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Abstract

We report on experiments performed in vacuum and at cryogenic temperatures on a tri-port

nano-electro-mechanical (NEMS) device. One port is a very non-linear capacitive actuation, while

the two others implement the magnetomotive scheme with a linear input force port and a (quasi-

linear) output velocity port. We present an experimental method enabling a full characterization

of the nanomechanical device harmonic response: the non-linear capacitance function C(x) is

derived, and the normal parameters k and m (spring constant and mass) of the mode under study

are measured through a careful definition of the motion (in meters) and of the applied forces

(in Newtons). These results are obtained with a series of purely electric measurements performed

without disconnecting/reconnecting the device, and rely only on known DC properties of the circuit,

making use of a thermometric property of the oscillator itself: we use the Young modulus of the

coating metal as a thermometer, and the resistivity for Joule heating. The setup requires only three

connecting lines without any particular matching, enabling the preservation of a high impedance

NEMS environment even at MHz frequencies. The experimental data are fit to a detailed electrical

and thermal model of the NEMS device, demonstrating a complete understanding of its dynamics.

These methods are quite general and can be adapted (as a whole, or in parts) to a large variety of

elecromechanical devices.
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I. INTRODUCTION

The field of micro and nowadays nano-mechanics is continuously expanding, present-

ing applications in a variety of topical fields including biophysics and chemistry (for e.g.

microfluidics [1], chemical sensing [2–5], attogram mass sensing [6, 7]).

In many applications, the input and output signals are obtained in arbitrary units without

hindering the use of the device. However, in some cases it is essential to know the applied

forces in Newton and the displacements in meters: e.g. obviously for an absolute position or

force sensor, but also for a physical characterization and understanding of these mechanical

systems themselves. For low frequency micro-electro-mechanical devices (MEMS, typically

10 kHz), the connecting lines and the on-chip wiring behave essentially DC: the voltage ap-

plied with the generator, or detected with the amplifier is truly the voltage on the MEMS.

For opto micro or nano-mechanical devices (MOMS or NOMS), the output is usually directly

obtained in meters: the difficulty is (only) technical and lies in the ability of bringing the

optics on the chip (by focusing the beam, and avoiding heating).

For nano-electro-mechanical oscillators (NEMS) resonating above 10 MHz and up to GHz

frequencies, the electric connections are of a concern: attenuation will occur in lossy cables,

line resonances may appear due to discrete/distributed LC contributions, and impedance

mismatches will generate complex reflection patterns. If no care is taken, the voltage at one

end of the cables is certainly not the same as the one on the other side, on the NEMS. On

the other hand, if particular care is taken a 50 Ω matched circuitry can be set up; this is

the optimal design as far as the voltage signal amplitude is concerned.

However, high impedance environments are required when isolating the NEMS is essential.

This is the case when addressing the fine study of loss mechanisms at low temperatures

[10–12]. Many low temperature experiments (including our devices) use the practical mag-

netomotive scheme, exciting one resonance of the mechanical structure [12, 13, 20]. Unfortu-

nately, a (low) impedance load Zl(ω) in a (high) magnetic field B contributes to the overall

measured damping mechanism [12, 14], with corrections to both the resonance position and

the linewidth proportional to Im(Zl)B
2/ |Zl|2 and Re(Zl)B

2/ |Zl|2, respectively.
Isolating the device is also crucial for the fine study of quantum nanomechanics [8, 9]. With

a strong coupling to the environment (the driving field), it is indeed possible to cool down

the device into its ground state when using feedback cooling schemes [15, 16]. However, the
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device is then kept in a strongly out-of-equilibrium state where only one degree of freedom is

cold, the one under active pumping. The scheme is clearly impractical when studying fun-

damental coherence properties on their own, which require a true in-equilibrium situation.

Finally, in some situations the practical realization of a 50 Ω match may prove to be diffi-

cult. A procedure enabling the verification of the actual matching obtained at the NEMS

level is thus important. Moreover, when keeping deliberately a high impedance environment

on chip, the line transmission characteristics are almost certainly unpredictable and need

calibration; although not optimal signalwise, the calibrated high-impedance configuration is

perfectly functional.

Many experimental setups use an electromotive drive scheme (see for e.g. Refs. [11,

17]). For actuation, the device is coupled to an electrode A through a position-dependent

capacitance CA(x). The detection is obtained through another electrode D with coupling

capacitance CD(x). By definition, this scheme is highly nonlinear. In practice with complex

electrode patterns, the capacitance functions Ci(x) are very difficult to obtain. One can make

estimations with crude analytic formulas, or use sophisticated finite element simulations

(see e.g. [17–19]). But in fine, only the measurements can tell what capacitance has been

effectively implemented on chip.

In the present paper we report on experiments performed on a tri-port NEMS oscillator

resonating around 7 MHz. One port is a nonlinear capacitive drive, another port is a

linear magnetomotive drive while the last port is an almost linear detection port. Since the

magnetomotive drive requires rather high magnetic fields, the experiments are performed at

4.2 Kelvin, in vacuum (less than 10−6 mbar) and under about 1 Tesla.

We present methods enabling the characterization of the two input force ports, and of the

output port. The capacitance of the nonlinear port is described in terms of a Taylor series

which coefficients are obtained experimentally. The measurements are purely electric and

performed without disconnecting/reconnecting the device. They rely only on DC properties,

and allow any type of wiring to be used: in particular, no impedance matching is required

and high-impedance termination is supported. The actual transmission characteristics of

the lines are deduced as a function of the frequency. The experimental results are fit to a

detailed analytic modeling of the moving device, demonstrating a complete understanding of

its dynamics.
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FIG. 1: (Color online) Schematic drawing of the experimental setup, with Scanning Electron

Microscope (SEM) image of the sample (unit reference trihedron also shown). The cold part is

the dashed box (chip and bias resistor R only). The NEMS itself has an electric resistance r and

the gate electrode creates a coupling capacitance Ct(ω, x). The source U represents the induced

voltage under motion. Black connecting lines represent short twisted copper wires. Three coaxial

cables (cylinders) link the tri-port device to conventional room temperature electronics. The lines

transmission coefficients are named GI(ω), GV (ω) and GD(ω) for the magnetomotive drive port,

the gate capacitance port and the detection port respectively (tilded are on-chip voltages). The

input impedances of the corresponding room temperature instruments as seen from the NEMS are

named Zλ(ω) with λ = I, V,D.

