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Traditionally, audio quality and video quality are evaluated separately in subjective tests. Best practices within the quality 

assessment community were developed before many modern mobile audiovisual devices and services came into use, such as internet 

video, smart phones, tablets and connected televisions. These devices and services raise unique questions that require jointly evaluating 

both the audio and the video within a subjective test. However, audiovisual subjective testing is a relatively under-explored field. In 

this paper, we address the question of determining the most suitable way to conduct audiovisual subjective testing on a wide range of 

audiovisual quality. 

Six laboratories from four countries conducted a systematic study of audiovisual subjective testing. The stimuli and scale were held 

constant across experiments and labs; only the environment of the subjective test was varied. Some subjective tests were conducted in 

controlled environments and some in public environments (a cafeteria, patio or hallway). The audiovisual stimuli spanned a wide 

range of quality. 

Results show that these audiovisual subjective tests were highly repeatable from one laboratory and environment to the next. The 

number of subjects was the most important factor. Based on this experiment, 24 or more subjects are recommended for Absolute 

Category Rating (ACR) tests. In public environments, 35 subjects were required to obtain the same Student’s t-test sensitivity. The 

second most important variable was individual differences between subjects. Other environmental factors had minimal impact, such as 

language, country, lighting, background noise, wall color, and monitor calibration. Analyses indicate that Mean Opinion Scores (MOS) 
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are relative rather than absolute. Our analyses show that the results of experiments done in pristine, laboratory environments are 

highly representative of those devices in actual use, in a typical user environment. 

Index Terms—Audiovisual Quality, Environment Effect, Language Effect, MOS, Subjective Testing.  

I. INTRODUCTION

ODERN AUDIOVISUAL devices—tablets, laptops, smart phones, computers and connected TVs—raise new challenges for 

audio, video, and audiovisual subjective testing. How repeatable are audiovisual subjective tests from one laboratory to 

another? How critical are environmental constraints? For example, what if a quiet room is used instead of a sound isolation 

booth? How are audiovisual subjective scores impacted by conducting the experiment in a public location, such as a cafeteria? 

There is an underlying philosophical question. International Telecommunication Union (ITU) Recommendations attempt to 

measure subjective quality in isolation. They assess subjective quality in an environment where the presentation device is 

considered to be transparent. This raises several questions. Do we want to measure quality perception in isolation? Do we want 

to measure quality perception in the environment where a device will be used? What is the impact of this choice?  

This paper presents a set of audiovisual subjective experiments that were jointly conducted by six laboratories in four 

countries. The audiovisual test material and methodology were identical across all experiments. The test material included a wide 

range of audiovisual quality. However, the test environment was different among the experiments. Each laboratory conducted 

their experiments in either one or two environments of their choice. The primary goal was to study the impact of a laboratory 

environment versus a public environment on audiovisual quality subjective scores. The secondary goal was to identify non-

controlled variables that need further study (e.g., lighting level, monitor size, objects on the wall, language, culture, vision).  

Our analyses and conclusions focus on the impact of the number of subjects and test environment on subjective audiovisual 

quality ratings. Audiovisual subjective testing in public environments is desirable when answering complex questions, such as 

those posed in [1]-[2].  

Other lines of research complement this effort, focusing on:  

 Methodologies and rating scales [3]-[8]  

 The number of response alternatives [9] 

 Biases from the experiment design [10]  

 The relative importance of audio quality and video quality in the perception of audiovisual quality [11]-[12]  

 Quality of Experience (QoE) [13]  

 Full length movies [2]  

M
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 Recency in instantaneous judgments [14]-[18] 

 Forgiveness effect [19]-[20] 

 Transmission errors [21]-[24] 

 Visual attention [25] 

II. EXPERIMENT DESIGN

This experiment used VGA resolution video (640x480) at 30fps. There were ten audiovisual source sequences for the test and 

one source sequence for the training session prior to the test. Each was 10 sec long (see Table 1). Five of the sequences contained 

speech or singing in English. Many of these sequences are available on the Consumer Digital Video Library (www.cdvl.org). 

The video was encoded in ITU-T H.264 [26], also known as Advanced Video Coding (AVC) [27]. Video coding bit-rates were 

100, 192, 250, 448, 500, and 1000 kbps. The audio was encoded using Advanced Audio Coding (AAC) at 8, 32, and 64 kbps.  

TABLE 1. SOURCE SEQUENCES

Sample Frame Sequence Description 

Band “The Foot” music video, segment #2. 

Lyrics in English. 

Band “The Foot” music video, segment #8. 

Instruments only. 

Simulated news: commentator shows the 

Dushanbe Tea House. English speech plus 

background noise. 

Simulated news: reporter talking with cars 

driving in the background. English speech plus 

background noise. This content was used for the 

training session. 

“NTIA Halftime Music at Football Game” on 

www.cdvl.org

Distant shot of a football half-time show. 

Instrumental music with crowd noise. 

“NTIA Speed Bag” on www.cdvl.org

Boxer demonstrating punches on a speed bag. 

English speech plus punching. 
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Sample Frame Sequence Description 

“NTIA Aspen Trees in Fall Color, Rapid Scene 

Cuts” on www.cdvl.org

Instrumental music. 

“NTIA trio playing music, version 1, vga” on 

www.cdvl.org

Non-professional musicians playing a lively piece 

of music. Used for training only. 

“Big Buck Bunny” from www.bigbuckbunny.org

Animated sequence. Instrumental music with 

sound effects. 

