel was interpreted as a heat diffusion kernel which induces a random walk

on the graph with nodes consisting of data points. Using this random walk,

a diffusion distance is introduced that depends on the time t to walk a path

between a pair of points, which yields a measure of dissimilarity. In [39] the

“commute time” dissimilarity measure between points is defined as the expected

round-trip travel time for the random walk to travel from one point to another

and then return. “Commute time” is closely related to diffusion distance, and in

fact the former can be represented as an integration of the latter over the length

t of the path. In both of these approaches the diffusion and commute time

dissimilarity measures are used for embedding data points into a new system of

coordinates defined by the eigenvectors of the heat kernelized affinity matrix.

The final clustering step is achieved by using k-means on the embedded data.

The dual rooted minimal spanning tree (MST) clustering approach proposed

in this paper is different. Starting from a base dissimilarity measure between

data points, it constructs MST’s rooted at different points in the dataset. It

then defines the dissimilarity between pairs of points as the time it takes be-

fore collision of the two MSTs as they are grown from each root using Prim’s

algorithm [38]. This time is called the dual rooted tree hitting time, and it

is a non-Euclidean dissimilarity measure that describes global as well as local

geometrical properties of the data set. In particular, this hitting time can be

used as a measure of dissimilarity between the two roots and it is influenced

by the distance between the roots in addition to the dissimilarity of their local

neighborhoods. The matrix of pairwise dissimilarities can then be transformed

into an affinity matrix by applying the standard heat kernel approach used in

spectral clustering. This principal role of the local neighborhoods of each pair
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of points is one of the main differences between the dual rooted MST approach

and the diffusion kernel and commute time methods.

The starting point for this paper is the simple algorithm described above,

called the Symmetric Dual Rooted Prim Tree (SDRPT) algorithm, introduced

by two of the authors of this paper [24]. It computes the hitting time for all
(

N
2

)

pairs of points, the two rooted MSTs are grown in parallel simultaneously

from each root, and it results in a pair of rooted MSTs that have the same

number of edges at the hitting time. Building on the SDRPT concept we then

define a modified algorithm, called the Dual Rooted Prim Tree (DRPT), that

results in a pair of MSTs having different numbers of edges at the hitting time.

Specifically, it selects a randomly chosen subset of pair of roots and grows MSTs

sequentially and asymmetrically: at each stage of the Prim’s algorithm, among

the two new edges proposed for each MST only the rooted MST with the smallest

edge is grown. Moreover, instead of using the “hitting time” as a dissimilarity

measure, the length of the last constructed edge is used. This latter edge is a

clique separator: its removal from the final graph disconnects the two rooted

trees. The DRPT and the SDRPT have substantially different properties. In

particular, the dissimilarity measure produced by the DRPT is a true distance

metric regardless of the base dissimilarity measure used to define edge lengths

for the Prim MST constructions.

Since the computation of the DRPT for all
(

N
2

)

pair of vertices is necessary

to construct a complete dissimilarity matrix, it may have a prohibitive compu-

tational cost. To address this point, we propose to create a consensus affinity

matrix [33] based on the clusters produced by a subset of M ≪
(

N
2

)

DRPT

rooted at random pairs of points. As in the SDRPT of [24], or for consensus

matrices in [55] spectral clustering to this matrix can then be used. Consensus

clustering is a method for merging results from different algorithms, or from
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different clustering realizations associated with different initial conditions. This

concept has its origin in multi-classifier and multi-learner systems (see [23] and

[33] for a brief history) and the main idea is to empirically estimate perfor-

mance by data partitioning in order to improve the classifier. The methods

of cross-validation, bagging and boosting classifiers [10, 18] are examples. The

underlying idea in consensus clustering, which is unsupervised, is to estimate

performance by combining different data partitions to create a set of clustering

realizations that can be compared and combined [9, 16, 43]. We apply consensus

clustering to dual rooted MSTs by applying it to the random selection of pairs

of roots. As the proposed method accumulates evidence for clustering from each

of the DRPTs, we refer to it as “Evidence Accumulating Clustering with Dual

rooted Prim tree Cuts” (EAC-DC).

The EAC-DC approach has several features that we summarize here. First,

the DRPT dissimilarity measure captures the dissimilarity of the MST neigh-

borhoods of each pair of points. Second, since only a smaller random subset of

pairs are used in the DRPT, it benefits from lower computational complexity

than SDRPT with spectral clustering. We show by simulation and experiment

that the EAC-DC outperforms state-of-the-art clustering methods on bench-

mark data sets. Third, as proven in the sequel, regardless of the base dissimi-

larity measure adopted to build the MST, the DRPT produces a dissimilarity

measure which is truly a metric and this property can translate into improved

performance relative to the SDRPT with spectral clustering. To illustrate this

property, the DRPT is implemented on the symmetrized KL divergences be-

tween pairs of infrared star spectra to cluster stars in an astrophysical dataset.

The outline of the paper is as follows. Section 2 provides a brief introduc-

tion to minimal spanning trees and Prim’s algorithm for general dissimilarity

measures. In Section 2.2 dual rooted MST are discussed, the DRPT is pro-
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posed and its properties are discussed. Consensus clustering is applied to the

DRPT dissimilarity measure in Section 3. Implementation and computational

issues are also discussed in this section. Finally, after a brief review of clus-

tering performance measures, an extensive comparative study is presented for

both simulated and real datasets from the UCI repository of machine learning

[2] and an astrophysical dataset for star classification.

