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We discuss double Poisson structures in sense of M. Van den Bergh on free associative algebras focusing on the case of quadratic Poisson brackets. We establish their relations with an associative version of Young-Baxter equations, we study a bi-hamiltonian property of the linear-quadratic pencil of the double Poisson structure and propose a classification of the quadratic double Poisson brackets in the case of the algebra with two free generators. Many new examples of quadratic double Poisson brackets are proposed.

Introduction

A Poisson structure on a commutative algebra A is a Lie algebra structure on A given by a Lie bracket {-, -} :

A × A → A,
which is a derivation of A i.e. satisfies the Leibniz rule {a, bc} = {a, b}c + b{a, c}, a, b, c ∈ A, for the right (and, hence, for the left) argument.

It is well-known (see the discussion in [START_REF] Crawley-Boevey | Poisson structures on moduli spaces of representations[END_REF]) that a naive translation of this definition to the case of a non-commutative associative algebra A is not very interesting because of lack of examples different from the usual commutator (for prime rings it was shown in [START_REF] Farkas | Ring theory from symplectic geometry[END_REF]).

It turns out [START_REF] Crawley-Boevey | Poisson structures on moduli spaces of representations[END_REF][START_REF] Van Den Bergh | Double Poisson algebras[END_REF] that a natural generalization of Poisson structures on comutative associative algebras to a non-commutative case is a Lie structure on the vector space H 0 (A, A) = A/[A, A], where [A, A] is the vector space spaned by all comutators ab -ba where a, b ∈ A. The elements of this space are 0-dimensional cyclic homology classes of A and they are represented by "cyclic words" whose letters are the elements of A [START_REF] Ginzburg | Lectures on Noncommutative Geometry[END_REF]. In [START_REF] Crawley-Boevey | Poisson structures on moduli spaces of representations[END_REF] such a structure was called an H 0 -Poisson structure while in [START_REF] Odesskii | Bi-hamiltonian Ordinary Differential Equations with Matrix Coefficients[END_REF] the terminology a "non-abelian Poisson bracket" was used. Both names are somehow misleading to our mind (because one deals with a Lie structure with no multiplication structure on H 0 (A, A)). Therefore we would suggest to call it a trace bracket by the following reason. on Im(tr). This bracket (according to results from [START_REF] Procesi | The invariant theory of n×n matrices[END_REF][START_REF]Razmyslov Identities with trace in full matrix algebras over a field of characteristic zero, (Russian)[END_REF]) can be extended to the subalgebra of all GL n (C)-invariant elements of C[Rep n (A)] and, in certain important cases, even to the whole algebra C[Rep n (A)]. We shall refer such brackets on C[Rep n (A)] and C[Rep n (A)] GLn(C) as trace Poisson brackets.

In this paper we shall consider as a basic example the case of free associative algebra A = C < x 1 , . . . , x m > .

The coordinate algebra C[Rep n (A)] in this case is the polynomial ring of mn 2 variables x j i,α , where

x α → M α =   x 1 1,α • x n 1,α • • • x 1 n,α • x n n,α   , 1 ≤ α ≤ m.
The map tr gives the following interpretation of the variables x j i,α : if E j i denotes the (i, j)-matrix unit (i.e. the n × n matrix with 0 everywhere except the i-th row and j-th column) then x j i,α = tr(E i j M α ). The group GL n (C) acts on M 1 , ..., M m by the conjugations. Any trace bracket on the free algebra A is extended on C[Rep n (A)] and it yields a usual GL n (C)-invariant Poisson bracket such that the bracket between traces of any two matrix polynomials P i (M 1 , ..., M m ), i = 1, 2 is a trace of some matrix polynomial P 3 . Notice that not any

GL n (C)-invariant Poisson bracket on C[Rep n (A)] is a trace Poisson.
There are two different ways to represent explicitely the same trace brackets in the free algebra case. One is a standard way used in the Integrable System theory (see [START_REF] Mikhailov | Integrable ODEs on Associative Algebras[END_REF]), where brackets are given by

{a, b} =< grad a, Θ(grad b) >, a, b ∈ A/[A, A],
for some Hamiltonian operator Θ, a skew-symmetric operator expressed via left and right multiplication operators on A. The trace brackets define a Hamiltonian formalism for integrable models with matrix variables [START_REF] Mikhailov | Integrable ODEs on Associative Algebras[END_REF]. In particular, some of such models are bi-Hamiltonian with respect to compatible linear and quadratic trace Poisson brackets [START_REF] Odesskii | Bi-hamiltonian Ordinary Differential Equations with Matrix Coefficients[END_REF].

Another approach can be developped in terms of double Poisson brackets introduced in [START_REF] Van Den Bergh | Double Poisson algebras[END_REF]. We shall remind their definition.