Segment of “Elephant’s Dream” from 

www.elephantsdream.org

Animated sequence. Instrumental music with 

sound effects.  

“Big Green Rabbit (R) television revised open” 

from www.cdvl.org

Animated sequence from a kids TV show. Lively 

music with singing in English. 

The encoding levels were selected to avoid excessively unrealistic audio or visual impairments. However the audio bit-rates 

include levels that are lower than typically paired with the given video bit-rates. This was intentional, to ensure easily 

differentiated levels of audio quality and video quality that spanned similar ranges. 

For each sequence, a high, medium, and low coding quality was selected for both audio and video. The experiment included 

the original source sequences plus five impaired versions of each source, for a total of 60 video clips. For each source, the five 

processed video sequences (PVSs) were chosen randomly from the nine possible combinations. So, for some PVSs the audio 

quality was higher than the video quality; and for some PVSs the video quality was higher than the audio quality. This yielded a 

wide range of audiovisual quality, but prohibits some types of statistical analysis (e.g., analysis of variance (ANOVA) to 

determine the relative importance of audio quality versus video quality).  

The training session used four versions of another video clip: the original plus three impaired versions. Subjects were provided 

with written instructions and heard detailed instruction during training that described the task to be performed. Subjects were 

asked to watch/listen to a series of audio-video sequences, and rate the overall (combined audio-video) quality of each sequence 

on the absolute category rating (ACR) scale [42], [43]. ACR was implemented as a five-point discrete quality rating scale 

(ratings: Excellent, Good, Fair, Poor and Bad). With this approach, each PVS is presented one at a time and rated independently. 
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The order of presentation of the PVSs was randomized between participants. Rating was not time-limited. Subjects were asked to 

judge the audio-video reproduction quality and not the quality of the program content. The laboratories differed slightly in 

training technique (e.g., wording of instructions, answers to subject questions). 

All experiments were conducted on a computer (desktop or laptop) and used the same software, which was a Java interface 

that played the video and saved the subjective ratings. All videos were played at their native resolution and at the native 

resolution of the display (no up-sampling to full-screen). To ensure correct playback on a variety of different computers, the 60 

PVSs were very lightly compressed into Windows Media Video format (WMV). A variable rate coder was used, resulting in 

compression bit-rates from 5 Mb/s to 15 Mb/s, depending upon the compression difficulty. All subjects saw the same 

compressed WMV files. 

Each experiment was conducted in one of the following environments: 

 A controlled environment that meets the spirit of a pristine environment from ITU-R BT.500 [29], ITU-T P.910 [42] and/or 

ITU-R P.800 [43]. These controlled environments did not necessarily meet the ITU specifications. 

 A public location, such as a cafeteria, patio or hallway. The public environments had other people talking and going about 

their own business.  

The experiment was conducted in ten different environments, to produce ten different datasets. These are summarized in Table 2 

to Table 5. The viewing distance is expressed in both picture heights and angular degree (i.e., the approximate angle that VGA 

picture spanned at the subject’s eye). Fig. 1 illustrates two of the test environments. 

TABLE 2. DATASET DESCRIPTION: LABORATORY, LANGUAGE AND DEVICES

Dataset 

# 

Lab Native 

Language 

English 

Proficiency 

Device 

1 NTIA English Native Broadcast 

quality 

monitor 

(LCD)  

2 NTIA English Native Laptop 

3 Intel English Native Professional 

LCD  

4 IRCCyN French Beginner to 

advanced 

Professional 

LCD  

5 IRCCyN French Beginner to 

advanced 

Tablet 
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6 Technicolor French Intermediate to 

advanced 

Good 

monitor  

7 Technicolor French Intermediate to 

advanced 

Laptop 

8 AGH Polish None to 

advanced 

Laptop 

9 AGH Polish None to 

advanced 

Laptop 

10 OPTICOM German Beginner or 

intermediate; 

three advanced  

Good 

monitor  

TABLE 3. DATASET DESCRIPTION: SCREEN TECHNICAL DETAILS AND VIEWING DISTANCE

# 

Size Screen 

Resolution 

View 

Distance 

Screen 

Brightness 

Screen 

Color 

1 24” 1920x1080 ≈6H, 8º Default Calibrated 

2 17” 1920x1200 ≈4H, 11º Default Default 

3 42” 1920x1080 ≈3H, 20º Calibrated Calibrated 

4 40” 1920x1080 ≈6H, 8º Calibrated Calibrated 

5 7” 1024x600 ≈4H, 13º Maximum Default 

6 19” 1280x1024 ≈6H, 10º 50% Default 

7 15” 1920x1200 ≈6H, 10º Maximum Default 

8 15” 1400x1050 ≈4H, 13º Maximum Default 

9 15” 1400x1050 ≈4H, 13º Maximum Default 

10 24” 1920x1200 ≈4H, 13º Calibrated (100 

cd/m
2
) 

Calibrated 

The cafeteria used for dataset 2 closed unexpectedly, so only nine subjects are available. Datasets 4 and 5 used the same 

subjects. Half of these subjects rated dataset 4 and then dataset 5, while the other half rated dataset 5 and then dataset 4. Datasets 

6 and 7 used 18 of the same subjects. Dataset 6 was conducted one week before dataset 7.  

Ethical approval for experimentation on human subjects was obtained. Parental permission was attained for all minors. 