2. Minimal Spanning Trees and Prim’s algorithm

Let V = {v1, v2, . . . , vN} denote a set of data points in Rl, representing for

instance feature vectors.

2.1. Construction of MST

Define G = (V,E) the undirected graph where E = (eij : e(vi, vj), (i, j) ∈

(1, . . . , N)) denotes a set of undirected edges between vertices (data points) V .

Given a base dissimilarity measure w(v, u) between data points v, u the weight

of an edge is defined as wij = W (eij) = w(vi, vj). The weight wij measures

the dissimilarity or separation between two vertices. It will be assumed that

the base dissimilarity measure is symmetric, positive and homogeneous, i.e.,

w(vi, vj) = w(vj , vi) and w(vi, vi) = 0, but it does not have to be a true distance

metric.

A spanning tree T through the set of vertices V is a connected acyclic graph

that passes through all the N vertices vi, i ∈ {1, . . . , N} in the set. The weight

of the tree T is the sum of all edge weights. A common choice for the base dis-

similarity is the Euclidean length. Although it enjoys many attractive features

[27], more general base dissimilarity measures are considered in the sequel. The

minimal spanning tree (MST) is the tree which has the minimal weight

WN (V ) = min
T

∑

eij∈T

wij
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We apply Prim’s algorithm [38] to construct the MST.

2.2. Dual Rooted Prim Tree (DRPT)

In the Symmetric Dual Rooted Prim Tree (SDRPT) method proposed in

[24], Prim’s algorithm is used to construct a pair of rooted MST that are sep-

arately and simultaneously grown. A graph-based distance measure between

two vertices can be derived from the hitting time (number of steps taken until

trees collide) of the two rooted MSTs rooted at each pair of distinct vertices.

It is important to emphasize that both trees are grown in parallel at each time

step. As contrasted to the SDRPT, in the DRPT construction each rooted MST

competes for growth. At each time step the pair of Prim algorithms produces

a pair of candidate edges, one for each rooted MST, and only the MST with

minimum length candidate edge is grown. The algorithm is again stopped when

the two rooted MSTs collide; with this modification, the two MSTs may not

have an equal number of edges. An example is presented in Figure 1.

For a given pair of vertices {v1, v2} serving as roots of two rooted MSTs T1

and T2, let wfinal be the weight of that final connected edge. This final edge

connects T1 to T2. We define a new distance measure between v1 and v2 as

δ(v1, v2) = wfinal

It is important to stress that this measure depends upon the MST topology,

and should not be confused with the dissimilarity w(., .) used to grow the rooted

MSTs. The tree obtained by the union of the two rooted MSTs is referred to as

Dual Rooted Prim Tree (DRPT), to emphasize its similarities with the Prim

construction method, which connects a single vertex at each iteration.

The DRPT (Fig. 1) has interesting properties, used in the sequel :

• P1 For a given pair of root vertices {v1, v2}, the last constructed edge,
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which connects the two rooted MSTs together, is always the largest (with

maximum edge weight wfinal) among all edges in both rooted MSTs (see

Appendix A1).

• P2 Recall that δ(v1, v2) = wfinal for the DRPT rooted at v1 and v2. Then,

δ(v1, v2) is a distance, even if the base dissimilarity measure w(v, u) is not

(see Appendix A1 for a proof).

• P3 When the weights {wij}i>j are unique, the DRPT rooted at v1 and

v2 is the MST for the subset of vertices spanned by the DRPT (the MST

is unique and does not depend upon the root used to initialize Prim’s

algorithm).

• P4 Let T1 and T2 be the MSTs rooted at v1 and v2, stopped at the hitting

time. The DRPT satisfies (see Appendix A2).

– P4a The DRPT distance δ(x, y) is constant over x ∈ T1 and y ∈ T2:

∀(x, y) ∈ T1 × T2, δ(x, y) = δ(v1, v2)

– P4b The DRPT distance between any two vertices from T1 (resp. T2)

is upper bounded by δ(v1, v2):

∀(x, y) ∈ [T1 × T1] ∪ [T2 × T2], δ(x, y) ≤ δ(v1, v2)

• P5 Let Rv1
v2

stand for the relation, defined relatively to v1 and v2 for any

x, y ∈ V by

xRv1
v2
y if δ(x, y) ≤ δ(v1, v2).

Then Rv1
v2

is trivially symmetric and reflexive. Transitivity of Rv1
v2

is easily

8



obtained as a consequence of properties P2 and P4. Therefore Rv1
v2

is an

equivalence relation.

Discussion From the preceding properties, we easily infer the following:

As only the dissimilarities between vertices from either T1 or T2 are considered,

and not the convexity of T1 or T2, all properties P1 to P5 hold for either convex

or non convex subsets T1 and T2.

As T1 (resp. T2) rooted at v1 (resp. v2) are grown until the largest possible

separation between T1 and T2 is found, T1 (resp. T2) includes all vertices that

may be connected to v1 (resp v2) by a path that contains edges all shorter that

wfinal = δ(v1, v2).

As δ(., .) is a distance, data may easily be embedded in a system of Euclidean

coordinates obtained by metric Multiple Data Scaling (MDS) [7, 48]. That

δ(., .) satisfies the triangular inequality is not requested to compute a MDS

embedding of the data, however this leads to embeddings that are nicer and

easier to interpret [12].