Definition (M. Van den Bergh). A double Poisson bracket on an associative algebra

A is a C-linear map { {, } } : A ⊗ A → A ⊗ A satisfying the following conditions: { {u, v} } = -{ {v, u} } • , (1.1) { {u, { {v, w} }} } l + σ{ {v, { {w, u} }} } l + σ 2 { {w, { {u, v} }} } l = 0, (1.2) and { {u, vw} } = (v ⊗ 1){ {u, w} } + { {u, v} }(1 ⊗ w). (1.3) Here (u ⊗ v) • := v ⊗ u; { {v 1 , v 2 ⊗ v 3 } } l := { {v 1 , v 2 } } ⊗ v 3 and σ(v 1 ⊗ v 2 ⊗ v 3 ) := v 3 ⊗ v 1 ⊗ v 2 .
Notice that very similar relations but with a different bi-module structure in (1.3) have appeared in [START_REF] Kh | W-algebras for non-abelian Toda system[END_REF].

The relations between double and trace Poisson brackets are established by M.Van den Bergh [START_REF] Van Den Bergh | Double Poisson algebras[END_REF] as follows. Let µ denote the multiplication map µ :

A ⊗ A → A i.e. µ(u ⊗ v) = uv.
We define a C-bilinear bracket operation in A by {-, -} := µ({ {-, -} }). 

If A = C < x 1 , . . . , x m > is the free associative algebra, then C[Rep n (A)] = C[x j i,α ] where 1 ≤ α ≤ m.
If { {x α , x β } } is a double Poisson bracket on A = C < x 1 , . . . , x m >, then, using the Sweedler convention and drop the sign of sum, we obtain the trace Poisson brackets on C[Rep n (A)]:

{x j i,α , x l k,β } = { {x α , x β } } ′ j k { {x α , x β } } "l i
In this paper we shall consider linear and quadratic double Poisson brackets on free associative algebras. It turns out that linear double brackets are in one-to-one correspondence with m-dimensional associative algebra structures [START_REF] Pichereau | Double Poisson cohomology of path algebras of quivers[END_REF]. We establish relations between a class of quadratic double brackets and constant solutions of classical associative Yang-Baxter equation on Mat m (C) introduced in [START_REF] Aguiar | On the associative analog of Lie bialgebras[END_REF]. The examples of double brackets related to non-constant solutions of various associative Yang-Baxter equations will be discussed in the forthcoming paper [START_REF] Odesskii | Parameter-dependent double Poisson brackets[END_REF].

Quadratic double Poisson brackets

Let A = C < x 1 , . . . , x m > be the free associative algebra. If double brackets { {x i , x j } } between all generators are fixed, then the bracket between two arbitrary elements of A is uniquely defined by identities (1.1) and (1.3). It follows from (1.1) that constant, linear, and quadratic double brackets are defined by

{ {x i , x j } } = c ij 1 ⊗ 1, c i,j = -c j,i , (2.5) 
{ {x i , x j } } = b k ij x k ⊗ 1 -b k ji 1 ⊗ x k , (2.6) 
and

{ {x α , x β } } = r uv αβ x u ⊗ x v + a vu αβ x u x v ⊗ 1 -a uv βα 1 ⊗ x v x u , (2.7) 
where

r σǫ αβ = -r ǫσ βα , (2.8) 
correspondingly. The summation with respect to repeated indexes is assumed.

It is easy to verify that the bracket (2.5) satisfies (1.2) for any skew-symmetric tensor c ij . For the bracket (2.6) the condition (1.2) is equivalent to the identity The trace Poisson bracket corresponding to any double Poisson bracket (2.7) can be defined on C[Rep n (A)] by the following way [START_REF] Odesskii | Bi-hamiltonian Ordinary Differential Equations with Matrix Coefficients[END_REF]:

b µ αβ b σ µγ = b σ αµ b µ βγ , (2.9 
{x j i,α , x j ′ i ′ ,β } = r γǫ αβ x j ′ i,γ x j i ′ ,ǫ + a γǫ αβ x k i,γ x j ′ k,ǫ δ j i ′ -a γǫ βα x k i ′ ,γ x j k,ǫ δ j ′ i (2.14)
where x j i,α are entries of the matrix x α and δ j i is the Kronecker delta-symbol. Relations (2.8), (2.10)-(2.13) hold iff (2.14) is a Poisson bracket.