II. SETUP

The experimental setup is drawn in Fig. 1, and has been presented in Ref. [20]. It con-

sists of a goal-post shaped NEMS device (two ”feet” of length h = 3.1 µm plus a ”paddle”
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of l = 7 µm, 280 nm wide) fabricated from a thick SOI substrate. The oxide layer was 1 µm

thick for a top silicon thickness thinned down to 150 nm (low-doped P type, resistivity at

room temperature of 14-22 Ω.cm). The structure is patterned by means of Reactive Ion

Etching (SF6 plus O2 plasma) through an Al sacrificial mask obtained by e-beam lithogra-

phy. The beams are released after HF chemical vapor etching. About 30 nm of aluminum

has been deposited on top of the structure to create electrical contacts. We used thermal

evaporation, with the chip kept at room temperature in a vacuum of about 10−6 mbar.

This metallic layer is rather soft, leaving the structure unstressed (no measurable room-

temperature bending) and adding only little elasticity [24]. The low-teperature distortion

appearing from differential thermal expansion (bimorph effect) is estimated to be at most

of the order of the thickness of the structure.

The mobile part is composed of the two cantilever feet linked by the paddle (Fig. 1).

Due to symmetry, in its first resonant mode (out-of-plane flexural mode) the device behaves

as a simple cantilever loaded by half the paddle at its extremity. This geometry has been

studied extensively in our group, from MEMS to NEMS scales with various metallic coatings

[20–24]. In the following, the quoted displacement x corresponds to the motion of the paddle

(top end of the cantilevers). The sample is placed within a helium cryostat, in a small cell in

which cryogenic vacuum is maintained. The DC electric resistance r of the NEMS is 110 Ω

at 4.2 K using a 4-wire measurement [20].

The device has two actuation ports, and one detection port that we use to study the

harmonic response of the first mode at frequency ω0 (Fig. 1). One drive port creates

a linear force (i.e. independent of the displacement x) by means of the magnetomotive

scheme: a current I(t) = I0 cos(ωt) is fed through the metallic layer covering the suspended

part with a cold bias resistor (voltage ṼI(t) across R + r = 1.1 kΩ). In a static magnetic

field ~B oriented along the feet of the moving structure, the resulting force is perpendicular

to the chip surface and writes F (t) = I0lB cos(ωt). The studied harmonic response simply

writes x(t) = x0 cos(ωt+ ϕ).

The detection of the motion is carried out through the measurement of the induced voltage

U(t) = ṼD(t) − rI(t) appearing at the structure’s ends while it moves and cuts the field

lines. This output voltage can be shown to be almost linear, reducing to the expression

U(t) = lBẋ(t) [21, 25]. By sweeping ω around ω0, a resonance peak in ṼD is detected.

The second drive port is realized with a gate electrode capacitively coupled to the moving
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structure. The gap between the NEMS and the gate is about g ≈ 100 nm. The total gate

capacitance Ct can be written:

Ct = C0 +

∫

NEMS

δC,

with C0 the capacitance due to the leads and connecting pads, and
∫

NEMS
δC is the NEMS

metallic layer contribution. Since the capacitance falls to zero extremely quickly with the

distance to the gate electrode, in the latter integral we can keep only the paddle contribution.

Parameterizing the NEMS capacitance with the global position of the paddle in the ~x and

~y directions (see Fig. 1) leads to:
∫

NEMS

δC = C(x, y).

The potential energy originating from the voltage bias ṼG(t) on the gate electrode writes

then:

EC =
1

2
C(x, y)Ṽ 2

G.

The resulting force (on the mobile part) is thus:

~FC = +
1

2

(

∂C(x, y)

∂x
~x+

∂C(x, y)

∂y
~y

)

Ṽ 2
G.

Static deflections that are generated by a DC gate voltage (or a DC magnetomotive current)

can be safely neglected; only the harmonic response has to be considered, and the modeling

presented does not incorporate any static distortions. In experiments, the displacements

x, y remain small. We thus proceed with the following Taylor series expansions:

∂C(x, y)

∂x
=

∂C(0, 0)

∂x
+

∂2C(0, 0)

∂x2
x

+
1

2

∂3C(0, 0)

∂x3
x2 +

∂2C(0, 0)

∂x∂y
y

+
∂3C(0, 0)

∂x2∂y
xy +

1

6

∂4C(0, 0)

∂x4
x3,

∂C(x, y)

∂y
=

∂C(0, 0)

∂y
+

∂2C(0, 0)

∂x∂y
x

+
1

2

∂3C(0, 0)

∂x2∂y
x2 +

∂2C(0, 0)

∂y2
y

+
∂3C(0, 0)

∂x∂y2
xy +

1

6

∂4C(0, 0)

∂x3∂y
x3,

where we kept only orders smaller than 3. The y displacement is at lowest order an x2 term

[21, 25]; we estimate y ≈ −3
5
x2/h. Obviously, this description breaks down for x >> g:
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higher orders should be taken into account making the capacitance C(x, y) fall smoothly to

zero.

The ~y component of ~FC (denoted F y
C) is an axial force load acting on the feet of the

structure. It influences their spring constants kfoot, and we have at first order [21, 24]:

kfoot =
k0
2

(

1− φ
F y
C/2h

2

E Iy

)

with k0/2 the unaxially-loaded spring constant of each foot, E the corresponding Young

modulus and Iy its second moment of area. ω0 =
√

k0/m0 by definition, with m0 the

normal mass of the mode. φ is a small (mode dependent) number that is estimated for our

geometry to be about +0.095. The end mass load due to the paddle is taken into account

in this writing [24].