Figures 2 and 3 show the results of the DRPT approach for a set of 10

different clustering problems. The data sets are chosen to reproduce the same

difficulties as the benchmark data sets used in [50]. For each data set, the

left side subgraph represents the vertices in the Euclidean plane. The middle

subgraph shows the MDS based vertices representation constructed from the

dissimilarity matrix [D]ij = δ(vi, vj). These toy-examples where computed with

the Euclidean distance for growing the MSTs. The right subgraph describes the

clusters obtained by application of a classical k-means approach on the MDS

embedded data shown in the middle graph. It is important to emphasize that

k-means may be used here for clustering as it processes a data set (obtained by

MDS) embedded in an Euclidean space. These embedded data exhibit highly

concentrated clusters: By property P4a and P5, both the intra and inter clusters
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measures will vary over a very restricted set of values. Most importantly, all n1

vertices from a subtree T1 are separated from any vertex from a subtree T2 by

the same distance. This leads to highly concentrated well separated clusters in

the representation space associated with this new measure, as e.g. it appears

on most tested data sets. This behavior, as well as properties P1 to P5, is not

affected by possible non convexity of the clusters.

The results illustrate the ability of the proposed approach to handle segmen-

tation of non convex clusters, and its behavior with respect to the presence of

outliers. If edges that may connect (in a MST) outliers to vertices of a clusters

remain larger than or equal to the length of ’in-cluster’ edges, the clustering

remains effective as illustrated on data set (A). If on the contrary the outliers

form ’bridges’ of edges with short length between clusters, the algorithm may

fail to detect the clusters as in data set (J). This sensitivity to outliers as well as

the computational burden, namely
(

N

2

)

dual rooted tree instances to built the

DRPT distance matrix, constitute the basic motivation for deriving an alternate

solution in the next section.

2.3. From DRPT towards consensus clustering

For each pair of roots v1 and v2, the DRPT forms a MST over the set of

vertices spanned by the DRPT. Property P1 above states that the largest edge

is also the final connected one. The sets of vertices involved in T1 and T2 define

candidate clusters containing v1 and v2, respectively. As the DRPT may not

span the entire set of points V , we define a rejection cluster as the set of non

connected vertices. Property P5 above states that these clusters are equivalence

classes for the relation Rv1
v2
.

Let the DPRT be applied M times by random drawing of M root pairs

from V . Let Pi = {C1i, C2i} be the resulting partition of the set of connected

vertices for one of these root pairs {v1i, v2i} (i indexes this particular choice of
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roots). Then C1i ∪ C2i ⊆ V is the neighborhood of vertices v1i and v2i and

V \ {C1i ∪ C2i} is the rejection cluster. We define the DRPT pre-clustering

algorithm as follows:

• Choose a set of M randomly chosen pairs of vertices.

• Compute the Dual rooted MST for each pair and construct two clusters

by cutting the last (also the largest) edge.

The procedure is summarized in Algorithm 1. This pre-clustering algorithm

will produce three clusters, denoted by Pk = {C1, C2, C3}, for each root pair,

k = 1, . . . ,M , giving a cluster ensemble {Pk}
M
k=1. In the next section we apply

consensus clustering to this cluster-ensemble to form the proposed DRPT-based

clustering algorithm.

Algorithm 1 DRPT pre-clustering algorithm

Input: V be a set of N data points ∈ R
l

Ouput: P = (P1, . . . , PM )
1: for k = 1 to M do
2: Choose randomly two vertices vi and vj among V . For both vertices,

compute a rooted greedy MST. Let Ti and Tj be the sets of points in the
two rooted MSTs.
Initialization step: Ti = {vi}, Tj = {vj}.

3: repeat
4: Find closest non-connected vertex for both rooted MSTs.

zi = argmin
z∈V \Ti

w(z, Ti), zj = argmin
z∈V \Tj

w(z, Tj)

5: Add the point z to its respective tree which has the shortest distance
among the two candidates.

6: until the two rooted MSTs collide.
7: Cut the resulting tree at the largest edge.
8: Form three clusters, C1, C2 corresponding to the two subsets of points

identified by the cut and C3 the remaining points (rejection cluster) Pk =
{C1, C2, C3}.

9: end for

Computational cost of implementation

The computation of the EAC-DC algorithm is dominated by the Prim algo-

rithm for computing DRPT distances. If all pairs of vertices were considered as
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roots for the DRPT tree, a brute force computation would run the Prim MST

construction N(N − 1)/2 times. This may become rapidly prohibitive for large

N . However, computational complexity can be reduced by exploiting the fact

that the full MST only needs to be run once: any two points connected in any

MST subtree are also connected points in the MST. Furthermore, once the base

dissimilarity matrix has been computed and stored, only the set of adjacency

relations between vertices need to be recorded, and only logical operations are

required to find the DRPT distance between any two points. Therefore, the

full MST need only be computed once, and its descriptors can be stored in an

array of size 2N (describing N − 1 connections and N − 1 edge lengths). Thus

the DRPT algorithm cost remains of the same order as the cost of a full MST

computation, and does not require any floating point operations. Yet, the Prim

algorithm for constructing the full MST requires order O(N logN) operations.

As only the distances between neighboring data points are actually used in

the Prim MST construction, we implemented a “Nearest Neighbor MST” [20]

that easily scales to large data sets. This reduces the computational complexity

of the distance matrix computation to O(Nk log k). Here k is typically much

smaller than N , and never exceeds a bound on the maximum vertex degree

of the MST. Finally, as only a few pairs of randomly chosen root vertices are

needed to construct the co-association affinity matrix, only a small number of

logical operations is required.

3. Evidence accumulating clustering with dual rooted Prim tree cuts
(EAC-DC)

The computation and clustering performance of the above described DRPT

pre-clustering algorithm can be improved by using consensus clustering. Con-

sensus clustering was introduced to boost the performance of any arbitrary

clustering algorithm. We briefly review the general method before specializing
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to the DRPT.