Under a linear change of the generators x α → g β α x β the coefficients of tensors r and a are transformed in the standard way:

r γσ αβ → g λ α g µ β h γ ν h σ ǫ r νǫ λµ , a γσ αβ → g λ α g µ β h γ ν h σ ǫ a νǫ λµ , (2.15) 
Here g β α h γ β = δ γ α . The system of algebraic equations (2.8), (2.10)-(2.13) admits the following involution:

r γσ αβ → r σγ αβ , a γσ αβ → -a σγ βα . (2.16)
Given a solution r of (2.8), (2.10), one can put a ij uv = 0 to satisfy equations (2.11)-(2.13). Note that the algebraic system of equations (2.8), (2.10) besides (2.16) admits the involution

r γσ αβ → r αβ γσ . (2.17) 
Some examples of double Poisson brackets with zero tensor a can be found using the oneto-one correspondence [START_REF] Aguiar | On the associative analog of Lie bialgebras[END_REF] between solutions of (2.8), (2.10) up to equivalence (2.15) and exact representations of anti-Frobenius algebras up to isomorphisms.

Recall that an anti-Frobenius algebra is an associative algebra J (not necessarily with unity) with non-degenerate anti-symmetric bilinear form ( , ) satisfying the following relation

(x, yz) + (y, zx) + (z, xy) = 0 (2.18)
for all x, y, z ∈ J .

Construction. Let J be a p-dimensional associative anti-Frobenius subalgebra in Mat m (C) with a basis y i = (y α γ,i ), i = 1, ..., p. Let G = (g ij ) be the matrix of the form. Then the tensor r αβ γδ = g ij y α γ,i y β δ,j , where G -1 = (g ij ), satisfies (2.8), (2.10). Example 1. Let J be the associative algebra of all m × m matrices with zero m-th row, (x, y) = trace([x, y] k T ), where k ∈ J is a fixed generic element. The corresponding bracket up to equivalence (2.15) is given by a tensor r with the following non-zero components

r αβ αβ = r βα αβ = r αα βα = -r αα αβ = 1 λ α -λ β , α = β. (2.19)
Here λ 1 , . . . , λ N are arbitrary pairwise distinct parameters. The generalization of (2.19) to the case k zero rows, where k is any divisor of m, can be found in [START_REF] Sokolova | Anti-Frobenius associative algebras and non-abelian quadratic Poisson brackets[END_REF].

It would be interesting to find an algebraic structure generalizing the anti-Frobenius algebras that corresponds to the whole set of relations (2.8), (2.10)-(2.13).

We may interpret the four index tensors r and a as:

1) operators on V ⊗ V , where V is an m-dimensional vector space; 2) elements of Mat m (C) ⊗ Mat m (C); 3) operators on Mat m (C).
For the first interpretation let V be a linear space with a basis e α , α = 1, ..., m. Define linear operators r, a on the space V ⊗ V by (2.20)

Here all operators act in V ⊗ V ⊗ V , σ ij means the transposition of i-th and j-th components of the tensor product, and a ij , r ij mean operators a, r acting in the product of the i-th and j-th components.

Note that first two relations mean that the tensor r should be skew-symmetric solution of the classical associative Yang-Baxter equation [START_REF] Aguiar | On the associative analog of Lie bialgebras[END_REF].

In the second interpretation we consider the following elements from Mat m (C) ⊗ Mat m (C):

r = r km ij e i k ⊗ e j m , a = a km ij e i k ⊗ e j m
, where e i j are the matrix unities: 

e j i e m k = δ j k e m i .
(C) ⊗ Mat m (C) ⊗ Mat m (C).
Namely, r 12 = r mk ij e i k ⊗ e j m ⊗ 1 and so on. The element σ is given by σ = e j i ⊗ e i j . For the third interpretation, we shall define operators r, a, r, r * , a * : Mat m (C) → Mat m by r(x) p q = r mp nq x n m , a(x) p q = a mp nq x n m , r(x) p q = r pm nq x n m , r * (x) p q = r pm qn x n m , a * (x) p q = a pm qn x n m . Then (2.8), (2.10)-(2.13) provide the following operator identities: for any x, y. First two of these identities mean that operators r and r satisfies the Rota-Baxter equation [START_REF] Rota | Baxter operators, an introduction[END_REF] and this fact implies also that the new matrix multiplications • r and • r defined by

r(x) = -r * (x), r(x)r(y) = r(xr(y)) + r(x)y), r(x) = -r * (x), r ( 
x • r y = r(x)y + xr(y), x • r y = r(x)y + xr(y)
are associative.

Examples and classification of low dimensional quadratic double Poisson brackets

It is easy to see that for m = 1 non-zero quadratic double Poisson brackets does not exist. In the simplest non-trivial case m = 2 the system of algebraic equations (2.8), (2.10)-(2.13) can be solved straightforwarly.

Theorem 1. Let m = 2. Then the following Cases 1-7 form a complete list of quadratic double Poisson brackets up to equivalence (2.15). We present non-zero components of the tensors r and a only. 