The ~x component F x
C of the force generates directly a modulation of the NEMS restoring

force. Combining the axial load F y
C with the latter, we finally obtain the effective out-of-

plane gate contribution:

F eff
C = +

1

2

∂C(0, 0)

∂x
Ṽ 2
G

+
1

2

[

∂2C(0, 0)

∂x2
+

(

φ

2

k0h
2

EIy

)

∂C(0, 0)

∂y

]

x Ṽ 2
G

+
1

2

[

1

2

∂3C(0, 0)

∂x3
+

(

φ

2

k0h
2

EIy
− 3

5

1

h

)

∂2C(0, 0)

∂x∂y

]

x2 Ṽ 2
G

+
1

2

[

1

6

∂4C(0, 0)

∂x4
+

(

φ

4

k0h
2

EIy
− 3

5

1

h

)

∂3C(0, 0)

∂x2∂y

−
(

φ

2

k0h
2

EIy

3

5

1

h

)

∂2C(0, 0)

∂y2

]

x3 Ṽ 2
G. (1)

The spatial variation of the capacitance C(x, y) occurs on a typical lengthscale of the order

of the electrode’s gap g. Therefore, the terms in Eq. (1) between parenthesis should be

compared to this parameter. We obtain φ

2
k0h

2

EIy
g ≈ 0.01 and 3

5
1
h
g ≈ 0.02, and conclude

that for our device the corresponding factors in Eq. (1) can be safely neglected: only the x

variation of the NEMS capacitance C has to be considered. Note however that the formalism

given below remains perfectly valid in the more general case where the tension contribution

F y
C is not negligible, using the full coefficients of Eq. (1). For a given sample, it is rather

difficult to predict accurately the actual values of the ∂nC(0, 0)/∂xn−p∂yp (n, p = 1, 2, 3, 4).

In practice, the experimentalist applies biases VI , VG and detects a voltage VD (Fig.

1). These signals are related to the true on-chip values ṼI , ṼG and ṼD through the line
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transmission coefficients defined as:

GI(ω) =
ṼI

VI

,

GV (ω) =
ṼG

VG

,

GD(ω) =
ṼD

VD

.

The frequency-dependence of these coefficients arises from experimental imperfections (dis-

tributed RLC lines, impedance mismatches). Similarly, the (equivalent) coupling capaci-

tance C0 writes C0(ω), because in practice the connecting pads capacitance is combined to

the inductance of the bonding wires (and more generally, to the finite impedance of the close-

by wiring). Note however that since its size is vanishingly smaller than the wavelength of the

electric signals under use, the NEMS contribution to Ct should be frequency-independent.

We thus finally write:

Ct(ω, x) = C0(ω) + C(x).

Note that in experimental implementations C(x) << C0. The capacitance C0 is responsible

for a current C0 dṼG/dt flowing through the NEMS, adding up to the current used for the

magnetomotive drive.

The low frequency (or DC) values are always well-defined, and by definition GI(0) =

GV (0) = GD(0) = 1, together with C0(0) = C00. By measuring the current VD/r in the

NEMS under a small low frequency voltage VG on the gate, we obtain C00 = 0.32 pF [20].

However, depending on the impedance matching of the connecting lines and on the quality

of the wiring, the frequency dependence of the above coefficients can be very complex and

unpredictable in the MHz - GHz range.

In the following we present two distinct techniques enabling the full characterization of

the electromechanical device. In a first step, the calibration procedure described in Sec. III

defines experimentally the spatial-dependence of the capacitance C(x) (up to about x ≈ g).

It is obtained through the measurement of the series coefficients ∂nC(0, 0)/∂xn (n = 1, 2, 3, 4)

appearing in Eq. (1).

In a second step, another experimental calibration procedure gives access to the frequency-

dependences Gλ(ω) (λ = I, V,D) and C0(ω) (here, up to 30 MHz). It relies only on a

thermal property which is essentially DC. A comprehensive thermal model is developed and

compared to the experimental data, proving excellent agreement without free parameters.
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III. EXPERIMENT

In practice, the two generators in Fig. 1 (VG and VI) are implemented by a Tektronix

AFG3252 dual channel arbitrary waveform generator. The detection of VD is realized with a

Stanford SR844 RF lock-in amplifier, giving access to both the in-phase X and out-of-phase

Y components of the harmonic motion (homodyne detection). The magnetic field is obtained

with a small superconducting coil and a Kepco 10 A DC current source. All presented data

are obtained at 4.2 K in a field of 840 mT, but the thermal variation of the mechanical

parameters has been carefully studied from 4.2 K to 30 K. The expected magnetic field

dependence has been verified from about 145 mT up to 1.1 T. On-chip applied voltages

never exceed 10 V peak, and currents through the NEMS are kept below 200 µA peak. Note

that experimental results are quoted in root-mean-square values.

A. Spatial-dependence of C(x)

From Eq. (1), we immediately realize that the applied voltage ṼG allows to:

• drive the NEMS’ mode under study, through the first term ∂C(0, 0)/∂x and a voltage

ṼG0 cos(ω
′t) oscillating around ω0/2,

• tune the resonance frequency, with the second term ∂2C(0, 0)/∂x2 and a DC voltage

bias VG,

• and adjust the Duffing-like nonlinearity, with the last terms ∂3C(0, 0)/∂x3,

∂4C(0, 0)/∂x4 and a DC bias.

Inversely, measuring these effects we can quantify the parameters ∂nC(0, 0)/∂xn (n =

1, 2, 3, 4). These NEMS capacitive frequency tuning and nonlinearity tuning have been ex-

perimentally demonstrated for the first time in Ref. [26] with a doubly clamped beam. The

formalism is more complex since the capacitance terms have to be integrated over the mode

distortion [26], introducing additional shape factors that have to be calculated; however,

the final conclusions are strictly identical. Note that using the resonance frequency tuning,

parametric drive [27] can be implemented with a proper choice of gate voltage modulation

[20, 28].
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FIG. 2: (Color online) Displacement versus force curves for the magnetomotive drive (blue squares)

and the capacitive drive (orange circles). Dashed lines are fits showing a saturation at large x (with

respect to the straight full line). Values are quoted in rms, and error bars are typically ±5 %, the

size of symbols. Inset: Measured resonance lines (X and Y components) with Lorentzian fits (black

lines). Note the wide dynamic range explored.