Subjects were not required to know English. Subjects for NTIA and AGH were paid, temporary workers. Subjects for Opticom 

were uncompensated volunteers. Subjects for Intel and IRCCyN were associated with these large organizations and thanked for 

their participation with movie coupons. Subjects for Technicolor were unpaid volunteers who were interested in participating. 
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TABLE 4. DATASET DESCRIPTION: LIGHTING LEVEL AND ENVIRONMENT

Dataset 

Number 

Audio 

Playback 

Lux Environment Notes 

1 Speakers 25 Laboratory: sound isolation chamber, 

grey walls, adjustable lighting. 

2 Earbuds 150+ Public cafeteria with varying numbers 

of people talking. Indirect sunlight 

and fluorescent lighting. 

3 Speakers 20 Laboratory: semi-anechoic chamber, 

grey walls 

4 Head-

phones 

200 Laboratory: grey furniture and walls, 

background (of the display) 

illumination. 

5 Head-

phones 

150+ Public cafeteria with varying numbers 

of people talking. Indirect sunlight. 

6 Head-

phones 

20 Laboratory: black walls, 20 lux 

background illumination, very quiet 

7 Head-

phones 

150+ Patio with varying numbers of people 

talking. Bright sunlight. 

8 Head-

phones 

200 Laboratory 

9 Head-

phones 

150+ Hallway with a few people walking 

past. Indirect sunlight. 

10 Head-

phones 

120 Home office with proper lighting. 

Quiet environment 

TABLE 5. DATASET DESCRIPTION: INFORMATION ON SUBJECTS

Dataset 

Number 

Total 

Subjects 

Vision 

not 20/20 

Color 

Blind 

Expert 

Viewers 

Subject 

Ages 

1 28 0 2 0 18-65 

2 9 0 0 0 18-65 

3 34 2 1 0 21-56 

4 25 0 0 0 18-46 

5 25 0 0 0 18-46 

6 24 0 0 0 25-57 
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7 24 0 0 0 25-57 

8 14 1 0 0 18-56 

9 15 0 0 0 18-56 

10 15 0 0 2 <14 or >40 

Fig. 1. Two sample environments. Top shows dataset 1; bottom shows dataset 2. 

Subjects from datasets 8 and 9 saw the English ACR scale on the monitor (excellent, good, fair, poor, bad) but were given a 

sheet of paper with the Polish translation (bardzo dobry, dobry, średni, słaby, zły) and asked to use that mapping instead of 

relying upon their English skill. Similarly subjects from datasets 6 and 7 were provided with a written French translation they 

could refer to (Excellent, Bien, Satisfaisant, Médiocre, Mauvais) although they used the English labels to provide their ratings 

during the test. Subjects from dataset 10 were verbally instructed to ensure they understood the German meanings of the English 

ACR scale. The training instructions included some small differences (e.g., datasets 6 and 7 mentioned that the video would not 

be full-screen and that this was intentional; while datasets 8 and 9 did not). 

III. DATA ANALYSIS

A. Subject Correlations and Eliminating Invalid Subjects 

Fig. 2 shows the correlation between each subject’s ratings and the Mean Opinion Score (MOS) of that dataset. Dataset 3 

shows the highest correlations. This indicates that all subjects made their judgments using the same criteria. Wider distributions 

could indicate a bimodal distribution; that is subjects may have made judgments using different criteria. This is the reason to use 

a panel of subjects and take the mean. Fig. 2 uses red squares to highlight datasets performed in public environments.  
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Fig. 2. Correlation between each subject’s votes and dataset MOS. Public environments are red squares (2, 5, 7 & 9); controlled environments are blue dots (1, 3, 

4, 6, 8, & 10). 

The observed differences may be due to outlier subjects. Post-hoc screening of subjective results is usually conducted to detect 

and eliminate subject outliers. The problem is to determine an appropriate method to eliminate subjects who are inattentive or 

confused without also eliminating subjects with genuine differences of opinion.  

The standard algorithms eliminate outliers based on score distributions (e.g., kurtosis, correlation). The problem is that we are 

not sure why people are responding differently. For example, the differences might result from English audio when a subject 

does not speak any English. Thus, we took a conservative approach by considering everyone’s judgments as valid. We decided to 

eliminate only subjects who did not understand the task. This differs from standard practices in subjective testing [28]-[30]. 

One subject was eliminated from dataset 9 due to extremely low correlation (0.09). This subject was interviewed after scoring. 

The notes confirmed that this subject did not understand the task: he was rating the production quality (opinion of the program) 

instead of the video quality (reproduction). This subject is in addition to the 15 subjects mentioned in Table 5. 

Subjects who failed the color vision test or the 20/20 vision test were retained (see Table 5). In dataset 10, two expert viewers 

were mixed with naïve subjects. Hearing was not tested. None of these subjects were outliers. For example, the subject-to-dataset 

correlations for the two colorblind subjects in dataset 1 were 0.77 and 0.83 (see Fig. 2).  

B. What Matters Most: The Number of Subjects 

This section examines how Pearson correlation is impacted by the number of subjects in a dataset. Fig. 3 shows a histogram of 

the global Mean Opinion Scores (MOSG). For these purposes, MOSG was computed as an average of all subjects’ ratings 

combined across all datasets. The MOSG ranges from 1.05 to 4.58. This figure shows that the design goal was met: the stimuli 

span a wide range of audiovisual quality. 
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Fig. 3. Histogram shows the distribution of MOSG. Bins are 0.25 wide.

