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Abstract. The purpose of this study was to develop an ap-
proach to estimate soil surface parameters from C-band po-
larimetric SAR data in the case of bare agricultural soils. An
inversion technique based on multi-layer perceptron (MLP)
neural networks was introduced. The neural networks were
trained and validated on a noisy simulated dataset generated
from the Integral Equation Model (IEM) on a wide range of
surface roughness and soil moisture, as it is encountered in
agricultural contexts for bare soils. The performances of neu-
ral networks in retrieving soil moisture and surface rough-
ness were tested for several inversion cases using or not us-
ing a-priori knowledge on soil parameters. The inversion ap-
proach was then validated using RADARSAT-2 images in
polarimetric mode. The introduction of expert knowledge on
the soil moisture (dry to wet soils or very wet soils) improves
the soil moisture estimates, whereas the precision on the sur-
face roughness estimation remains unchanged. Moreover, the
use of polarimetric parametersα1 and anisotropy were used
to improve the soil parameters estimates. These parameters
provide to neural networks the probable ranges of soil mois-
ture (lower or higher than 0.30 cm3 cm−3) and surface rough-
ness (root mean square surface height lower or higher than
1.0 cm). Soil moisture can be retrieved correctly from C-band
SAR data by using the neural networks technique. Soil mois-
ture errors were estimated at about 0.098 cm3 cm−3 without
a-priori information on soil parameters and 0.065 cm3 cm−3

(RMSE) applying a-priori information on the soil moisture.
The retrieval of surface roughness is possible only for low
and medium values (lower than 2 cm). Results show that the
precision on the soil roughness estimates was about 0.7 cm.
For surface roughness lower than 2 cm, the precision on the

soil roughness is better with an RMSE about 0.5 cm. The
use of polarimetric parameters improves only slightly the soil
parameters estimates.

1 Introduction

Soil moisture content is an important parameter in hydrol-
ogy, agronomy and as a boundary condition for land sur-
face atmospheric interaction. For bare agricultural soils, the
radar backscatter is a function of soil moisture and surface
roughness and also sensor configuration (radar wavelength,
incidence angle, polarization). The possibility of retrieving
these soil parameters is insufficiently investigated from C-
band polarimetric SAR (synthetic aperture radar) data. How-
ever, extensive studies have been conducted to retrieve soil
moisture by using mono- or multi-polarization C-band SAR
data (e.g. Alvarez-Mozos et al., 2006, 2009; Baghdadi et
al., 2002a, 2006a; Rahman et al., 2008; Le Hégarat et al.,
2002; Lievens et al., 2011; Mattia et al., 2009; Moran et al.,
2004; Paloscia et al., 2008; Satalino et al., 2002; Srivastava et
al., 2003; Zribi and Deschambre, 2002). The availability of
RADARSAT-2 data (C-band,∼5.3 GHz) should enable im-
provements and increase the ability to retrieve soil parame-
ters, based on RADARDAT’s capability of providing images
in full polarization.

When using only one radar channel (one incidence an-
gle and one polarization), a better estimate of soil mois-
ture is obtained for a SAR configuration that minimizes the
effects of surface roughness (low incidence angle) (Ulaby
et al., 1978; Le Toan, 1982; Baghdadi et al., 2006a; Zribi
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and Deschambre, 2002). Moreover, Baghdadi et al. (2006a)
have shown that the accuracy of the soil moisture esti-
mate does not improve significantly (<0.01 cm3 cm−3) when
two polarizations (HH and HV, C-band) are used instead
of only one polarization. Several studies have shown that
the best estimates of soil moisture for one polarization and
one radar wavelength are obtained with SAR images ac-
quired at both low and high incidence angles. Indeed, the
use of two incidence angles (20◦ and 40◦ for example) al-
lows estimating both soil moisture and surface roughness
(e.g. Baghdadi et al., 2006a; Srivastava et al., 2003; Zribi and
Deschambre, 2002 ).