The goal of any clustering algorithm is to partition V into K clusters. Let

Pi = {C1, . . . , CK} stand for a set of clusters obtained from the data by applying

a clustering algorithm denoted Algoi. Notice that Algoi and Algoj may be iden-

tical algorithms with different initialization parameters, or different clustering

algorithms. In the proposed method, the clustering algorithm will be the same

with different initialization parameters. M different partitions of the data will

result and these are denoted P = {P1, . . . , PM}. In the context of this paper,

these partitions are the DPRT partitions Pk = {C1, C2, C3} after its k-th run,

as described in the previous section.

Each of the partitions in this cluster ensemble can be viewed as a “weak

learner” of the true clusters in the data. These weak learners may individually

have high sensitivity to noise and outliers, and perform poorly with proximal

or interdigitated clusters. While pruning algorithms can be applied [1, 46, 54]

we can do better and “amalgamate” the cluster ensemble to produce an im-

proved clustering result. There have been many approaches to combine cluster

ensembles including: multi-stage K-means [9], bagging [15], partitioning around

medoids [32], quadrature mutual information consensus [47], graph representa-

tions [43], and cumulative voting [3]. Here we apply the evidence accumulation

technique of Fred and Jain [16],[17].

Specifically, the amalgamation of the cluster ensemble P = {P1, . . . , PM} is

performed by the consensus clustering method [17], where we identify the co-

association measure as the proportional number runs of DPRT that classified a

pair of points vi, vj in the same non-rejection cluster.

co assoc(vi, vj) =
n(vi, vj)

M
, (1)

where n(vi, vj) stands for the number of times both vertices were found either
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one or the other of the clusters C1, C2 over the M differently initialized DPRT

runs. This definition of co-association is similar to others used in the literature

[15, 16, 43] but other definitions are also possible, in particular, co-association

that accounts for the rejection cluster (see our technical report [21] for details).

Once the co-association measure co assoc(vi, vj) is defined for all vi and vj

any clustering algorithm can be applied to determine the final clusters. In [16]

hierarchical clustering algorithms are applied whereas in [43] a graph partition-

ing method is proposed. In [55], spectral clustering is applied on the consensus

matrix.

The same idea is pursued here: in the present paper, a heat kernelized

version of the affinity constructed above is used within a spectral clustering

algorithm. The introduction of an exponential heat kernel of parameter σ (see

equation 2) confers to the algorithm an improved robustness. This property was

already quoted in [4] and was observed on all the experiments in this paper. The

clusters will thus be identified by using the spectral clustering algorithm of Ng

et al. [37], which extracts the eigen-structure of the affinity matrix A derived

from the dissimilarity measure τ(vi, vj) = 1− co assoc(vi, vj), and τ(vi, vi) = 0.

The ij-th element of A is

A(i, j) = exp

(

−
τ(vi, vj)

σ

)

∝ exp

(

co assoc(vi, vj)

σ

)

, ∀(i, j) ∈ [1, N ]2 (2)

where σ is a constant to be adjusted. The resulting clustering algorithm is

called “Evidence Accumulating Clustering with Dual rooted prim tree Cuts”

(EAC-DC). The basic steps of spectral clustering are recalled in Appendix A3.

Figures 5 and 6 provide illustrations of the application of the EAC-DC al-

gorithm to the simulated data set studied previously. All clusters are correctly

identified, as shown on subgraphs (e) and (f) for M =
(

N

2

)

and M = N/4 re-

spectively (see discussion about setting M, below). This again demonstrates
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the ability of EAC-DC to cluster non-convex shapes. Moreover the clustering

algorithm successfully discriminated against the uniform background of outliers,

and hence provides an alternative to the method of [14] for dealing with outliers.

This robustness to outliers can be attributed to the tendency of the outliers to

belong to the rejection class during the consensus clustering stage of the EAC-

DC algorithm.

Setting M : Choosing the lowest possible M leads to lower the computa-

tional load. However, a too low value of M may lead to poor performances.

Any partition obtained from a dual rooted approach exhibit 3 clusters, of which

2 are rooted, and the third one contains those points that are not connected.

If more clusters are presents, M should be chosen to insure that one point of

each cluster will be selected as a root at least once. In the luckiest trivial case,

where e.g. 2 well separated clusters are presents, and the pair of roots is such

that there is a root in each cluster, even M = 1 is enough. On the contrary, if

all M pairs considered are all members of the same clusters, the algorithm will

fail to detect the clusters. The roots are chosen at random, and no general rule

was exhibited so far, as the minimal M giving an acceptable clustering result

heavily depends on the topology of the vertices (outliers, numbers of clusters,

relative densities). On all presented experiments, partitions were added to the

partition set until all vertices appear connected at least once in the partition set,

leading to M < N/4 ≪
(

N
2

)

for all tested data sets. Therefore, most examples

presented hereafter will use N/4 randomly set pairs of roots.

Another issue that remains largely open is the proper choice of the param-

eter σ in the affinity matrix (2). As discussed in Luxburg [35], many rules of

thumb have been proposed for selection of σ in spectral clustering but no firm
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theoretical justification of any of these heuristics yet exists. Most successful

rules of thumb select σ proportional to the characteristic width of a cluster,

where width is measured in the affinity domain. Most heuristics for setting σ

are based on matching the characteristic spread of the dissimilarity kernel to

the average width of of the clusters. For example, for the Gaussian kernel von

Luxburg suggests setting σ to a fraction of the mean distance of a point to its

k-th nearest neighbor, where e.g. k = log(N)+1, which approximates the kernel

width.