Table 6 shows the Pearson correlation between each pair of datasets. The number of subjects in each dataset is listed in the 

bottom row of the table (labeled “#”). Fig. 4 presents these same correlations in a histogram. The correlations range from 0.93 to 

0.99. Pearson correlation is calculated using the MOS of all 60 video clips, across a pair of datasets. These high correlations 

indicate that language, lighting, background noise, monitor calibration, and other environmental factors had minimal impact on 

the quality difference between the stimuli. The impact of personal opinion, language, and environment will be further discussed 

in sections III.K, Error! Reference source not found., and III.M 

The other important pattern we see is that the number of subjects is critical. Dataset 2 has only nine subjects and its correlation 

with other datasets ranges from 0.93 to 0.96. Datasets 1 and 3–7 have 24 to 33 subjects. Dataset-to-dataset correlations within 

this group range from 0.96 to 0.99. “Number of subjects” was the most important control variable for a repeatable subjective 

experiment. 

TABLE 6. DATASET-TO-DATASET CORRELATIONS, WITH NUMBER OF SUBJECTS

1 2 3 4 5 6 7 8 9 10 

1 1.00 0.95 0.98 0.97 0.97 0.97 0.98 0.97 0.96 0.95 

2 0.95 1.00 0.95 0.94 0.94 0.93 0.96 0.94 0.93 0.93 

3 0.98 0.95 1.00 0.98 0.98 0.98 0.99 0.98 0.97 0.97 

4 0.97 0.94 0.98 1.00 0.98 0.96 0.97 0.97 0.96 0.96 

5 0.97 0.94 0.98 0.98 1.00 0.96 0.97 0.96 0.97 0.96 

6 0.97 0.93 0.98 0.96 0.96 1.00 0.99 0.97 0.97 0.95 

7 0.98 0.96 0.99 0.97 0.97 0.99 1.00 0.97 0.97 0.96 

8 0.97 0.94 0.98 0.97 0.96 0.97 0.97 1.00 0.96 0.96 

9 0.96 0.93 0.97 0.96 0.97 0.97 0.97 0.96 1.00 0.97 

10 0.95 0.93 0.97 0.96 0.96 0.95 0.96 0.96 0.97 1.00 

# 28 9 34 25 25 24 24 14 15 15 



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 11

Fig. 4. Dataset-to-dataset correlations, plotted as a histogram. This figure was computed using all subjects and datasets. 

C. How Correlation Drops with Fewer Subjects 

The problem with Fig. 4 is that the different datasets contain different numbers of subjects. The next two figures use subsets of 

the available data to indicate trends. 

Fig. 5 shows the impact of the number of subjects in an experiment on dataset-to-dataset correlation. This figure uses only the 

six datasets that have 24 or more subjects: datasets 1 and 3–7. Five subjects were chosen at random from each of the six datasets, 

and the dataset-to-dataset correlations computed. This process was repeated for nine, 15, and 24 subjects. The subsets of subjects 

were chosen randomly, and the results averaged over 500 runs to ensure stability. The plotted lines show dataset-to-dataset 

correlations for 24, 15, 9, and 5 subjects. 

The dataset-to-dataset correlation curves improve as more subjects are used. From what the data shows, smaller sets of 

subjects can be used for pilot data, since it will predict trending. The smaller datasets can be followed up by the more statistically 

reliable testing with 24 or more subjects.  

The choice to use 15 subjects is of particular interest as this number is recommended by international recommendations such 

as [29]. The 15 subject recommendation is supported by [31], which presents analysis using a combination of simulated data and 

five unrelated subjective datasets. In Fig. 5, the 24 subject curve clearly indicates a much more stable and repeatable experiment 

result across different test labs. This averaged dataset-to-dataset correlation is always 0.96 or greater, which indicates a well 

conducted experiment. 
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Fig. 5. Number of subjects in a dataset and the impact on dataset-to-dataset correlations. Plotted for 24, 15, 9 and 5 subjects (see labels on the plot). 

D. How Correlation Drops with a Narrow Range of Quality 

Let us now take an opposing approach, and consider the impact of the range quality on dataset-to-dataset correlations. This 

range results from the experiment design. Where this experiment contains a wide range of quality, other experiments might be 

designed to span a narrower range of quality. To understand this relationship, a deeper understanding of Pearson correlation is 

required. 

Pearson correlation takes the form: 

�� � 1 � �
� (1)  

where ρ is correlation [44]. Roughly stated, β measures the overall spread of MOS in datasets A and B; and α measures, for each 

individual PVS, the distance between the MOS of dataset A and dataset B. The variable α captures the differences of opinions 

that occur when two different pools of subjects rate the same sequence. These differences of opinion do not go away when 

subjects are shown a narrow range of video quality. 

Fig. 6 shows the relationship between the range quality and the dataset-to-dataset correlations. Fig. 6 uses the eight datasets 

with 15 or more subjects. For each curve, 15 subjects were randomly chosen and results were averaged over 500 runs. The curve 

on the right (black circles) shows the histogram of dataset-to-dataset correlations using all clips. These clips span a range of 

quality that is 3.58 MOS units wide (from 1.05 to 4.58). The middle curves (solid lines) use clips that span a range of quality that 

is 3.0 MOS units wide. The left curves (dashed lines) use clips that span a range of quality that is 2.5 MOS units wide. The 

curves with red up-pointing triangles, green squares and blue down-pointing triangles retain clips toward the top, middle and 

bottom of the quality scale, respectively. Notice that the curves in Fig. 6 are not impacted by whether we chose good quality 

clips, poor quality clips, or supposedly “difficult to score” clips (i.e., avoiding the ends of the scale). Correlation decreases as the 
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range of quality decreases. 