In Fig. 2 we present the characteristic displacement versus force curves obtained for the

magnetomotive drive and the capacitive drive. The axis units have been calculated from

the magnetomotive drive using the careful calibrations of GI(ω) and GD(ω) presented in

Sec. III B. Knowing GV (ω), scaling the electromotive force +1
2
∂C(0,0)

∂x

Ṽ 2

G0

2
cos(2ω′t) on the

magnetomotive force I0lB cos(ωt), for the same displacement obtained in the linear regime,

gives access to ∂C(0, 0)/∂x; we obtain +2.1× 10−11 F/m.

For small deflections (typically x < 30 nmrms), both excitation methods give a Lorentzian

response in the detected induced voltage (insets, Fig. 2). The displacement amplitude x0

verifies then the simple relation: x0 = F0Q/k0 with Q = f0/∆f the quality factor of

the resonance, and ∆f its full width at half height (FWHH) measured on X (in-phase).

We obtain Q = 5.1 × 103 (i.e. f0 = 7.09 MHz and ∆f = 1.4 kHz), k0 = 2.55 N/m

and m0 = 1.3 10−15 kg which fully characterizes the oscillator in the linear regime. Spring

constant and mass are in excellent agreement with calculated parameters taking into account
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the end mass load and the coating metal (typically ±5 %, formalism from Refs. [21, 24]).

However, for large deflections the device becomes nonlinear (see dashed lines in Fig. 2).

With the magnetomotive drive scheme, the resonance line remains Lorentzian-looking up to

very large x0, demonstrating very small Duffing-like contributions in the dynamics equation

[20]: writing the restoring force Frestore = −k0(1 + k1x + k2x
2) x, we have k1 x, k2 x

2 << 1.

But the linewidth grows with the displacement while the resonance shifts down, a signature

of both anelasticity and Joule heating [20, 24].

With the electromotive drive scheme, these intrinsic nonlinear behaviors are superimposed

to voltage-dependent nonlinearities. Since [ṼG0 cos(ω
′t)]2 = Ṽ 2

G0[1 + cos(2ω′t)]/2, a static

term Ṽ 2
G0/2 appears in Eq. (1) which is responsible for a negligible static deflecting force

(through ∂C(0, 0)/∂x), a small frequency shift (through ∂2C(0, 0)/∂x2), and finally a small

nonlinear Duffing-type contribution (∂3C(0, 0)/∂x3,∂4C(0, 0)/∂x4). Moreover, the cos(2ω′t)

drive component in the series is also nonlinear with the same coefficients. The resulting

resonance line at large drives looks like a ”pointed hat” on X, with a height saturating

around 65 nmrms. This saturation is characteristic of the decrease towards zero of C(x) at

large deflections.

Keeping the NEMS in the linear regime with the magnetomotive drive scheme (x <

7 nmrms), we measure the frequency tuning using a DC voltage on the gate VG (Fig. 3).

Most of the effect arises from the gate modulation of the spring constant (∂2C(0, 0)/∂x2).

However to be perfectly rigorous, the gate bias creates a static deflecting force which can be

taken into account as well. If the intrinsic restoring force of the device is slightly nonlinear

with Frestore = −k0(1 + k1x + k2x
2) x, the static deflection combined with the k1 term

contributes at first order to the frequency shift. We neglect its second order contribution

(which enters the small V 4
G term below). Solving the dynamics equation, we obtain for the

Lorentzian response a resonance position:

ωres = ω0

+ ω0

(

k1
∂C(0,0)

∂x
− 1

2
∂2C(0,0)

∂x2

2k0

)

V 2
G

+ ω0







−
(

k1
∂C(0,0)

∂x
− 1

2
∂2C(0,0)

∂x2

)2

+ 2∂C(0,0)
∂x

(

k1
∂2C(0,0)

∂x2 − 1
2
∂3C(0,0)

∂x3

)

8k2
0






V 4
G, (2)
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FIG. 3: (Color online) Frequency tuning of the resonance ωres/2π using a DC voltage on the gate.

For this measurement, the device motion has been kept in the linear regime (x < 7 nmrms). The

dashed line is a quadratic function while the full line also takes into account a small V 4
G component,

recalculated from the fit of Fig. 6. Both lines are practically indistinguishable one from the other.

Inset: after subtraction of the full expression +1850V 2
G−0.1V 4

G (a small DC offset voltage has also

been taken into account). Error bars about ±150 Hz. Note the deviations arising at large biases,

due we believe to the activation of offset charges in the sample.

where we developed the gate voltage dependence to order V 4
G. Knowing ω0 and k0 from the

preceding paragraph, and neglecting k1 (the device is naturally very linear), we obtain at first

order the quadratic dependence of Fig. 3. The fit brings ∂2C(0, 0)/∂x2 = −0.0027 F/m2.

In the inset, Fig. 3 we plot the deviation to the total fit, taking into account a small

V 4
G term recalculated from parameters obtained in the following section (Eq. (4) and fit

in Fig. 6). A small DC offset voltage has also been taken into account (smaller than

100 mV amplitude). This contribution seems to be on chip, arising from local stray electric

fields. At the same time, above about 8 V (absolute), deviations appear which display also

an hysteretic behavior. Both DC gate offset and large voltage deviations are cool-down

dependent. We believe that they are due to offset charges in the aluminum-coated silicon

sample, which can be activated above a given voltage/temperature threshold [30].
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FIG. 4: (Color Online) Resonance lines obtained for an excitation of 73 pNrms (max. amplitude of

motion 110 nmrms). Left graph, without any bias on the gate electrode. Right graph, with +4 V

DC on the gate, the line becomes strongly nonlinear and displays hysteresis [31]. On both graphs,

the black lines are fits based on Refs. [23, 24].