Soil moisture and surface roughness can be estimated
from SAR images by using physical or statistical models
(e.g. Baghdadi et al., 2002a; Merzouki et al., 2011; Rahman
et al., 2008). The best known physical model is the Integral
Equation Model (IEM) (Fung et al., 1992; Fung, 1994). It
simulates the radar backscattering coefficients from SAR and
soil parameters (radar wavelength, polarization, incidence
angle, surface roughness and soil dielectric constant). The
validity domain of IEM in C-band covers the range of rough-
ness values that are commonly encountered for agricultural
surfaces (k rms≤ 3, where rms is the root mean square sur-
face height andk the radar wave number∼=1.11 cm−1 for a
frequency in C-band of 5.3 GHz; Fung et al., 1992). Typi-
cal rms values of agricultural bare soils ranges from 0.5 to
4 cm. The discrepancies observed between the IEM and the
SAR data had encouraged Baghdadi et al. (2006b, 2011) to
propose an empirical calibration of IEM model. Statistical
models based on experimental measurements are also often
used in soil moisture estimation. For bare soils, the most pop-
ular statistical models are those developed by Oh et al. (1992,
2002) and Oh (2004) which use an inversion diagram based
on either the cross-polarized backscattering coefficientσ ◦

HV
and the copolarized ratio (σ ◦

HH/σ ◦
VV ) or the copolarized ra-

tio (σ ◦
HH/σ ◦

VV ) and the cross-polarized ratio (σ ◦
VH /σ ◦

VV ).
The Dubois model (Dubois et al., 1995) based on the use
of multi-polarized radar observations (HH and VV) is also
used for estimating soil moisture content. Discrepancies with
experimental measurements in agricultural areas were ob-
served in several studies (e.g. Zribi et al., 1997; Baghdadi
et al., 2006b).

Due to the importance for numerous hydrologic and agro-
nomic applications, the development of inversion approaches
to estimate soil moisture from SAR images remains a great
challenge. The estimation of such variables is often a com-
plex and nonlinear process, making it suitable for artificial
neural networks (NN) application. The neural networks are
an appropriate tool in the retrieval of geophysical parameters
from remote sensing data. The quality of the output param-
eters is directly dependent upon the quality of the data used
to train the NN. The most direct way to train a neural net-
work is by using synthetic data generated using empirical or
theoretical surface scattering models. While extensive work
has been done on the use of neural networks for processing

remotely sensed data, only few studies had investigated the
potential of NN for soil parameters estimation (e.g. Baghdadi
et al., 2002a; Dawson et al., 1997; Notarnicola et al., 2008;
Paloscia et al., 2002, 2008, 2010; Santi et al., 2004; Satalino
et al., 2002).

Inversion approaches using a priori information on soil pa-
rameters were developed to improve soil moisture retrieval
from SAR data. Satalino et al. (2002) developed an algo-
rithm to retrieve soil moisture content over smooth bare soils
from ERS-SAR data (VV-23◦). The method consists of in-
verting the IEM model for a restricted roughness range (rms
between 0.6 and 1.6 cm) by using neural networks. Results
indicate that only two soil moisture classes, i.e. dry and wet
soils, can be retrieved using ERS data. It is mainly because a
same measured radar backscattering coefficient corresponds
to several combinations of soil moisture and surface rough-
ness conditions. Mattia et al. (2006) also use a priori in-
formation on soil moisture through a water balance model
and surface roughness by means of an empirical approach
to constrain the inversion of theoretical radar backscattering
models. An accuracy of approximately 0.05 cm3 cm−3 on re-
trieved soil moisture is obtained. A possibilistic inversion ap-
proach which uses the soil roughness uncertainty for retriev-
ing bare surface soil moisture from SAR data was developed
by Verhoest et al. (2007). Accuracy less than 0.06 cm3 cm−3

was obtained for study cases with low surface roughness (rms
surface height less than 1 cm).