{ {v, v} } = v ⊗ u -u ⊗ v + vu ⊗ 1 -1 ⊗ vu, { {v, u} } = u 2 ⊗ 1, { {u, v} } = -1 ⊗ u 2 ;
Case 3. r 21 22 = -r 12 22 = 1, a 11 12 = a 21 22 = 1. The corresponding (non-zero) double brackets:

{ {v, v} } = v ⊗ u -u ⊗ v + uv ⊗ 1 -1 ⊗ uv, { {u, v} } = u 2 ⊗ 1, { {v, u} } = -1 ⊗ u 2 ;
Case 4. r 22 21 = -r 22 12 = 1. The corresponding (non-zero) double brackets: 

{ {v, u} } = v ⊗ v, { {u, v} } = -v ⊗ v;
{ {v, u} } = v ⊗ v -1 ⊗ v 2 , { {u, v} } = -v ⊗ v + v 2 ⊗ 1, { {u, u} } = uv ⊗ 1 -1 ⊗ uv;
{ {v, u} } = v ⊗ v -v 2 ⊗ 1, { {u, v} } = -v ⊗ v + 1 ⊗ v 2 , { {u, u} } = -vu ⊗ 1 + 1 ⊗ vu;
Case 7. a 11 22 = 1. The corresponding (non-zero) double brackets:

{ {v, v} } = u 2 ⊗ 1 -1 ⊗ u 2 .
Proof. Solving the system (2.10) for six components of the skew-symmetric tensor r, we obtain the following two solutions (we present non-zero components of the tensor r only): Remark 3. It is easy to verify (see [START_REF] Aguiar | On the associative analog of Lie bialgebras[END_REF]) that there exist only two non-isomorphic anti-Frobenius subalgebras in Mat 2 (C). They are matrices with one zero column and matrices with one zero row. Cases 1 and 4 correspond to them. Remark 4. Notice that the trace Poisson brackets for cases 2 and 4 are non-degenerate. Corresponding symplectic forms can be found in [START_REF] Bielawski | Quivers and Poisson structures[END_REF] (Example 5.7 and Lemma 7.1).

r 21 22 = -r 12 22 = x 2 , r 21 
Remark 5. The corresponding Lie algebra structures on the trace space A/[A, A] defining by 1.4 are trivial (abelian) in all cases, except the cases 2, 3 and 4 :

[ū, v] = -ū 2 (Case 2), [ū, v] = ū2 (Case 3), [ū, v] = -v 2 (Case 4).

This cases give the isomorphic Lie algebra structures on A/[A, A] with respect to the involutions

u → v, v → u and u → u v → -v. Example 2.
Consider the trace Poisson bracket (2.14) corresponding to Case 6. Its Casimir functions are given by tr v k , tr uv k , k = 0, 1, ...

where u = x 1 , v = x 2 .
Functions tr u i and tr vu i , where i = 2, 3, ... commute each other with respect to this bracket.

The simplest integrable ODE system with matrix variables corresponds to the Hamiltonian H = 1 2 tr u 2 . This system has the following form

u t = vu 2 -uvu, v t = -uv 2 + vuv.
(2.27)

The matrix v -1 u is an integral of motion for this system. The corresponding reduction u = vC, where C is arbitrary constant matrix, gives rise to known integrable model [START_REF] Mikhailov | Integrable ODEs on Associative Algebras[END_REF] 

v t = v 2 Cv -vCv 2 .
The cyclic reduction of the latter equation yields the non-abelian modified Volterra equation.

To study symplectic leaves for this bracket we show that the bracket is equivalent to a pencil of compatible linear Poisson brackets.

Let v = T ΛT -1 , u = T Y T -1 ,
where Y is a generic matrix, Λ = diag(λ 1 , ..., λ m ), where λ i = λ j and λ i = 0, and T is a generic invertible matrix with t 1,j = 1. If we fix values of the Casimir functions tr v k then λ i become constants.

Consider y i,j and t i,j , i > 1 as coordinates on the corresponding (2n 2 -n)-dimensional Poisson submanifold. Then in this coordinates the restriction of the initial quadratic Poisson bracket {, } has the form

{, } = m i=1 λ i {, } i ,
where {, } i are some linear Poisson brackets.

Describe the structure of the Lie algebra G corresponding to the pencil. It turns out that

G = Y ⊕ T , where [Y, Y] ⊂ Y, [Y, T ] ⊂ T , [T , T ] = {0}. The subalgebra Y of dimension n 2 is generated by y ij and the Y-module T of dimension n(n -1) is generated by t i,j , i > 1.
As an algebra Y can be considered as a trivial central extension of the algebra Z spanned by z i,j = y i,j -y i,i , where i = j by by y 1,1 , ..., y n,n .