Such a rule for setting k is quoted by von Luxburg to be very ad hoc and

its performance is highly dependent on the inter point distances of the data at

hand. We used a simpler but similar heuristic in this paper: σ2 in (2) is set

to 1/10-th of the standard deviation of the measure : σ2
meas = 10−1(N(N −

1) − 1)−1
∑

i>j(τij − τ)2, where τ = (N(N − 1))−1
∑

i>j τij . This heuristics

is motivated by the fact that our new measure leads to highly concentrated

and well separated clusters in the associated representation space: the intra

variance of a cluster is much smaller than the inter-point distance variance.

An illustration on real data is provided in Figure 8(b). The sensitivity of the

results with respect to σ was evaluated on BCW and Wine data sets (for which

we know the true clustering) and for different performance indices, all described

in the next section. Figure 4(a) shows that the choice of σ does not affect the

quality of the obtained clustering for BCW data and EAC DC method. A

stronger influence of σ is observed for the Wine data set (figure Figure 4(b))

and EAC DC(KL) method, the best results are recorded for .1 < σ
σmeas

< .2.

Note that subgraphs (d) in figures 5 and 6 shows the clustering results ob-

tained by applying spectral clustering algorithm (cf. Appendix A3) on the

complete Euclidean distance matrix. Many values of σ over the range [10 ×

σmeas, .05 × σmeas] where tested and the best clustering was retained. For
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DRPT based approach, σ was set to σ = .1× σmeas for all data sets.

4. Tests and application

4.1. Non-metric base dissimilarity measures

To implement the DRPT pre-clustering algorithm, a base dissimilarity mea-

sure w(vi, vi) is required. This base measure only needs to be symmetric and

homogeneous; by Property P2 the DRPT algorithm will transform the base

measure to a true metric distance. This gives us considerable flexibility for

clustering various types of data, for which the ’natural’ metric may not be a

distance (see e.g. [8] for example of metrics derived for categorical data). We

present here some examples for which the ’natural’ metric is an informational

divergence. This arbitrary choice is driven by our applications, and is not re-

strictive. Many other metrics could be envisaged, depending on the nature of

the data at hand.

If symmetrized, various information divergences [5] can be adopted as a

base dissimilarity. In particular, Kullback-Liebler (KL) information divergence

is a natural measure of the difference between probability distributions and

therefore, after sum-to-one normalization, it can be applied to clustering data

whose feature vectors are non-negative, e.g., emission or reflectance spectra [19],

gene microarray data [22], hyperspectral images [11], or color images [49]. In

order to satisfy the symmetry property required for implementing DRPTs, a

symmetrized version of the Kullback-Leibler divergence is considered as a base

dissimilarity measure

dKLS(vi, vj) =

l
∑

z=1

(ṽiz − ṽjz) log
ṽiz
ṽjz

. (3)

The symmetrized Kullback-Leibler divergence is only a semi-metric since it does

not satisfy the triangle inequality. However, the DRPT dissimilarity measure
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(previously defined as the last edge added to the dual rooted MST) still remains

a metric according to Appendix A1.

4.2. Benchmark data

Several benchmark comparative tests were performed to demonstrate that

EAC-DC clustering is competitive with other state-of-the-art clustering meth-

ods. For quantitative performance metrics we used measures based on ground

truth reference partitions.

Five popular measures, respectively the Accuracy index (percentage of cor-

rectly labelled points, according to a reference partition) the Rand Index (R)

[40], the Adjusted Rand index (AR) [28], the Jaccard index (J) [29] and the

Normalized Mutual Information (NMI) [43] were implemented. This last one

resorts to an information theoretic approach. Note that other information based

metrics have been proposed from an axiomatic point of view in [36].

Table 1 summarizes the characteristics of real data sets from UCI Machine

Learning Repository [2], namely Breast Cancer Wisconsin (BCW), and Wine

dat-sets.

Data set Number of points Number of features Number of clusters

BCW 683 9 2
Wine 178 13 3

Table 1: Characteristics of the Data Sets

The number of classes in each set is known and this knowledge was used by all

clustering algorithms in the comparative analysis reported below. In particular,

BCW data have two clusters (that are not well separated) while the Wine data

has three clusters. The following algorithms are used for comparison:

• Evidence accumulation clustering with average-link algorithms, referred

to as EAC - AL [16][17].
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• Graph and hypergraph representation: CSPA, HGPA and MCLA1 [43].

• Cumulative voting: unnormalized reference-based cumulative voting (URCV),

reference-based cumulative voting (RCV), adaptive cumulative voting (ACV)

[3].

• Median partition: quadrature mutual information (QMI) [47] (with ran-

domly initialized K-means algorithm to generate the partition ensemble

P).

• Diffusion maps (Lafon et al) [34] and commute time (Qiu, Hancock) [39].

• Spectral clustering (Ng et al) [37].

• Dual rooted trees (Symmetric DRPT) [24].

Table 2 reports the relative performance of these different clustering methods

on the BCW dataset. The top 9 rows are ensemble averaging methods. EAC-DC

was implemented with M fixed at 100 and its numerical score outperforms all

other methods on all 5 scoring criteria. Although the RCV, ACV and Diffusion

maps clustering algorithms perform nearly as well as EAC-DC in Accuracy, and

others come close to EAC-DC according to other criteria, this demonstrates

that EAC-DC is competitive with these state-of-the-art clustering algorithms.