The objective of this study is to develop an inversion tech-
nique based on neural networks to estimate soil surface pa-
rameters (moisture content and roughness) over bare agri-
cultural areas from fully polarimetric RADARSAT-2 C-band
SAR data. The training of the NN is performed by using
simulated radar backscattering coefficients through the IEM.
First, soil parameters retrieval from polarimetric data is ac-
complished by using NN applied to a simulated dataset from
the IEM model. In order to make the IEM simulation real-
istic, SAR measurement errors are added to the simulated
backscattering coefficients. Next, the approach is validated
using RADARSAT-2 data. The performance of the inversion
technique is studied in introducing a priori information on
the soil moisture and/or the surface roughness. This work en-
ables evaluating the potential of polarimetric SAR sensors at
C-band for retrieving surface soil parameters. Section 2 gives
a review of datasets, and presents the NN and the inversion
methodology. The results are shown in Sect. 3; and finally,
Sect. 4 presents the main conclusions.

2 Material and methods

2.1 Synthetic dataset

The Integral Equation Model (IEM; Fung et al., 1992; Fung,
1994) is used in order to generate a reference dataset for the
inversion of SAR data by a NN technique. The backscattering
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IEM model is capable of reproducing the radar signal at HH,
HV and VV from SAR parameters (incidence angle and radar
wavelength) and soil surface characteristics (dielectric con-
stant and surface roughness). The empirical model developed
by Hallikäınen et al. (1985) is used to link the volumetric wa-
ter content (mv) to the corresponding complex dielectric con-
stant. This model uses the sand and clay composition of the
soil. The description of surface roughness on bare soils in the
IEM is currently based on three parameters (Fung, 1994): the
correlation function, the correlation length, and the standard
deviation of heights (rms).

Many studies have revealed a poor agreement between
IEM simulations and measured data (e.g. Baghdadi et al.,
2004, 2006b, 2011; Rakotoarivony et al., 1996; Zribi et al.,
1997), with deviations of several decibels which renders the
inversion results inaccurate. Baghdadi et al. (2006b, 2011)
proposed a semi-empirical calibration of the IEM to improve
its performance at C-band. A large experimental database
composed of SAR images and ground measurements of
soil moisture and surface roughness has been used in this
calibration. As the correlation length is the least accurate of
the parameters (Verhoest et al., 2008) required in the IEM
model, Baghdadi et al. (2006b, 2011) proposed to replace
the measured correlation length for each SAR configuration
(radar wavelength, incidence angle, and polarization) by a
fitting parameter (Lopt), so that the IEM model reproduces
better the radar backscattering coefficient. The fitting
parameter replaces the inaccurate correlation length and
empirically calibrates the model. The calibration parameter
is found dependent on rms surface height, polarization,
and incidence angleθ (for a given radar wavelength).
The validity domain of the calibrated version of IEM at
C-band covers a wide range of soil surface conditions and
incidence angles: 0.05 cm3 cm−3 < mv< 0.45 cm3 cm−3,
0.3 cm< rms< 5 cm for HH and VV, 0.3 cm< rms< 3.6 cm
for HV, and 25◦ < θ < 45◦. The use of Gaussian correlation
function with the fitting parameter (Lopt) ensures correct
physical behaviour of IEM. In Baghdadi et al. (2006b, 2011),
the expressions of Lopt for each polarization were given as
a function of rms surface height and incidence angle. These
expressions were improved using additional SAR datasets:

Lopt(rms,θ,HH) = 0.162

+3.006(sin1.23θ)−1.494 rms (1)

Lopt(rms,θ,HV) = 0.9157

+1.2289(sin0.1543θ)−0.3139rms (2)

Lopt(rms,θ,VV) = 1.281

+0.134(sin0.19θ)−1.59rms (3)

θ is in degrees; Lopt and rms are in centimeters. The coeffi-
cient of determinationR2 is 0.98 for HH, and 0.96 for both
HV and VV. A small difference between calibrated IEM sim-
ulations (using Lopt, Eq. 1) and SAR data (less than 1 dB)
was observed, with a standard deviation better than 2 dB.
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Fig. 1.Location of Thau watershed (France).