The radical of Z is spanned by r i = j =i 1 λ j z j,i . The centralizer S of r 1 is isomorphic to gl n-1 (C) with r 1 being central. The isomorphism between S and Mat n-1 (C) is given by

e i j → 1 λ j (z j+1,1 -z j+1,i+1 ), i, j = 1, ..., n -1,
where z k,k = 0 for any k. Here e i j are the matrix unities. The radical of Z is the direct sum of two commutative S-modules of dimensions n -1 and 1. The first one is spanned by v i = r i -r 1 . The second is generated by r 1 . The commutator relations between the modules is given by [r 1 , v i ] = v i .

The module T is a direct sum of n-dimensional submodules T i spanned by t i,k , i > 1. The commutator relations are

[y i,j , t k,l ] = δ i l λ i (t k,i -t k,j ).
A complete classification in the case m = 3 based on a straightforward analysis of equations (2.8), (2.10)-(2.13) seems to be a solvable but very tedious task. However, additional assumptions that are equivalent to a system of linear equations for components of tensors r and a simplifies the problem. For example, we can easily obtain several new examples of double Poisson brackets assuming that tr x k The corresponding (non-zero) double Poisson brackets:

{ {y, x} } = y ⊗ y -y 2 ⊗ 1, { {x, y} } = -y ⊗ y + 1 ⊗ y 2 , { {z, x} } = y ⊗ z + z ⊗ y -zy ⊗ 1 -1 ⊗ yz, { {x, z} } = -y ⊗ z -z ⊗ y + yz ⊗ 1 + 1 ⊗ zy; { {x, x} } = -yx ⊗ 1 + 1 ⊗ yx -zy ⊗ 1 + 1 ⊗ zy.
Taking H = 1 2 tr x 2 1 as a Hamiltonian for the corresponding trace Poisson bracket (2.14), we arrive at an integrable system

u t = vu 2 -uvu + wvu -uwv, v t = -uv 2 + vuv, w t = [w, [u, v]],
where u = x 1 , v = x 2 , w = x 3 . After the reduction w = 0 this system coincides with (2.27).

Another way to construct new examples is to consider brackets homogenious with respect to any rescaling x i → µ i x i , µ i ∈ C. Notice that all canonical forms Case 1-Case 7 in Theorem 1 are homogeneous. When m = 3 one of the simplest homogeneous brackets is given by

r 31 22 = -r 13 22 = α, a 13 22 = β, a 31 22 = γ.
for some constant α, β, γ. The corresponding family of (non-zero) double Poisson brackets reads as:

{ {y, y} } = α(z ⊗ x -x ⊗ z) + β(xz ⊗ 1 -1 ⊗ xz) + γ(zx ⊗ 1 -1 ⊗ zx).

Compatible linear and quadratic double Poisson bracket

The bi-Hamiltonian approach to integrability has been developed by F. The compatibility criteria for a pair of double Poisson brackets is quite similar to the usual one:

{ {u, { {v, w}

} 2 } } 1 + σ{ {v, { {w, u} } 2 } } 1 + σ 2 { {w, { {u, v} } 2 } } 1 + +{ {u, { {v, w} } 1 } } 2 + σ{ {v, { {w, u} } 1 } } 2 + σ 2 { {w, { {u, v} } 1 } } 2 = 0.
It is clear that compatible double Poisson brackets induce (see Proposition 1) compatible trace Poisson brackets.

Consider the case when one of the brackets is a linear double bracket and another is a quadratic. In terms of these operators acting on A the compatibility conditions (3.28), (3.29) can be rewritten as

a(xz ⊗ y) -a(x ⊗ zy) + a(x ⊗ z)(1 ⊗ y) -(x ⊗ 1)a(z ⊗ y) = 0, (3.30) 
and

r(yx ⊗ z) -(y ⊗ 1)r(x ⊗ z) -r(y ⊗ z)(1 ⊗ x) -(1 ⊗ z)a(y ⊗ x) + a(y ⊗ x)(z ⊗ 1) = 0. (3.31)
The relation (3.30) is nothing but the cocycle condition for the Hochschild cochains C 2 (A, A ⊗ A). Here we consider the outer bimodule structure in A ⊗ A.

In this case

φ + σψ = (x ⊗ 1)s -s(1 ⊗ x)
and we can choose φ = φ + (x ⊗ 1)s -s(1 ⊗ x) such that ψ = -σ φ and the answer for r(x ⊗ y) is again given by 3.35.