Table 3 shows comparative results for the Wine data set. Each data point in

Wine is a vector having 13 real valued positive components that may be easily

interpreted as the characteristic “spectrum” of a wine. Therefore we imple-

mented the EAC-DC clustering algorithm with the symmetrized KL divergence

(3) as the base dissimilarity measure for growing the dual rooted MSTs, where

ṽjz is the the spectrum of the j wine for the z-th component. Table 3 shows

that this clustering algorithm, denoted EAC-DC (KL) in the table, significantly

1Codes are available at http://www.strehl.com.
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outperforms all other clustering algorithms regardless of the performance crite-

rion.

In terms of computational load we observed that for the Wine data set the

EAC-DC method converged very rapidly as a function ofM . In particular, fewer

than 20 pairs of roots (initializations of dual rooted trees) were needed to attain

its top level of performance. This is to be contrasted to our original symmetric

DRPT method, which requires computation of dual rooted trees initialized at all

pairs of roots (N = 178 leading to 15, 931 different root pairs for the Wine data

set). As compared to EAC-DC, SDRPT run time was greater by two orders of

magnitude. For more details see [21].

We also emphasize at this point that a major difference between the proposed

approach and k-means and/or k-medoids is the following: there is no need to

select a value for k. Here, all partitions are obtained for three classes, that is, 2

rooted clusters + 1 ’rejection’ (unclassified). This is made possible because all

clusters may be non convex, contrary to both k-means and/or k-medoids. This

avoids the requirement to set a large k for e.g. k-medoids in the case of strongly

non convex clusters. In the next section, clusters may precisely be non convex.

4.3. Astrophysical data

Here, we demonstrate the applicability of the new clustering method to a

real world problem in astrophysics. Specifically, we apply the EAC-DC method

to post-AGB (Post Asymptotic Giant Branch) star classification based on data

containing information about the infrared (IR) region of the Spectral Energy

Distribution (SED). The post-AGB stage is a rather short period in the stellar

evolution between the Asymptotic Giant Branch occurring after the end of the

hydrogen burning period, and the planetary nebula formation. It is during this

period that the spherical symmetry of the circum-stellar environment can be

broken and the material can be ionized leading to an asymmetrical planetary
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nebula. A classification of the different post-AGB can bring crucial information

to model the still poorly understood passage from symmetric to asymmetric

stages in the last evolution times of intermediate mass stars. The best classi-

fication of the SEDs of post-AGB stars has been performed using the classes

established by van der Veen et al. [13]. The latter classification requires hand

tuning of the SED clusters and is therefore based upon experimenter’s expertise

and prior knowledge.

We obtained a sample from the Toruń catalogue of post-AGB stars ([45]).

We used the 344 objects classified as “Very likely post-AGB stars”as of January

2010. We used only the IR region of the data, to avoid bias due to choosing only

stars with a counterpart in the visible range. We used data from the 2MASS

survey (J, H and K bands), the MSX satellite (8.28 µm, 12.13 µm, 14.65 µm,

and 21.3 µm) and the IRAS satellite (12 µm, 25 µm and 60 µm). From the set

of 344 spectra, some values were missing at certain wavelengths. We therefore

applied linear interpolation, when feasible, leading to a set of 237 complete

spectra. Here we focus on clustering the shapes of these spectra, defined as the

distribution obtained by normalizing each spectrum with its total energy (sum

of each spectrum over all wavelengths). As a base dissimilarity measure we used

the symmetrized form of the Kullback-Leibler divergence (3), where {ṽjz}z is

the j-th normalized spectrum at each wavelength z.

Method EAC-DC(KL) was able to classify the set of 237 post-AGB stars in

9 distinct groups according to their infrared excess in SEDs. The number of

clusters is estimated by thresholding the Prim trajectory of the full MST, as

described in details in [20]. Figure 7 displays the nine detected clusters, and

the resulting homogeneity of the SEDs in each of them is evident. Although an

astrophysical analysis of each cluster is beyond the scope of this paper, we can

qualitatively interpret the results as follows. Each of the nine clusters shows
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evident homogeneity with a negligible number of interlopers. The clusters ex-

hibit different shape characteristics which are due to different spectral and hence

physical properties. From spectral perspective, cluster 6 (black spectra) could be

considered as a cluster of rejected spectra. A deeper inspection of each element

of this cluster would probably result in further subdivision into subclusters.

Figure (8-a) shows the nine clusters projected in the plane of its two principal

components. Note the large degree of overlap in this PCA plane. Figure (8-b)

represents a 2 dimensional embedding of the data (each cluster is associated with

a symbol and a color), using multidimensional scaling (MDS) [7, 48] applied

to the DRPT based distance matrix. Clusters appear more separated in the

DRPT+MDS dimensionality reduction as compared to the PCA reduction.

5. Conclusion

In this paper a novel distance measure was introduced, based on hitting

times of dual rooted minimal spanning trees, and can be used in any distance

based clustering algorithm. The implementation of this new measure has been

illustrated in the context of spectral clustering and consensus clustering. The

measure was defined as the weight of the longest edge in a graph constructed

by using Prim’s algorithm to grow a pair of MSTs, each rooted at a data point,

until they contain a common vertex. This dissimilarity measure has been shown

to be a metric, regardless of the base dissimilarity measure used for defining

edge length in Prim’s algorithm. By applying consensus clustering to the dual

rooted MSTs grown from a small subset of roots, the computational complexity

was significantly reduced. Furthermore, the dual rooted MSTs and consen-

sus clustering combines the advantages of dual rooted trees for discriminating

non-convex shaped clusters and the robustness advantages of consensus based

approaches. This led to an algorithm capable of dealing with badly separated,

complex shaped clusters, while controlling the computational load.