For large DC gate biases and large deflections, the device becomes nonlinear (Fig. 4).

The gate voltage-dependent terms of Eq. (1), by adding up to the force Frestore = −k0(1 +

k1x+ k2x
2) x, generate a frequency pulling factor β:

ωpos = ωres + β(VG) x
2
0. (3)

The resonance line becomes bistable above a given displacement threshold, and ωpos rep-

resents the measured position of the X peak maximum when sweeping the magnetomotive

drive frequency ω in the direction of the pulling (downwards for β < 0 and upwards for

β > 0) [31]. Using the nonlinear coefficients of Ref. [23], we obtain in the high-Q limit:

β(VG) = β0

+ ω0

[

(

1
9
k3
1 − 3k1 k2

)

∂C(0,0)
∂x

− 1
18
k2
1
∂2C(0,0)

∂x2 + 5
6
k1

∂3C(0,0)
∂x3 − 1

8
∂4C(0,0)

∂x4

4k0

]

V 2
G

+ ω0






−

5
24

(

∂3C(0,0)
∂x3

)2

8k2
0

+
1
54
k1

∂2C(0,0)
∂x2

8k0

(

k1
∂2C(0,0)

∂x2

k0
+

3∂3C(0,0)
∂x3

k0

)

+

+
∂C(0,0)

∂x

8k0

(

∂2C(0,0)
∂x2

27k0

[

k3
1 − 162 k1k2

]

−
∂3C(0,0)

∂x3

6k0

[

k2
1 − 9 k2

]

+
k1

∂4C(0,0)
∂x4

2k0

)]

V 4
G, (4)
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FIG. 5: (Color online) Resonance position ωpos/2π while sweeping the drive frequency down, as a

function of the displacement. The gate voltage is biased at +4 V DC. The black line is a parabolic

fit, yielding the value of β (here, −9.5×1017 Hz/m2
rms). The vertical dashed line corresponds to the

saturation value of the capacitive drive, Fig. 2, which represents a limit for the fitting procedure.

Error bars size of the order of the symbols (±150 Hz).

developed to order V 4
G (β0 being the intrinsic nonlinear coefficient, almost zero for our

device). The static deflection (due to ∂C(0, 0)/∂x) is taken into account at first order. In

Fig. 5 we present the position of the resonance measured while sweeping the frequency

down, as a function of the displacement, for a +4 V DC gate bias. At small displacements

(x < 65 nmrms, dashed vertical), we obtain the expected quadratic dependence, Eq. (3).

For larger displacements, the capacitance function C(x) tends to zero and we recover the

almost-linear intrinsic frequency dependence of the device (due to anelasticity and heating

effects) [24, 28]. In Fig. 6 we present the measured voltage dependence of the nonlinear

coefficient β. Most of the effect arises from ∂4C(0, 0)/∂x4, Eq. (4) and leads to a quadratic

dependence V 2
G. Neglecting the intrinsic nonlinear terms k1, k2 as we did in the previous

paragraph, we obtain ∂4C(0, 0)/∂x4 = +3.3× 1011 F/m4.

The last capacitance coefficient which deserves to be found is ∂3C(0, 0)/∂x3. However,

its influence on the experimental parameters is rather weak: for a linear mechanical device
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FIG. 6: (Color online) Nonlinear frequency pulling coefficient β as a function of the DC gate

voltage. The dashed line is a quadratic function, while the full line is the complete fit, yielding

−5.5× 1016 V 2
G − 7.5× 1013 V 4

G Hz/m2
rms.

(k1, k2 ≈ 0) it appears only in the higher order V 4
G voltage dependence, Eqs. (2) and (4).

For our devices (and |VG| < 10 V), this high-order dependence is very small, but it can be

rather large in some other nano-resonators [32]. We obtain from the nonlinear coefficient β

(Fig. 6) the value ∂3C(0, 0)/∂x3 ≈ −35 000 F/m3, which correspond to a frequency tuning

term of −0.1V 4
G Hz, consistent with the fit of Fig. 3.

A crude estimate of the capacitance C(x, y) can be produced using a modified version of

the ”two parallel infinite wires” formula:

C(x, y) = ǫ0
π l

ln

(√
(g+2r−y)2+(xs−x)2

r

) , (5)

with xs an effective offset mimicking the actual dielectric assymetry of the sample, and r an

effective radius. This assymetry between the permittivity of vacuum and of silicon/silicon

oxide is responsible for the nonzero values of ∂C(0, 0)/∂x,∂3C(0, 0)/∂x3. A comparison with

the experimentally obtained coefficients is given in Tab. I. The agreement is surprisingly

good, with all parameters in accordance within about a factor of 5 at worst. The calculated
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value of C(0, 0) is 1/1000th of C00 which validates the initial hypothesis C(x) << C0. The

irrelevance of the y-variation of C(x, y) in Eq. (1) is corroborated as well.

C(0,0) ∂C(0, 0)/∂x ∂2C(0, 0)/∂x2 ∂3C(0, 0)/∂x3 ∂4C(0, 0)/∂x4

Measurement ≡ +2.1× 10−11 F/m −0.0027 F/m2 −35 000 F/m3 +3.3× 1011 F/m4

Crude estimate 1.8× 10−16 F +5.3× 10−11 F/m −0.0017 F/m2 −6 500 F/m3 +2.0× 1011 F/m4

TABLE I: Series coefficients of the capacitance C(x). C(0, 0) cannot be accessed directly. For the

crude modeling, chosen parameters are: r = 100 nm, xs = 30 nm.

B. Frequency-dependences of Gλ(ω), C0(ω)

The actual voltages on-chip Ṽλ (λ = I,G,D) can be substantially different from the

applied and detected signals. In order to calibrate the setup, we measure a local property:

heating through a non-resonant current Iheat. We replace the generator VI in Fig. 1 by a dual-

channel generator followed by an additionner (differential amplifier with gain 1, bandwidth

100 MHz). We write:

VI = VI0 cos(ωt) + Vheat cos(ω
′′t),

VG = 0.