A realistic dataset combining a wide range of soil vari-
ables (rms surface height “rms” and soil moisture “mv”)
and corresponding to backscattering coefficients was gener-
ated from the calibrated IEM to evaluate the performance
of the NN technique. We considered a total of 268 110 el-
ements (C-band, HH, HV and VV) corresponding to 331
surface roughness values (rms between 0.3 and 3.6 cm
with a step of 0.01 cm), 90 soil moisture values (mv be-
tween 0.005 cm3 cm−3 and 0.45 cm3 cm−3 with a step of
0.005 cm3 cm−3), and 9 radar incidence angles (θ between
25◦ and 45◦ with a step of 2.5◦). In order to make the
IEM simulations more realistic, the SAR measurement er-
ror, which includes both calibration errors and measurements
precision errors, is added to the simulated backscattering co-
efficients. Realistic values of measurements errors are be-
tween 0.5 and 1 dB (Satalino et al., 2002). To better simulate
an experimental dataset, the synthetic dataset is then obtained
by adding a zero mean Gaussian random noise with a stan-
dard deviation of±0.5 and±1 dB to the simulated backscat-
tering coefficients (in dB scale). In order to obtain a statisti-
cally significant dataset, 100 noise samples are generated for
each couple of mv and rms.

2.2 RADARSAT-2 dataset

Ten RADARSAT-2 images in polarimetric mode were ac-
quired over an agricultural site located on the Thau basin
near Montpellier in the South of France (43◦27′ N and
3◦35′ E) (Fig. 1). The study site is mostly composed of
agricultural fields intended for growing cereals (wheat) and
vineyards, natural vegetation (Mediterranean forest), and
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Table 1. Characteristics of the data set used in this study: images characteristics, number of training plots, range of soil moisture, and soil
surface roughness (rms).

Date Time TU Sensor mode – Number of Soil moisture (%) Soil roughness
(hh:mm) Incidence angle Orbit training plots [min – mean - max] (cm) [min – max]

18 November 2010 05:55 FQ14 – 34.3◦ DES 11 [9.5 – 13.3 – 16.7] [0.9 – 3.3]
4 December 2010 17:48 FQ26 – 45.1◦ ASC 10 [17.0 – 23.4 – 33.5] [1.2 – 2.4]

12 December 2010 05:55 FQ14 – 34.3◦ DES 10 [9.0 – 13.7 – 17.4] [1.0 – 2.4]
5 January 2011 05:55 FQ14 – 34.3◦ DES 0 – –

11 January 2011 17:39 FQ16 – 36.2◦ ASC 9 [25.6 – 28.4 – 30.2] [1.0 – 2.4]
21 January 2011 17:48 FQ26 – 45.1◦ ASC 10 [9.9 – 16.5 – 27.0] [1.0 – 2.4]
29 January 2011 05:55 FQ14 – 34.3◦ DES 0 – –
22 January 2011 05:55 FQ14 – 34.3◦ DES 2 [25.3 – 25.5 – 25.7] [1.3 – 2.2]
15 March 2011 05:43 FQ29 – 47.4◦ DES 14 [31.2 – 38.5 – 45.7] [1.1 – 4.0]
18 March 2011 05:55 FQ14 – 34.2◦ DES 16 [18.1 – 32.0 – 39.1] [1.0 – 4.0]

agricultural wasteland. The radar data are available in fine
mode with a spatial resolution about 10m and incidence
angles of 34–36◦ and 45–47◦ (Table 1). The PolSARPro
v4.2.0 software (http://earth.eo.esa.int/polsarpro/) was used
for processing the RADARSAT-2 images (7× 7 boxcar fil-
ter). Then, every generated data layer has been geocoded us-
ing the MapReady 2.3 software (http://www.asf.alaska.edu/
downloads/softwaretools) and a Digital Elevation Model at
pixel spacing of 5 m. The geocoding errors about 60 m in lon-
gitude (X-axis) and 7 m in latitude (Y-axis) were corrected
by a simple translation of images. The co-registration error
(about 5m after correction) was overcome by removing the
boundary pixels (two pixels wide) from each training plot
relative to the limits defined by the GPS control points.