Why does this occur? Refer back to Equation (1). When a subjective experiment spans a small range of video quality, τ

shrinks, ε stays about the same, and Pearson correlation drops. Statistical analyses can be misleading, as Huff demonstrates in 

How to Lie with Statistics [32]. 

The goal of this section is not to discourage the use of Pearson correlation; rather, it is to put the high correlations seen in Fig. 

2 and Table 6 into perspective. Those high correlations are possible because this was a well-designed experiment that contained 

a wide range of audiovisual quality and several large groups of subjects. 

Fig. 6. The range of MOS in a dataset and its impact on dataset-to-dataset correlations.  

E. Subset Analysis: Splitting a Dataset into Two Pieces 

The question then arises, how can we tell whether or not our correlations are good? To that end, we will split each dataset into 

two randomly chosen subsets and correlate them. This allows us to compare correlations within a dataset to correlations between 

datasets. 

Given dataset A of size LengthA, and dataset B of size LengthB, calculate N:  

� � �	
�� �, ��
� � (2)  

Let us draw from A two disjoint sets A1 and A2, each containing N clips. Let us draw from B two disjoint sets B1 and B2, each 

containing N clips. We will then compute: 

�� � � � ��� � � � � �� � � �, ���

�� � � � ��� � � � � �� � � � , ��� (3) 

Let us then draw set A3 from A and set B3 from B, each containing N clips. Sets A3 and B3 are drawn independently from A1, 

A2, B1 and B2. Compute:
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��� � � � ��� � � � � �� � � �,��� (4) 

This procedure was repeated 5000 times, and plotted as histograms. Fig. 7 shows six of the 45 plots. Since N is the same for all 

three curves in each plot, sample size does not influence the conclusions. 

Fig. 7. . Histograms show the range of ρA, ρB, and ρAB, for example dataset pairs. The blue dashed line is ρA, the green dotted line is ρB, and the red solid line is 

ρAB. The x-axis is correlation, and the y-axis is frequency. Sub-plots show dataset pairs: (a) A=1 & B=3, (b) A=1 & B=4, (c) A=5 & B=9, (d) A=6 & B=7, (e) 

A=6 & B=10, (f) A=8 & B=9. 

For example, Fig. 7 (a) compares dataset 3 with dataset 1. ρ1 (the blue, dashed line) shows 14 subjects from dataset 1 

correlated with another 14 subjects from dataset 1. ρ3 (the green, dotted line) shows 14 subjects from dataset 3 correlated with a 

different 14 subjects from dataset 3. ρ13 (the solid, red line) shows 14 subjects from dataset 1 correlated with 14 subjects from 

dataset 3. ρ3 is ≈0.97, and ρ1 is ≈0.95.  Thus, we can see that dataset 3 subjects agree with each other more than dataset 1 

subjects. 

Similarly, we can conclude that subjects’ ratings in datasets 5 and 9 are equally spread. The most common behavior is that ρAB

is a bit worse than ρA or ρB (see Fig. 7 (a), 1 vs. 3, and Fig. 7 (b), 1 vs. 4). Sometimes ρAB, ρA and ρB are all very similar (see Fig. 

7 (c), 5 vs. 9).  

Sometimes ρA and ρB are very similar yet ρAB is a much worse (see Fig. 7 (e), 6 vs. 10). Results indicate some differences 

between the datasets. However, the exact reasons cannot be identified at this point. The data collected in Table 2 to Table 5 do 

not explain these differences. We will see this again in later analyses. 

One possible explanation is simply that different subjects were chosen. Nevertheless, it means that almost all subjects from 

one group are different from subjects in the other group. 

In rare cases ρAB is a bit better than ρB (see Fig. 7 (f), 8 vs. 9) or better than both ρA and ρB (see Fig. 7 (d), 6 vs. 7). This can be 
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explained by outliers (see section III.A: subjects with differing opinions were retained in all ten datasets), as these impact the 

computation of correlations in Equations (3) and (4). Outliers are chosen for subsets A1 or A2 with a high probability, because A1

and A2 when combined typically contain most of the subjects in dataset A. The probability that the outlier is part of A3 is 

considerably less. 

F. Kruskal-Wallis Test: Comparing Absolute MOS 

Our analysis now touches upon a philosophical question. Are MOS absolute or relative? When the results of two subjective 

experiments are statistically different, the reason can be difficult to explain. We accept that the results of these experiments are 

different. Are we willing to accept these differences as a consequence of different subject behavior, even if all other factors are 

fixed? Can all dataset-to-dataset differences could be explained if we gather sufficient data? Or is there a flaw in our choice of 

statistic?  

The ratings in a subjective experiment are ordinal. That is, we know the order but we do not know the distance between 

ratings. For simplicity, most analyses assume equal distances between two consecutive scores on the rating scale. This 

assumption has been questioned. [33] and [34] recommend the use of different statistics and ordinal values.  