The suspended part heats due to the Joule effect occurring in the aluminum metallic layer

(current ṼI/(R + r) through resistance r, Sec. III B 2). The actual temperature of the

mechanical device can be tracked by measuring both the frequency and the linewidth of

the resonance, Fig. 7. The frequency f0 shifts down due to the softening of the aluminum

Young modulus E(T ), while the dissipation (i.e. linewidth ∆f) increases [24].

Heating can also be obtained with the gate electrode and a capacitive current C0dṼG/dt

(Sec. III B 3). In this configuration, we apply:

VI = VI0 cos(ωt),

VG = Vheat cos(ω
′′t).

The NEMS drive voltage VI0 (resonant at ω ≈ ω0) is kept small enough to maintain the

device in its linear regime, and to produce virtually no heating. The heating frequency
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FIG. 7: (Color online) Frequency of the resonance versus temperature (the device is kept in the lin-

ear regime). Inset: corresponding linewidth as a function of T . For these measurements, the whole

cell temperature has been regulated with a resistance bridge, from 4.2 K up to 30 K. Dashed lines

are linear guides (slopes -305 Hz/K for the frequency and +27 Hz/K for the linewidth respectively).

ω′′ is chosen to be non-resonant with any of the mechanical modes of the device (even

parametrically excited). Apart from the true DC case, it is also chosen to be larger than

typically 10∆f in order to avoid nanomechanical mixing effects [29].

We present below the thermal model validating our results. Note however that the method

itself does not require the knowledge of this theory: it relies only on a scaling of the heating

current amplitude at frequency ω′′ on the DC measured curve. The following paragraphs

deal with the drive current heating and the gate electrode current heating. Finally, the last

paragraph concludes with the calibration of the detection line.

1. Thermal model

For symmetry reasons, we consider one foot of the structure loaded at the end by half of

the paddle (Fig. 1). The heated vibrating part is a composite beam formed by 30 nm of

aluminum on top of 150 nm of monocrystalline silicon. From the measured resistance r at
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4.2 K, we deduce the resistivity of the metallic layer: ρe = 7. × 10−8 Ω.m, a (temperature-

independent) value limited by the nanocrystalline nature of the film.

In the Kelvin temperature range, the metal thermal conductance is solely due to the

conduction electrons and can be deduced from the resistivity using the Wiedemann-Franz

law [33]: κe = αT W/m.K, with in our case α = 0.35 in S.I. units. For the silicon substrate,

the thermal conduction is due to phonons. The phonon mean-free-path is limited by the

size of the nano-bar (width w and thickness t). Following Casimir and Ziman [34] we

write an effective conductivity: κph = 103 × 1.12
√
w t T 3 W/m.K. This expression has been

quantitatively verified on our substrates [35].

Finally, we take for the specific heats of both materials their bulk values. For aluminum,

it is mostly due to electrons and we use : CV,e = γ T J/kg.K with γ = 0.1 in S.I. units.

The silicon specific heat on the other hand is due to phonons and we have CV,ph = 2.6 ×
10−4 T 3 J/kg.K, an expression that fits measurements performed on our substrates [36].

From the numbers quoted above, we realize that the thermal properties of the metal

dominate the ones of silicon from 4.2 K up to typically 15 K. Above this temperature, the

phonon contribution of the silicon (T 3 law) gradually takes over in both the specific heat and

the thermal conduction. Heat then continuously flows from the aluminum electronic bath to

the silicon phonon bath, and one needs to incorporate in the modeling the electron-phonon

coupling (see e.g. Ref. [37] for numerical values), and the Kapitza resistance at the interface

[38]. When the structure is not heated above 15 K, both mechanisms remain irrelevant.

In the 4.2 K− 15 K temperature range, we will thus thermally model the NEMS electronic

properties only. The Joule heating is indeed deposited directly in the metallic layer, and

we assume that the temperature of the underlying silicon substrate adiabatically follows the

aluminum coating. Since the transport is diffusive, Fourier’s heat equation is used. The

heat equation for T (y, t) writes then:

ρm CV [T (y, t)]
∂T (y, t)

∂t
− ∂

∂y

[

κ[T (y, t)]
∂T (y, t)

∂y

]

= q̇(y, t), (6)

with CV (T ) the specific heat (per mass, ρm being the metal density) and κ(T ) the thermal

conductivity of the metal layer. q̇(y, t) is the heat load (per unit volume) at abscissa y and

time t:

q̇(y, t) = I(t)2
ρe
S2
e

, (7)
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with ρe the temperature-independent resistivity of the aluminum layer and Se its cross

section. The boundary conditions are:

T (y = 0, t) = T0,

κ[T (y = h, t)]Se

∂T (y = h, t)

∂y
=

Q̇0

2
,

reflecting the thermalization to the bath T0 at y = 0, and the heat load Q̇0 = I(t)2ρel/Se due

to the paddle at y = h. Rewriting Eq. (6) after injecting Eq. (7) and the metal properties

(parameters α, γ), we obtain:

1

2
ρm γ

∂T (y, t)2

∂t
− 1

2
α
∂2T (y, t)2

∂y2
=

1

2
I2heat

ρe
S2
e

(1 + cos [2ω′′t]) .

The above equation is analytically solvable if we chose :

T (y, t)2 = Re [A0(y) + ∆A(y) exp(+i2ω′′t)]

written in complex form. The two functions A0(y) and ∆A(y) are now solutions of:

−1

2
α
∂2A0(y)

∂y2
=

1

2
I2heat

ρe
S2
e

, (8)

−1

2
α
∂2∆A(y)

∂y2
+ i ρmγ ω

′′∆A(y) =
1

2
I2heat

ρe
S2
e

. (9)

with boundary conditions:

A0(y = 0) = T 2
0 ,

∆A(y = 0) = 0,

1

2
αSe

∂A0(y = h)

∂y
=

1

4
I2heat

ρel

Se

,

1

2
αSe

∂∆A(y = h)

∂y
=

1

4
I2heat

ρel

Se

.