22



Due to the universal metric properties of the longest edge dissimilarity mea-

sure, the proposed method can be applied in situations where the natural base

dissimilarity measure is not a metric, e.g. clustering non-Euclidean distribu-

tional or spectral types of data. To illustrate this unique feature of our method,

we applied it to clustering star spectra using symmetrized KL information di-

vergence. Furthermore, performance comparisons were presented for curated

benchmark data, which showed the proposed method to be competitive with

other state-of-the-art clustering methods.

As a perspective, it would be worthwhile to explore the use of the proposed

distance measure in other types of distance based clustering algorithms, such as

diffusion eigenmaps, multiple linkage clustering, or graph cuts.
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Appendix A1

It is assumed that the base dissimilarity measure is symmetric and satisfies

w(vi, vi) = 0, ∀vi ∈ V . To calculate the distance between x and y, x, y ∈ V , we

build a DRPT and store the weight of the final constructed edge. The DRPT is

obtained by the union of two sub-trees grown from x and y and stopped when

they collide (which means that they share one (and only one) vertex). Let wfinal

be the weight of the last constructed edge of the DRPT. The distance is defined

as δ(x, y) = wfinal.
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Proposition 1. δ(x, y) = wfinal is a metric.

Proof: We need show that the following properties are satisfied

• Property 1 : δ(x, y) ≥ 0

• Property 2 : δ(x, y) = δ(y, x)

• Property 3 : δ(x, x) = 0

• Property 4 : δ(x, y) ≤ δ(x, z) + δ(z, y),

∀(x, y, z) ∈ V

Properties 1, 2 and 3 are straightforward.

The proof of property 4 above is addressed via three lemmas. First we define

necessary notation. Denote Vx→y the set of vertices connected in the subtree

grown from x and stopped when it collides with the subtree grown from y. Let

Ex→y denote the corresponding edges of the subtree grown from x and stopped

when it collides with the subtree grown from y. Let Vy→x and Exy
y→ be defined

similarly. Let Tx→y = {Vx→y, Ex→y} and Ty→x = {Vy→x, Ey→x}.

Let hxy be the last connected vertex in the tree rooted at both x and y. Let

D be the total number of steps required for Tx→y and Ty→x to collide. Without

loss of generality, it will be assumed that hxy is a vertex from Vy→x; conversely

its parent vertex verifies π(hxy) ∈ Vx→y . Let wlast = w(e(π(hxy), hxy)) be the

weight of the last constructed edge. We have the following lemma:

Lemma 1. Let α = max {w(e) : e ∈ Ex→y ∪Ey→x}, then wlast = α.

Proof. Suppose that ∃ek ∈ Ex→y ∪ Ey→x such that w(ek) > α. Let k be

the iteration index at which ek was created, V k−1
x→y and V k−1

y→x denote the set of

vertices connected to x and y respectively after k − 1 iterations of the DRPT

construction. Suppose k < D; before Tx→y and Ty→x collide, other edges will

be connected to either V k−1
x→y or V k−1

y→x, with weight lower than ek. As, for each

step, the constructed edge must be of minimal weight, we conclude that creating
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the edge ek violates the construction rules : some lower edges could have been

constructed instead. We can thus conclude that α is the weight of the last

constructed edge, at iteration D. Note that for k = 1, V k−1
x→y and V k−1

y→x are

restricted to singletons {x} and {y} respectively, and the proof still holds.

By a similar approach, the following lemma can be established :

Lemma 2. If v ∈ V k−1
x→y and α = δ(x, y), then δ(v, y) = α.

Lemma 3. Suppose a D + 1-th step is performed, leading to connect a parent
v ∈ Vx→y ∪ Vy→x to a new vertex by an edge of weight β. Then from the
construction rule of the DRPT, β > α.

Now we split the proof of the triangular inequality into two different cases

• z /∈ Vx→y∪Vy→x: z doesn’t belong to the path between x and y. δ(x, z) ≥

α (and δ(z, y) ≥ α). By Lemmas 1 and 3, δ(x, z) > α and δ(y, z) > α.

Then δ(x, y) < 2α < δ(x, z) + δ(y, z).

• z ∈ Vx→y: by Lemma 2, δ(z, y) = α. As δ(x, z) ≥ 0 and δ(x, y) = α, the

triangular inequality follows. The same results hold by similar arguments

if z ∈ Vy→x. Note that the case where z = hxy can be addressed in a

similar manner.

As the four properties are satisfied by δ, then δ is actually a metric. This

completes the proof.

Appendix A2

Here we give a proof of property P4 from subsection 2.2. Recall that T1

and T2 are the rooted MSTs rooted at v1 and v2, stopped when they hit each

other, in the dual rooted Prim algorithm. Property P1 insures that any Prim’s

algorithm rooted at a vertex from T1 ∪ T2 will connect all vertices of T1 ∪ T2

before connecting a vertex outside T1 ∪ T2. Then, by using property P2, it can
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be concluded that

∀vi ∈ T1, ∀vj ∈ T2, w(vi, vj) = w(v1, v2)

and

∀(vi, vj) ∈ [T1 × T1] ∪ [T2 × T2], w(vi, vj) ≤ w(v1, v2)

Appendix A3. Basics of spectral clustering

Although many flavors of spectral clustering have been proposed, they all

share the same algorithmic structure:

1. For a given affinity matrix A = [aij ], define the diagonal matrix D =

diag(A) and the graph Laplacian as L = D −A.