In situ measurements of rms surface height and soil mois-
ture (at the 0–5-cm depth) were performed simultaneously
to RADARSAT-2 acquisitions in selected bare training plots
(between two and sixteen, Table 1). Training fields were se-
lected with low local topography and at least one hectare in
size. The soil moisture of each training field was assumed to
be equal to the mean value measured from several samples
(between 20 and 50) collected in that field using a calibrated
TDR (time domain reflectometry) probe. The soil moistures
range from 0.09 to 0.457 cm3 cm−3. Soil composition is
about 52 % silt, 35 % clay, and 12 % sand.

Roughness measurements were made using a needle pro-
filometer (1m long and with 2 cm sampling intervals). Ten
roughness profiles along and across the direction of tillage
(five parallel and five perpendicular) were established in each
reference field. From these measurements, the two roughness
parameters, root mean square (rms) surface height and corre-
lation length (Lc), were calculated using the mean of all cor-
relation functions. The rms surface heights range from 0.9 cm
to 4.0 cm. The correlation length (Lc) varies from 2 cm in
sown fields to 9 cm in ploughed fields.

The precision on the two roughness parameters is depen-
dent on the roughness profile length, the number of rough-
ness profiles measurements and the horizontal resolution

(sampling interval) of profiles (Lievens et al., 2009; Callens
et al., 2006; Oh and Kay, 1998). For ten roughness profiles
carried out on each reference field with a profilometer of 1m
long and a spacing of 2 cm, the accuracy of roughness pa-
rameters should be better than± 10 % for rms and between
± 10 % and± 20 % for large and small correlation lengths,
respectively (Baghdadi et al., 2012).

A small difference was observed between RADARSAT-
2 data and calibrated IEM simulations (using Lopt, Eq. 1)
for HH and VV (−0.8 dB and−0.4 dB, respectively), with
a RMSE about 2 dB (2.0 dB and 1.9 dB, respectively).
The calibrated IEM in HV polarization overestimates the
RADARSAT-2 signal of 1.7 dB, with a RMSE of 2.8 dB.
These results are better than those obtained using correla-
tion length measurements. For example, the RMSE of the
error observed before the calibration decreased substantially,
with the calibrated IEM from 5.0 dB to 2.0 dB for HH, from
5.0 dB to 1.9 dB for VV, and from 8.3 dB to 2.8 dB for HV.

2.3 Artificial neural networks (ANN)

Multi-layer perceptron (MLP) neural networks are developed
in this study to estimate the soil parameters over bare agricul-
tural soils (moisture content and surface roughness) (Atkin-
son and Tatnall, 1997; Fine, 1999; Ripley, 1996). Neural net-
works are trained with the Levenberg-Marquardt algorithm
(Marquardt, 1963). The network architecture for the esti-
mation of soil moisture and surface roughness has a three-
dimensional input vector representing the backscattering co-
efficients in HH, HV and VV polarizations. The two di-
mensional output vector contains soil moisture and surface
roughness. The soil roughness to be estimated corresponds to
the soil standard deviation of height rms. The neural network
has only one hidden layer. The number of neurons associated
with the hidden layer is determined by training the networks.
20 hidden neurons give a good estimate of parameters while
keeping a reasonable computing time. To develop a neural
network, it is necessary to train the network with a training
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dataset composed of input and output vectors. Training is ac-
complished to minimize the mean square error between the
predicted ANN outputs and the reference values. The ANN
models were developed using Matlab software.

The use of simple inversion technique based on simulated
look-up tables (IEM model), which minimizes a mean dis-
tance (cost function) between the simulated and the measured
backscattering coefficients (HH, HV and VV polarizations),
does not lead to estimate correctly the soil parameters. In-
deed, several minima are sometimes found for the cost func-
tion with very close values. Thus, the minimum minimo-
rum does not correspond always to optimum values of soil
moisture and surface roughness.

2.4 Methodological overview

The synthetic dataset of IEM simulations is divided into
equal amounts, where 50 % of the synthetic dataset is used
for the training of the neural networks, and the remaining
50 % is used for the validation of networks. The neural net-
works are first trained on an IEM simulation dataset using the
fitting/calibration parameter (Lopt) (Sect. 2.1). The outputs
of the network are compared with synthetic and, ultimately,
real (RADARSAT-2) data.