We finally obtain:

A0(y) =
I2heatρe
2S2

eα

[

−y2 + y (2h+ l)
]

+ T 2
0 ,

∆A(y) =
I2heatρe
2S2

eα
d2
(

1− exp
[

−(1 + i)
y

d

])

×
(

+i
[

exp
(

+[1 + i]y
d

)

− exp
(

+[1 + i]2h
d

)]

+ 1
2
(1− i) l

d

[

exp
(

+[1 + i]h
d

)

+ exp
(

+[1 + i]h+y

d

)]

1 + exp
(

+[1 + i]2h
d

)

)

,
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where we introduced a new lengthscale d =
√

α/(γρmω′′). Note that in the limit ω′′ → 0 we

recover ∆A(y) =
I2
heat

ρe

2S2
eα

[−y2 + y (2h+ l)] as we should. For finite ω′′, the AC heating term

|∆A(y)| is always smaller than A0(y)− T 2
0 , and finally becomes negligible for ω′′ → +∞.

In practice, the lock-in measurement is fairly slow (typically a second per point, and about

15 min. per sweep). For a finite ω′′ > 2π 10 Rad/s, the obtained resonance essentially filters-

out the thermal AC component ∆A. In the following thermo-mechanical modeling, we can

thus limit ourselves to the static DC term A0: when describing our experimental results, the

heat capacity of the beam turns out to be irrelevant, and only α (i.e. conductivity) matters.

Knowing the temperature distribution along one foot of the structure, we built a model

integrating it out and quantitatively predicting the observed average mechanical parameters.

The potential energy and the dissipated energy per vibration cycle can be written as:

Ep =
1

2

∫ h

0

[

∂2f(y, t)

∂y2

]2

E[T (y, t)]Iy dy,

Pd = −2

∫ h

0

dΛ

dy
[T (y, t)]

[

∂f(y, t)

∂t

]2

dy,

with E(T ) the effective Young modulus of the composite beam and dΛ/dy(T ) the dissipation

constant per unit length. Both temperature variations originate in the metal contribution

[24]. The function f(y, t) represents the mode shape, and Iy the second moment of area of

the beam. From Fig. 7 we realize that a fairly reasonable estimate of E(T ) and dΛ/dy(T )

can be produced by a linear fit (dashed lines). To compute the above integrals, we use the

Rayleigh approximation for the mode shape and write f(y, t) = x(t) fR(y) with fR(y) =

3/2(y/h)2 − 1/2(y/h)3. The calculation brings:

k0(T ) = k0(T0)

(

1 +
dE/dT

E(T0)

[
∫ h

0
f ′′
R(y)

2∆TDC(y)
∆Tmax

dy
∫ h

0
f ′′
R(y)

2dy

]

∆Tmax

)

,

Λ(T ) = Λ(T0)



1 +
d
(

dΛ
dy

)

/dT

dΛ
dy
(T0)

[
∫ h

0
fR(y)

2∆TDC(y)
∆Tmax

dy
∫ h

0
fR(y)2dy

]

∆Tmax



 ,

with the usual definitions ω0(T ) =
√

k0(T )/m0 (resonance frequency) and ∆ω(T ) =

2Λ(T )/m0 (linewidth). We have ∆TDC(y) =
√

I2
heat

ρe

2S2
eα

[−y2 + y (2h+ l)] + T 2
0 − T0 and

∆Tmax = ∆TDC(y = h) by definition. In our experiments T0 = 4.2 K, and the slopes

dE/dT and d
(

dΛ
dy

)

/dT are obtained from the caption, Fig. 7. The terms in brackets are

adimensional parameters that we estimate numerically. In our experiments, we obtain for
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FIG. 8: (Color online) Frequency of the resonance as a function of the heating current. The

different symbols (colors) stand for different frequencies ω′′ (see Figure). Inset: same results for

the linewidth. The black lines are theoretical predictions developed in Sec. III B 1. Note that the

deviation above 70 µA is generated by the temperature of the structure exceeding 15 K. Error bars

±150 Hz on the frequency and ±50 Hz on the linewidth.

the frequency a number between 0.296 and 0.430, and for the linewidth between 0.850 and

0.910 (from small to large powers, respectively). Note that the modeling, which is valid up

to about 15 K, has no free parameters.

2. Magnetomotive line GI(ω)

For the magnetomotive actuation, a current I(t) is fed through the metallic layer via

a cold bias resistor R and an applied voltage ṼI(t). Since the generators have a finite

output impedance ZI(ω),ZV (ω), the actual bias impedance Requiv that generates the current

I = ṼI/Requiv is (see Fig. 1):

Requiv =

(

R + r
1 + i ZV (ω)C0(ω)ω

1 + i [r + ZV (ω)]C0(ω)ω

)(

1 +
i rC0(ω)ω

1 + i ZV (ω)C0(ω)ω

)

. (10)
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FIG. 9: (Color online) Transmission coefficient |GI(ω)| as a function of the frequency ω/(2π).

Error bars about ±5 %.

In the above, the high input impedance of the detection ZD(ω) has been taken to infinity

(i.e. 1 MΩ, 20 pF coupling). In practice, the frequency-dependent corrections to R + r are

small, and are all incorporated to the line transmission coefficient GI(ω). We thus chose for

simplicity Requiv ≡ R + r in the whole of the paper.

In Fig. 8 we present the frequency of the resonance as a function of the injected heating

current Iheat. To obtain this figure, we write (in complex form) Iheat(t) = Re[Ṽheat/(R +

r) exp(+iω′′t)] and Ṽheat = Vheat GI(ω
′′). For each heating frequency ω′′, we scale the x-axis

(heating current) on the DC result. All the data collapse on a single curve, well described

by the theoretical analysis presented on Sec. III B 1 (black lines). The parameters used for

the theoretical prediction are consistent with the experimentally defined properties of the

NEMS within typically 10 %. Above about 70 µA, deviations start to be visible, since the

temperature of the NEMS raises above 15 K: the heating becomes less efficient because the

metallic layer begins to be thermally short-circuited by the heat conduction of the silicon.