Conjecture. If A is a finite unital associative algebra such that H 1 (A, A ⊗ A) = H 2 (A, A ⊗ A) = 0, then all solutions of 3.34 have the form (x ⊗ 1)s -s(1 ⊗ x) for some s ∈ Λ 2 (A).

We have checked the conjecture in the case of matrix associative algebra.

The case a(x ⊗ y) = 0 corresponds to

φ : x → (x ⊗ 1) s -s (1 ⊗ x), (3.36) 
where s ∈ A ⊗ A is any fixed element. Define a tensor r by formulas (3.35) and (3.36).

Explicitely, up to a constant multiplier, 

r(x ⊗ y) = s(y ⊗ x) + (x ⊗ y)s -(1 ⊗ y)s(1 ⊗ x) -(x ⊗ 1)s(y ⊗ 1). ( 3 
Then { {x α , x β } } = r uv αβ x u ⊗ x v is a quadratic double Poisson bracket on T (A) = C < x 1 , . . . , x m > compatible with the linear bracket { {x i , x j } } = b k ij x k ⊗ 1 -b k ji 1 ⊗ x k
, where r uv αβ are components of σr and b k ij are structure constants of A. Remark 1. We observe that in the case a = 0 the condition 3.31 is the outer bimodule derivation property in the first argument. That is why the quadratic double Poisson bracket from the theorem 2 can be written in following way:

{ {u, v} } = σr(u ⊗ v), u, v ∈ A. (3.39) 
Then σr obviously satisfies the outer bimodule derivation property in the second argument which guaranties the Leibniz property 1.3 for the double bracket defined by 3.39. In other words the tensor R := σr : A ⊗ A → A ⊗ A satisfies to T. Schedler conditions ( [START_REF] Schedler | Poisson algebras and Yang-Baxter equations[END_REF]):

• R(u ⊗ v) = -σRσ(u ⊗ v); • R 12 R 13 + R 13 R 23 -R 23 R 12 = 0;
It is a straightforward verification that a Casimir element is given by C = x + t but it is impossible to restrict the brackets to the "Casimir zero level" (the traceless matrices in the

representation A = Mat 2 (C) = { x y z t } : { {x, y} } = y ⊗ y; { {x, z} } = x ⊗ x; { {y, z} } = x ⊗ y + y ⊗ x; { {y, x} } = y ⊗ y; { {z, z} } = 0; { {z, x} } = x ⊗ x
(the "restricted" brackets are not skew-symmetric).

Conclusions and perspectives

We have discussed an analogue of the Lenard-Magri compatibility for linear and quadratic double Poisson brackets in free associative algebras. We have interpreted this conditions in terms of Hochchild cochains and we have proposed few examples of solutions to these conditions.

We have classified all double Poisson in the case of the free associative algebra with two generators. Our interest to the double Poisson structures was initially motivated by some examples of a non-commutative integrability dicussed previously in [START_REF] Mikhailov | Integrable ODEs on Associative Algebras[END_REF] and [START_REF] Odesskii | Bi-hamiltonian Ordinary Differential Equations with Matrix Coefficients[END_REF]. We are going to review a version of non-commutative Hamiltonian formalism connected the trace and double Poisson brackets with the initial approach of [START_REF] Mikhailov | Integrable ODEs on Associative Algebras[END_REF][START_REF] Olver | Integrable evolution equations on associative algebras[END_REF] in the forthcoming publications.

There are still many other interesting questions which deserve to be discussed. The natural question of a quantization the Van den Bergh construction was posed by D. Calaque (private comunication and see also http://mathoverflow.net/questions/29543/what-is-a-doublestar-product). Our theorem 2 gives an idea of such a quantization for the tensor algebra associative r-matrix R using a quantization (if it is known ) of the associative skew-symmetric r-matrix s in 3.38. The latter can be quantized using the ideas of [START_REF] Gurevich | Yang-Baxter equation and deformation of Associative and Lie algebras[END_REF].

We have focused in this paper on the case of the free associative algebra. But the construction of double brackets was widely studied in the framework of the non-commutative symplectic geometry ( [START_REF] Van Den Bergh | Double Poisson algebras[END_REF][START_REF] Ginzburg | Lectures on Noncommutative Geometry[END_REF][START_REF] Crawley-Boevey | Poisson structures on moduli spaces of representations[END_REF]) aiming to describe a trace Poisson structure on quiver path algebra representations. The paper [START_REF] Bielawski | Quivers and Poisson structures[END_REF] proposes some r -matrix constructions to such quadratic structures. Some of examples from [START_REF] Bielawski | Quivers and Poisson structures[END_REF] are coincided with our examples. We want to stress that cited paper doesn't study general quadratic double Poisson brackets and the compatibility with their linear counterparts.