The Kruskal-Wallis test does not make any assumption about the distance between rating values. Kruskal-Wallis is a non-

parametric test of the hypothesis that all groups have the same median. If it is not true, Kruskal-Wallis pairwise comparisons can 

be run. If each category on our scale has an absolute meaning, then the Kruskal-Wallis test can be used to identify statistically 

different datasets. Note that the Kruskal-Wallis test does not assume that subjects cannot behave differently. It compares the 

differences within each group with the differences among groups. If the differences among groups are larger than those within 

group, it clearly shows that differences among groups come from factors other than differences observed among subjects for 

each group.  

Fig. 8 shows Kruskal-Wallis pairwise comparisons. These are based only on the mean rank and the number of answers for 

each dataset. Therefore, datasets with fewer subjects have much wider confidence intervals. Notice that: 

 All datasets do not have the same median. 

 Datasets 1, 3, 4, 8 and 9 have the same median. These datasets were conducted in Boulder, Colorado (USA); Portland, 

Oregon (USA); and Krakow (Poland). 

 Datasets 5 and 6 have the most dissimilar medians. These datasets were conducted in Nantes (France) and Rennes 

(France). The difference could be explained by the fact that only dataset 5 used a tablet (see Table 2). 

Therefore, the Kruskal-Wallis test indicates that language and country did not have a statistically significant impact on these 

datasets, for the languages used in these experiments. This can be seen in Fig. 8 by considering the issues mentioned above. No 
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tonal language was considered. 

When a dataset has fewer than 24 subjects, statistically significant differences are difficult to find. For example, datasets 4 and 

5 are statistically different, and datasets 8 and 9 are statistically indistinguishable. The distances between pairs of medians is 

approximately the same. If datasets 4 and 5 had 15 subjects (like datasets 8 and 9), we would probably not be able to make such 

conclusions. (Note that datasets 4 and 5 used the same subjects.) 

Fig. 8. Kruskal-Wallis confidence intervals for all datasets. Dataset 9 selected for pairwise comparison. Dataset 9 is closest to the global mean. 

The Kruskal-Wallis test can be used to look for statistically significant differences between dataset responses to an individual 

source sequence or PVS. A separation of audio and video impairments is difficult, as this experiment did not contain a full 

matrix of those conditions. 

Both source and PVS analyses show that the differences observed at the data set level are not caused by a single sequence or 

distortion. Rather, these analyses show fewer significant differences within datasets than between datasets. This means that 

differences between datasets come from accumulating small differences that are seen but are not statistically significant at the 

source or PVS level. 

G. Is MOS Relative?  

Another school of thought on subjective data is that MOS are always relative. In other words, the ordering of impairments is 

consistent, but absolute quality ratings are not in general repeatable. This claim is made in [35] using subjective data from the 

VQEG Full-Reference Television Test Phase I.  

To explore this idea, let us scale each dataset’s MOS. All subjects’ scores from all datasets were averaged into a global Mean 

Opinion Score (MOSG), as shown on Fig. 3. The linear fit between each dataset and this global MOSG is shown in Table 7. 
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TABLE 7. LINEAR MODEL FIT BETWEEN EACH DATASET AND GLOBAL MOS 

Dataset Linear Fit to MOSG Correlation

1 ŷ = 0.96 x1 + 0.11 0.99

2 ŷ = 1.00 x2 + 0.02 0.96

3 ŷ = 0.97 x3 + 0.01 1.00

4 ŷ = 1.00 x4 + -0.05 0.99

5 ŷ = 1.05 x5 + -0.39 0.99

6 ŷ = 0.94 x6 + 0.40 0.99

7 ŷ = 0.93 x7 + 0.39 0.99

8 ŷ = 0.95 x8 + 0.07 0.98

9 ŷ = 1.03 x9 + -0.08 0.98

10 ŷ = 0.93 x10 + 0.34 0.98

Dataset 5 has, on average, MOS scores 0.47 higher than dataset 6—yet correlation is minimally impacted (see Table 6). This 

supports the theory that MOS are relative.  

What are the consequences, if MOS are relative? A fit is needed before two datasets can be compared. A linear fit seems 

sufficient for this experiment. Another consequence is that the same subjects should be used when comparing different factors 

(e.g., two screens, two devices). 

Also, some statistical tests may be inappropriate. Pearson correlation is not impacted by a linear scaling between datasets. 

However, the Kruskal-Wallis Test may be unsuitable, because a shift in the median is unimportant.  

H. Confidence Interval (CI) Analysis: Controlled Environments have Slightly Better CI 

Fig. 9 shows the 95% confidence interval (CI) for each dataset. This gives us some insights into the differences between 

controlled environments and public environments. CI drops as the number of subjects increases, as a function of 1/sqrt(N), so the 

x-axis is plotted on a logarithmic scale. These CI were calculated using random subsets of subjects, run repeatedly and then 

averaged.  
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Fig. 9. Relationship between the 95% confidence interval (CI) of each dataset and the number of subjects. The x-axis plots the number of subjects on a 

logarithmic scale (base 10). The top plots the CI for each dataset on the y-axis. The bottom shows the standard deviations for these CI averages.  

Fig. 9 indicates a modest increase in CI when moving from a controlled environment to a public environment. We can 

compensate for a public environment by using more subjects in the test. However, as MOS seems to be relative (see section 

III.G), identical CI do not guarantee that an identical fraction of PVS pairs can be differentiated. 

I. Paired Comparisons: Compensate for a Public Environment with Extra Subjects 

Usually, subjective experiments are designed to compare different impairments. For example, we may wish to compare the 

performance of two transmission error concealment techniques (such as [36]) or investigate the impact of coding bit-rate on 

3DTV quality (such as [37]). 