2. Solve the generalized eigen-value problem

Ly = λDy

3. Use the eigenvectors associated with the K smallest positive eigenvalues

to determine a K-way partitioning of the data. This can be accomplished

by applying K-means to the resulting eigenvectors [37].

The kernel width parameter σ gives the rate at which the affinity between two

points decays. While there are many heuristic proposals for selecting the kernel

parameter σ, there has been little effort to devise a systematic method for its

determination. Complicating this matter, the direct reliance of spectral methods

on the affinity matrix can cause clustering results to show high sensitivity to

the choice of σ. This may lead to trial-and-error or other heuristic methods

involving many re-starts for the selection of σ.
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TABLES

Method Accuracy Rand Adjusted Rand Jaccard NMI

EAC-DC 0.9678 0.9376 0.8743 0.9184 0.7889
EAC - AL 0.9429 0.8922 0.7816 0.8488 0.6827
CSPA 0.8448 0.7374 0.4749 0.6523 0.4809
HGPA 0.6501 0.5444 0 0.4856 0
MCLA 0.9575 0.9186 0.8355 0.8869 0.7363
URCV 0.9590 0.9223 0.8409 0.8907 0.7427
RCV 0.9663 0.9348 0.8685 0.9106 0.7755
ACV 0.9649 0.9321 0.8630 0.8067 0.7684
QMI 0.9356 0.8793 0.7561 0.8366 0.6376

SDRPT 0.9414 0.8896 0.7763 0.8453 0.6772
Spectral Clustering (Ng et al.) 0.9356 0.8793 0.7552 0.8313 0.6561
Diffusion Maps (Lafon et al) 0.9605 0.9240 0.8472 0.9025 0.7737

Commute times (Qiu, Hancock) 0.9531 0.9106 0.8191 0.8743 0.7224

Table 2: Results obtained on the Breast Cancer Wisconsin data set; Best scores are indicated
in bold font.

Method Accuracy Rand Adjusted Rand Jaccard NMI

EAC-DC 0.7022 0.7055 0.3423 0.4407 0.3639
EAC-DC (KL) 0.8090 0.7844 0.5248 0.5646 0.5820
EAC - AL 0.6910 0.7254 0.3943 0.4672 0.4424
CSPA 0.7135 0.7282 0.3889 0.4685 0.3929
HGPA 0.7022 0.7240 0.3827 0.4635 0.4272
MCLA 0.7247 0.7265 0.3858 0.4693 0.3987
URCV 0.6742 0.6633 0.2789 0.3983 0.3318
RCV 0.6854 0.6759 0.3027 0.4130 0.3484
ACV 0.6966 0.7077 0.3551 0.4409 0.3745
QMI 0.6011 0.6237 0.1686 0.3273 0.2036

SDRPT 0.7135 0.7128 0.3591 0.4499 0.4199
Spectral Clustering (Ng et al.) 0.6966 0.7096 0.3523 0.4440 0.4346
Diffusion Maps (Lafon et al) 0.6573 0.6597 0.3583 0.4320 0.4562

Commute times (Qiu, Hancock) 0.7022 0.7187 0.3711 0.4568 0.4288

Table 3: Results obtained on the Wine data set
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FIGURES AND CAPTIONS

Figure 1: Dual rooted Prim tree built on a data set. Symbol X marks the rooted vertices.
The dashed edge is the last connected edge.
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Figure 2: A. 2 identical clusters with outliers; B and E : 2 clusters with different densities; C:
2 identical clusters with variable densities; D: 1 annulus including a cluster. Left(a) : Data;
Middle : DRPT-MDS embedded data; right : data labelled with clustering labels obtained
by k-means method on the DRPT-MDS embedded data. Note that when outliers are present,
k-means was set to search 3 clusters.
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Figure 3: F: Different constant densities; G: 2 clusters and constant density link; H: 2 spirals;
I: 2 moons.; J: 2 moons and outliers. Left(a) : Data; Middle : DRPT-MDS embedded data;
right : data labelled with clustering labels obtained by k-means method on the DRPT-MDS
embedded data. Note that when outliers are present, k-means was set to search 3 clusters.
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(a) (b)

Figure 4: Clustering quality indices as a function of σ/σmeas , for (a) the BCW data and (b)
the Wine data. An Euclidean norm is used for constructing the DRPT measure for the BCW
data. A KL divergence is used for the DRPT in the case of Wine data set. (σ is expressed as
a fraction of σmeason the plots).
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Figure 5: Data sets A to E are those already explored for Figure 2. Left(d) : Spectral clustering
results on Euclidean distance; Middle(e): Spectral clustering of the complete heat kernelized
DRPT consensus matrix; right(f) : same as (e), with DRPT consensus matrix estimated from
M=N/4 partitions.
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Figure 6: Data sets F to J are those already explored for Figure 3. Left(d) : Spectral clustering
results on Euclidean distance; Middle(e): Spectral clustering of the complete heat kernelized
DRPT affinity matrix; right(f) : same as (e), with DRPT affinity matrix estimated from
M=N/4 partitions.
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Figure 7: The nine clusters found by method EAC-DC(KL) with a modified coassoc criterion.
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(a)

(b)

Figure 8: (a) : The nine clusters found by method EAC-DC(KL) displayed in the plane of the
two principal components of higher eigenvalues. (b) : 2D space representation of the data,
computed from MDS on the DRPT distance matrix.
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