The original Van den Bergh construction contains also many other interesting structures and one of them is a Quasi-Poisson double structure ( when the double analog of the Jacobi identity 1.3 is "violated" or in other words the "triple product" { {u, v, w} } ∈ A ⊗ A ⊗ A is no more equal to zero but is somehow under a control). See the details in [START_REF] Van Den Bergh | Double Poisson algebras[END_REF]. Recently an interesting paper [START_REF] Massuyeau | Quasi-Poisson structures on representation spaces of surfaces[END_REF] had discussed the Quasi-Poisson double structures with the analogs of trace brackets on representations of the group algebra A = K(π) where the group π is the fundamental group of a surface. The relations with the Goldman bracket, skein algebra and Fox multiplication were discussed. It would be interestiong to compare our tensor approach to the results of [START_REF] Massuyeau | Quasi-Poisson structures on representation spaces of surfaces[END_REF].

Finally, the last but not the least interesting subject concerns to general ( not necessary constant ) solutions of various associative Yang-Baxter equations. The paper in progress ( [START_REF] Odesskii | Parameter-dependent double Poisson brackets[END_REF]) contains some preliminary results in classification of parameter-dependent double Poisson brackets and some of new examples of such brackets.

Let

  A be a (unital) associative algebra over C. For a fixed natural n we denote by Rep n (A) := Hom(A, Mat n (C)) the space of n-dimensional representations of A, and by C[Rep n (A)] the coordinate ring of this affine scheme Rep n (A). Let tr : A → C[Rep n (A)] be the trace map. It is clear that tr(a) is a GL n (C)-invariant element for any a ∈ A. Since the map tr is well defined also on elements of A/[A, A], any trace bracket {} induces the following genuine Poisson bracket on the representation space function algebras: {tr(a), tr(b)} = tr({a, b})

Proposition 1 .

 1 Let { {-, -} } be a double Poisson bracket on A. Then {-, -} is a trace bracket on A/[A, A] which is defined as {ā, b} = µ({ {a, b} }, (1.4) ou ā means the image of a ∈ A under the natural projection A → A/[A, A].

  r(e α ⊗ e β ) = r σǫ αβ e σ ⊗ e ǫ , a(e α ⊗ e β ) = a σǫ αβ e σ ⊗ e ǫ . Then the identities (2.8), (2.10)-(2.13) can be written as r 12 = -r 21 , r 23 r 12 + r 31 r 23 + r 12 r 31 = 0, a 12 a 31 = a 31 a 12 , σ 23 a 13 a 12 = a 12 r 23 -r 23 a 12 , a 32 a 12 = r 13 a 12 -a 32 r 13 .

  x)r(y) = r(xr(y)) + r(x)y),a(x)a * (y) = a * (y)a(x), a * (ya(x)) = r(xa * (y)) -r(x)a * (y), a(x)a(y) = -a(r(y)x) -a(yr(x)),a * (a(x)y) = r(a * (y)x) -a * (y)r(x), a(ya * (x)) = -r(xa(y)) + r(x)a(y), a * (x)a * (y) = a * (r(y)x) + a * (yr(x)), a(a * (x)y) = -r(a(y)x) + a(y)r(x)

Case 1. r 21 22 = -r 12 22 = 1 .

 1 The corresponding (non-zero) double brackets read{ {v, v} } = v ⊗ u -u ⊗ v;Case 2. r 21 22 = -r 12 22 = 1, a 11 21 = a 12 22 = 1. The corresponding (non-zero) double brackets:

Case 5. r 22 21 = -r 22 12 = 1 ,; a 21 11 = a 22 12 = 1 .

 21121121 The corresponding (non-zero) double brackets:

Case 6. r 22 21 = -r 22 12 = 1 ,; a 12 11 = a 22 21 = - 1 .

 21121211 The corresponding (non-zero) double brackets:

2 and tr x k 3 ,

 3 where k = 1, 2, ... are Cazimir functions. One of such brackets is given by r 22 21 = r 23 31 = r 32 31 = -r 22 12 = -r 32 13 = -r 23 13 = 1, a 12 11 = a 22 21 = a 23 11 = a 32 31 = -a 23 13 = -1.

Proposition 3 .

 3 Let A = C < x 1 , . . . , x n >. Consider the linear and the quadratic double Poisson brackets given by the (2.6) and (2.7). Then their compatibility conditions have the following form: b s αγ a vu sβ -b s γβ a vu αs + b u sβ a vs αγ -b v αs a su γβ = 0 (3.28) b s βα r uv sγ -b u βs r sv αγ -b v sα r us βγ -b v γs a us βα + b u sγ a sv βα = 0. (3.29) Proof. Straightforward verification. Let A be an m-dimensional associative algebra with the multiplication law e i e j = b k ij e k . Define linear operators r, a on the space A ⊗ A by r(e α ⊗ e β ) = r σǫ αβ e σ ⊗ e ǫ , a(e α ⊗ e β ) = a σǫ αβ e σ ⊗ e ǫ .