Often, the Student’s t-Test is applied, to evaluate whether or not the quality differences are statistically significant. Does a 

controlled environment allow us to distinguish between more conditions than a public environment? Certainly, the public 

environments have the potential for more noise and distractions. Do the controlled environments that more closely follow 

existing ITU Recommendations allow the best discrimination? 

Fig. 10 presents the results of the Student’s t-Test conducted for each dataset. Note that the “number of subjects” was switched 

from the x-axis to the y-axis, to better display the data. Each unique pair of PVSs was compared, and the percent of pairs that 

could be distinguished computed. Random subsets were chosen for different numbers of subjects (8, 12, 15, 18, 20, 22, 25, 28, 
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30 and 34). The plot shows the average result from repeated trials.  

Fig. 10. Relationship between the discrimination power of each dataset and the number of subjects. The y-axis plots the number of subjects on a logarithmic scale 

(base 10). The top graph shows relative distribution of controlled environments (thin blue) and public environments (thick dashed red). The bottom graph zooms 

in on 70% with 14 subjects. 

As the number of subjects increases, the percent of PVSs that can be distinguished increases. However, we see diminishing 

returns as more subjects are added (notice that the y-axis is plotted on a logarithmic scale). We do not see a pattern among 

controlled environment datasets; there is no evidence that a dataset’s performance improves with closer adherence to existing 

ITU Recommendations. Rather, all controlled environments have very similar performance (see the blue lines in Fig. 10).  

Comparing public and controlled environments, we see mixed results. Datasets 2, 5 and 9 (public environments) show worse 

behavior than datasets 1, 3, 4, 8 and 10 (controlled environments). Dataset 7 (public environment) had a discrimination power 

similar to or better than every experiment except dataset 3. This is a similar pattern to that seen in Fig. 5.  

This phenomenon can be counteracted by using a larger set of subjects. Fifteen subjects in a controlled environment seem to 

perform similarly to 22 subjects in a public environment. By extrapolation, we would expect 24 subjects in a controlled 

environment to perform similarly to ≈35 subjects in a public environment. This is a larger increase in subjects than we saw with 

CI. Datasets 5 and 9 were used for these calculations, as they provide the median response.  
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J. Repeatability: How Often do Datasets Reach Different Conclusions? 

Are the same pairs of PVS responsible for these statistically significant differences we see in Fig. 10? The problem in 

answering that question is this: if we choose one value for the “percent of PVS pairs distinguished,” we get a different number of 

subjects for each dataset. Thus, we cannot compute a unique set of PVSs that were responsible for the differences between 

dataset pairs—the answer depends upon the subset of subjects selected. 

We can instead count the number of agreements between different subjective experiments. Let us fix the fraction of PVS pairs 

distinguished at 73%. There are different numbers of subjects for each dataset as shown in Table 8. We will not consider dataset 

5 in this analysis, because 25 subjects would be required. This is all of the subjects available in dataset 5, so multiple random 

subsets cannot be chosen. 

TABLE 8. NUMBER OF SUBJECTS NEEDED TO DISTINGUISH 73% OF PVS PAIRS

Dataset 1 3 4 6 7 

Subjects 19 15 19 18 17 

For each test, the above number of subjects is used to compute the Student’s t-test between all possible PVS pairs. Using 

random subsets of subjects, the Student’s t-tests were repeated 100 times. This yields a percent chance that a particular PVS pair 

was distinguished, for each dataset. We then take the absolute difference between the percentages for a pair of datasets on a PVS 

pair-by-pair basis, and calculate average over all PVS pairs. In other words, we calculate the chance of the following occurrence: 

one dataset was able to distinguish between PVS pairs and the other dataset was not (see Table 9). This ignores the chance that 

the two datasets were both able to distinguish between the PVS pairs but reached opposite conclusions. 

All values are less than 16%, so the results may be considered consistent across the datasets in general. Still, this 16% may 

concern exactly the sequences that are of interest.  

TABLE 9. PERCENT OF TRIALS WHERE ONE DATASET DISTINGUISHED BETWEEN PVS PAIRS, AND THE OTHER DATASET DID NOT

1 3 4 6 7 

1  14% 15% 16% 13% 

3 14%  12% 11% 10% 

4 15% 12%  16% 13% 

6 16% 11% 16%  10% 

7 13% 10% 13% 10%  

Also of interest is the chance that the two datasets were both able to distinguish between the PVS pairs but reached opposite 
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conclusions. For fewer than 18 observers, this will occasionally occur. However, even with 8 observers, the probability was less 

than 0.03%. 

K. The Impact of Personal Opinion on Experiment Design 

The number of subjects was the most important variable that impacted dataset-to-dataset correlations. The second most 

important variable was differences of opinion from one person to another. It is possible that demographic information could 

explain some of the differences between subjects that we saw in Section III.E. 

Experiment design should reflect the importance of subject-to-subject differences. The analyses presented above indicate a 24 

subject minimum in a controlled environment, and 35 in a public environment. Smaller sets of subjects can be used for pilot 

tests, to find trends. The smaller experiments can be followed up by the more statistically reliable testing with 24 or more 

subjects. 

Twenty-four or more subjects were insufficient to guarantee identical PVS rankings from one dataset to another, when 

statistical significance was computed.  