The obtained scaling coefficients produce the transmission curve |GI(ω)| presented in Fig.

9. As expected, the low frequency region tends to 1, while above 1 MHz the imperfections

of the line start to show: we clearly distinguish a first low-pass tendency (distributed RC)
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FIG. 10: (Color online) Same graph as Fig. 8 obtained with a heating current generated by a gate

voltage drive. Only above a few MHz the heating effect is resolved.

followed by a sharp line resonance. Although fitting theoretically this result is impossible

because we lack an exact description of the wiring, a PSpice R© [39] simulation qualitatively

reproduces the data.

3. Capacitive line GV (ω), C0(ω)

When an AC voltage ṼG is applied to the gate electrode, a current I(t) flows through

the NEMS. Since the generators have a finite output impedance ZV (ω),ZI(ω), the actual

coupling capacitance I = Cequiv dṼG/dt writes, in complex form (see Fig. 1):

1

i Cequiv ω
=

1

i C0 ω

(

1 +
i rC0(ω)ω

1 + r
R+ZI(ω)

)

(

1 +
r

R + ZI(ω)

)

. (11)

Again, the lock-in input impedance ZD(ω) has been assumed to be infinite. Similarly to the

preceding paragraph, we realize that the corrections to C0 are small, and we will incorporate

them in the definition of C0 itself, writing simply Cequiv ≡ C0.

In Fig. 10 we present the frequency shift due to the heating effect. Since the frequency

increases quadratically with the gate voltage ṼG, Fig. 3, we first subtract a quadratic
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FIG. 11: (Color online) Transmission coefficient |GV (ω)| as a function of the frequency ω/(2π).

Error bars typically ±2.5 %.

dependence [Vheat |GV (ω
′′)|]2, defining thus the transmission factor |GV (ω

′′)|. The remaining

downwards frequency shift is thus solely due to the current C0(ω
′′) dṼheat/dt. The higher the

frequency, the larger the current is and thus the more efficient the heating effect becomes.

By scaling the x-axis (heating current) of these curves on the heating data of Sec. III B 2,

Fig. 8, we finally extract C0(ω
′′).

The obtained transmission curve |GV (ω)| is shown in Fig. 11. Again, the low frequency

region tends to 1 while a clear line resonance is seen around 20 MHz. In Fig. 12 we give

the coupling capacitance C0(ω). Only above about a few MHz the heating effect starts to

be visible. The low frequency value thus corresponds to the one measured with the lock-in

amplifier (Sec. II, C00 = 0.32 pF). At higher frequencies, the thermally measured parameter

roughly follows the same tendencies as the transmission coefficients |GI(ω)|, |GV (ω)| (Figs.
9 and 11). The error bars are quite large, due to the ṼG

2
quadratic contribution subtraction

procedure. A PSpice R© [39] simulation can be used to qualitatively reproduce these results.
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FIG. 12: (Color online) Coupling capacitance C0(ω) as a function of the frequency ω/(2π). The

low frequency data correspond to the measured value C00 = 0.32 pF. The largest error bars are

±20 %.

4. Detection line GD(ω)

Knowing the input ports transmission coefficients |GI(ω)|, |GV (ω)|, we directly measure

the transmission |GD(ω)| of the detection line without resorting to a mechanical property

of the device. We inject a small current through the NEMS metallic layer I(t) at frequency

ω, keeping the amplitude small enough to avoid heating effects. This can be done either by

the magnetomotive port (on the bias resistor R), or by the gate port (using the capacitive

coupling C0). The ohmic voltage rI(t) appearing at the NEMS ends is then measured as a

function of the frequency ω.

The resulting curves are shown in Fig. 13 for both current-feeding procedures. The

capacitively obtained curve has clearly less resolution because of our limitation on the mea-

surement of C0(ω). The same features as on |GI(ω)|, |GV (ω)| and C0(ω) can be seen, in

qualitative agreement with a PSpice R© [39] simulation.
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FIG. 13: (Color online) Transmission coefficient |GD(ω)| as a function of the frequency ω/(2π).

The two symbols correspond to measurements performed via the magnetomotive port (squares),

and via the gate capacitive port (circles). Error bars ±10 % and ±25 % respectively.

IV. CONCLUSIONS

In the present paper we report on experiments performed on a nanomechanical oscillator

(NEMS) in cryogenic vacuum at Helium temperatures. The device has two actuation ports,

one being a (linear) magnetomotive drive and the other one a (nonlinear) capacitive drive.

The detection of the motion is performed via the measurement of the voltage induced by

the magnetic flux modulation. We illustrate on our device new techniques enabling the full

in situ characterization of the device, based only on electric measurements.

In a first part, we demonstrate that we are able to reconstruct experimentally the coupling

capacitance C(x) from its Taylor series expansion. Each coefficient is obtained by fitting a

corresponding NEMS property that is controlled by the gate voltage bias VG.

In a second distinct part, we use thermal properties of the NEMS (which are essentially DC)

to carefully calibrate the bias lines down to the moving part, defining thus displacements

and forces in absolute S.I. units (meters and Newtons respectively). We present a thermal

model validating our results. The model has no free parameters, but the method itself does
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not require its knowledge.

Finally, from the characteristic displacement versus force measurement we can deduce sep-

arately the spring constant and the mass of the mode under study.

We believe that the technique can be extremely useful for a variety of experiments using

nanomechanical resonators, since the calibration procedure does not require any particu-

lar qualities for the connecting lines and can be straightforwardly adapted to a variety of

devices. In particular, high impedance environments are perfectly tolerated, even in the

10 MHz range.

Note added: We used this technique to calibrate the device used in experiments described

in Refs. [28, 29]. We are currently using it in experiments mounted in a 4He cryostat and

also in a dilution unit. The calibration procedure is then performed before starting the unit.
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