  Then (2.8), (2.10)-(2.13) are equivalent to (2.20), where tensors belong to Mat m

  Magri and his group [3]. It is based on the notion of compatible Poisson brackets. By analogy we define compatible double Poisson brackets as follows. Definition. Double Poisson brackets { {u, v} } 1 and { {u, v} } 2 on an associative C-algebra A are called compatible if { {u, v} } 1 + λ{ {u, v} } 2 is a double Poisson bracket on A for any λ ∈ C

  .37) Theorem 2. Ler r is defined by (3.37) and s ∈ A ⊗ A satisfies the associative Yang-Baxter equation on A: s 12 = -s 21 , s 23 s 12 + s 31 s 23 + s 12 s 31 = 0. (3.38)

Acknowledgments. The authors are grateful to A. Alekseev, Y. Berest, I. Burban, D. Calaque, E.B. Vinberg, M. Kontsevich, M. Pedroni, T. Schedler, M. Semenov-Tian-Shansky, Z. Skoda and J.-C. Thomas for useful discussions. VS and VR are grateful to MPIM(Bonn) and AO is grateful to IHES for hospitality while the paper was written. They are grateful to MATPYL project "Non-commutative integrable systems" and the ANR "DIADEMS" project for a financial support of VS visits in Angers. They were also partially supported by the RFBR grant 11-01-00341-a. V.R. thanks to the grant FASI RF 14.740.11.0347 and the Program "COGITO"(EGIDE) of french-croatian cooperation.

When this paper was prepared to a submission we were informed that S.V. Manakov, a famous researcher who had invested a lot in the modern Integrable Systems theory, had passed away. Many of his works were a source of inspiration for us. We are dedicating this paper to his memory.

Consider the class of associative algebras A such that the first and second Hochschild cohomologies with coefficients in the outer bimodule A ⊗ A are trivial. In particular, semi-simple associative algebras belong to this class. If H 2 (A, A ⊗ A) = 0, then a(x ⊗ y) = φ(xy) -(x ⊗ 1)φ(y) -φ(x)(1 ⊗ y) (3.32) for some φ : A → A ⊗ A. The operator φ is defined up to the double derivations

where s ∈ A ⊗ A is an arbitrary element.

Proposition 4. Suppose that the tensor a is defined by (3.32). If H 1 (A, A ⊗ A) = 0, then any solution of (3.31) has the form

for some ψ :

It follows directly from (3.31) and (3.32) that

for some ψ : A → A ⊗ A.

We denote as usual by σ the flip σ

where

We are searching all candidates for µ : A → A ⊗ A to be a solution of 3.34 for any x, y ∈ A. The trivial solution µ = 0 and hence, ψ = -σφ implies the solution for r(x ⊗ y) in the form

where s ∈ A ⊗ A is an arbitrary skew-symmetric element : σ(s) = -s. Then we can straightforwardly verify that µ(x) is a solution of 3.34.

• R can be considered as a derivation of A e ⊗ A e -action on (A ⊗ A) l,r with values in (A ⊗ A) i,o where (A ⊗ A) l,r means that A e ⊗ A e acts on the left factor of A ⊗ A by the first (left) A e and on the right factor -by the second A e :

Analogously, (A ⊗ A) i,o means that A e ⊗ A e acts on the left factor of A ⊗ A by the inner action and on the right factor -by the outer action:

Remark 2. The conditions of the Theorem 2 are satisfied for the case of finitely dimenisonal quasi-triangular coboundary infinitesimal bialgebra ( [START_REF] Aguiar | On the associative analog of Lie bialgebras[END_REF]). The conditions 3.38 mean that the algebra A has also a compatible coalgebra sructure ∆ s :

Remark 3. We observe that there is a natural class of skew-symmetric 2-tensors s ∈ Λ 2 (A). Namely, M. Van den Bergh [START_REF] Van Den Bergh | Double Poisson algebras[END_REF] had introduce a notion of a "momentum" map in the case of double Poisson brackets. Let us remind that there is a distinguish double derivation ∆ : A → A ⊗ A such that ∆(a) = a ⊗ 1 -1 ⊗ a for any a ∈ A. Then the moment map for A is an element m ∈ A such that { {m, a} } = ∆(a). Sometimes the double derivation H m := { {m, -} } is called a Hamiltonian double vector field. The image of the moment map is evidently a skew-symmetric tensor so we can take as a particular case of the previous remark the solution

for any b ∈ A.