L. The Impact of Language on the Quality Scale 

Several speech quality experiments have performed similar comparisons using the ACR five-point scale and a set of 

impairments. Cai [38] compared Chinese, Japanese and English and found lab-to-lab correlations ranging from 0.903 to 0.95. 

Goodman [39] compared Britain, Canada, France, Italy, Norway and USA and found lab-to-lab correlations ranging from 0.919 

to 0.985. As is standard procedure in speech quality, different speech samples were used by each laboratory (i.e., speech samples 

from several native speakers of that language).  

By contrast, our ten datasets used identical audio samples. Our datasets were collected in different countries with different 

native languages. Some of the stimuli were in English. Nonetheless, the results were similar and the test repeatable. Language 

and country did not have a statistically significant impact on these datasets (see Section III.F). 

This was our most interesting and surprising result.  

Part of the explanation lies in research presented in [40]. Words used to label subjective scales have different meanings in 

different languages. On the surface, it seems that the ACR scale should thus have nonlinearities. In [40] three audio tests 

performed on the same stimuli are described: one with ACR, one with MUSHRA [45] and one with an unlabeled scale. The 

dataset-to-dataset correlations were all 0.99. “One possible explanation is that the listeners ignored the meaning of any labels and 

used the graphic scales without reference to the labels, or perhaps only taking the end point labels into account.” [40]  

M. Pristine Environments 

Let us consider the limitations of the experiment described in this paper. The stimuli spanned a wide range of quality—both 
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seen and heard. By contrast, ITU-R BS.1116 [41] is intended for high quality audio. Likewise, ITU-R BT.500 is targeted at 

analyzing differences between high quality video sequences. The pristine environments specified in these Recommendations 

allow subjects to perceive very small differences in quality. The experiment described in this paper is more similar to the ITU-T 

P.910 scenario [42].  

ITU-R BT.500 and ITU-R BS.1116 use very tightly constrained and controlled environments. Our analyses show that 

experiments done in pristine environments are highly representative of those devices in actual use, in a typical user environment.  

IV. CONCLUSION

Do we want to measure quality perception in isolation? Do we want to measure quality perception in the environment where a 

device will be used? The impact of this choice appears to be minimal, when testing a wide range of audiovisual quality. Quality 

perception measured in isolation accurately predicts quality perception in the environment where a device will be used. 

The total number of subjects appears to be the most important control variable. Our study indicates that 24 or more subjects 

should be used when in a controlled environment. It is recommended to increase to 35 subjects when using a public environment 

or a narrow range of audiovisual quality. Smaller numbers of subjects are suitable for pilot studies, to find trending.  

The second variable is people—how opinions differ among subjects. Subjects drawn from any one source cannot fully 

replicate the behavior of “all people”. Because diverse opinions are so important, improved methods are needed for eliminating 

non-performing subjects. Current methods assume opinions are homogenous (e.g., Appendix V of [28]). 

MOS appears to be relative and not absolute. In other words, we expect the ordering of impairments and relative distances to 

be replicable, so statistics such as Pearson correlation are appropriate. Other statistical tests may be inappropriate (e.g., those that 

depend upon the mean or median being correct, or comparison to a constant MOS threshold). If different factors are to be 

compared, the same subjects should be used and the factors (e.g., two screens, two devices) should be presented in random order.  

Device / display may have had a relative impact. The use of a tablet in dataset 5 might be responsible for the differences seen 

in Fig. 5 and section III.H. The device, monitor and viewing distance may have more of an impact on scores if the experiment is 

explicitly designed to test this variable. 

The following factors did not seem to matter—or at least mattered so little that the difference was obscured by human factors: 

 Native language / speech comprehension 

 Culture / country of origin 

 Lighting 

 Background noise 

 Wall color 
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 Objects on the wall 

 Viewing distance 

 Monitor calibration 

 Color blindness 

 Vision good but not 20/20 

 Translation of ACR scale labels 

These constraints had significantly less impact on the subjective test results than differences between subjects, yet are more 

likely to be controlled and reported today.  

The statistical power of our study is limited by the large number of non-controlled variables. Ideally, smaller yet more 

controlled follow-on tests should be conducted by a variety of researchers. For a small added cost, the same pool of subjects can 

be used to score an experiment in two different environments, as was done by Catellier in [46].   

Environmental factors should not always be ignored. Some environmental factors may have a strong influence, depending 

upon the experiment design and purpose. For example, eliminating background noise is critical when subjects are expected to 

detect subtle sound differences. Monitor calibration is important when evaluating studio quality monitors. Language is important 

for a comprehension test or an audiovisual synchronization test. The importance of background noise may increase if subjects 

used speakers instead of headphones or earbuds. 

Subject screening is an issue that deserves further consideration. This experiment did not justify discarding subjects for 

slightly imperfect hearing, slightly imperfect vision, color blindness, or being an outlier in opinion score distribution. However, 

some screening is clearly needed to eliminate people who are inattentive or do not understand the task. The influence of training 

and instructions is likewise an area for further research.  

The impact of language and culture on subjective scores would be an interesting topic for further investigation. In the video 

quality community many researchers claim that “cultural and language differences result in statistically significant differences 

obtained for the same experiment run in different countries.” While these ten experiments appeared not to be influenced by 

language or culture, we do not have enough data to fully explain or support this conclusion for the general case.  Ideally, a 

precise experiment would focus on this issue directly (e.g., identical sequences rated by two labs per country, using nearly 

identical environments and equipment). 
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