In order to improve the soil moisture estimates, a priori
knowledge about soil moisture and/or surface roughness is
introduced. Indeed, the polarimetric parametersα1 (alpha an-
gle that corresponds to the first eigenvector of coherency ma-
trix) and anisotropy (A) can be used to provide thresholds
on the possible values of mv and rms, respectively. Bagh-
dadi et al. (2012) showed that the use ofα1 allows sepa-
ration of the very wet soils (α1 ≥10◦) from the rest with a
threshold on mv of 0.30 cm3 cm−3. Moreover, the anisotropy
can be used to discriminate two surface roughness classes,
smooth soils withk rms< 1.0 (A < 0.3) and the rest. More-
over, it is possible to determine the degree of the soil mois-
ture from weather forecasts (precipitation and temperature)
and field knowledge (e.g. soil type) in order to integrate in
the inversion process the a priori knowledge on the soil mois-
ture range: dry to wet soils (mv< 0.3 cm3 cm−3) or very wet
soils (mv≥ 0.3 cm3 cm−3). The integration of a priori infor-
mation constrains the range of possible soil parameter values
and thus leads to a better estimation of soil parameters.

Neural networks are built in either using or neglect-
ing a priori information on soil parameters. Four cases
were defined:

– Case 1: no a priori information on mv and rms

– Case 2: a priori information on mv. For this case, two
neural networks were developed, one for dry to wet
soils and one for very wet soils. An overlapping of
0.10 cm3 cm−3 on mv was used between the datasets
used for the training of these two networks. For dry
to wet soils, soil moisture values range from 0.005
to 0.35 cm3 cm−3 (the mv minimum and the thresh-

old plus 0.05 cm3 cm−3, respectively). In the case of
very wet soils, the mv values vary between 0.25 and
0.45 cm3 cm−3 (the threshold minus 0.05 cm3 cm−3 and
the mv maximum, respectively).

– Case 3: a priori information on rms. Two neural net-
works were developed, one for smooth to moderate soils
and one for moderate to rough soils. An overlapping of
1.0 cm on rms was used for the training of these two
networks. For smooth to moderate soils, surface rough-
ness values vary between 0.3 and 2 cm (the rms min-
imum and the threshold plus 0.5 cm, respectively). In
the case of moderate to rough soils, rms was between
1 and 3.6 cm (the threshold minus 0.5 cm and the rms
maximum, respectively).

– Case 4: a priori information on mv and rms. Four net-
works were developed, one for dry to wet soils and
smooth areas, one for dry to wet soils and rough areas,
one for very wet soils and smooth to moderate areas,
and one for very wet soils and moderate to rough areas.
The mv and rms values of each network are the same as
those defined in Cases 2 and 3.

For each studied case (Case 1 to Case 4), only the sub-
datasets corresponding to rms and mv values defined by the
a priori knowledge are used in the training and the validation
phases. For example, for Case 2 with a priori knowledge on
mv, two neural networks were developed and validated using
the corresponding sub-datasets : sub-dataset1 corresponding
to data with mv< 35 % and sub-dataset2 corresponding to
data with mv> 25 %.

Moreover, two standard deviations of the measurement
error are used for each inversion configuration:±0.5 and
±1 dB (same measurement error in the training and valida-
tion phases). The inversion performance is evaluated using
two statistical indexes, the bias and the root mean square er-
ror (RMSE):

Bias=
1

N

N
∑

i=1

(Ei − Mi) (4)

RMSE=

√

√

√

√

1

N

N
∑

i=1

(Ei − Mi)
2, (5)

whereE is the estimated variable,M the measured variable
and N the data number. Bias and RMSE are expressed in
cm3 cm−3 or % for mv, and in cm for rms.

3 Evaluation of the inversion approach

The neural networks developed above have been tested for
the evaluation of the precision on soil moisture and surface
roughness estimates. Two datasets were used, synthetic (IEM
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Table 2. Inversion approach results for simulated data with measurement errors of±0.5 and±1 dB. Statistics are given for the estimation of
soil moisture (mv) and surface roughness (rms). The format of results is “a/b”, where “a” corresponds to statistics using a noise of±0.5 dB,
and “b” corresponds to statistics using a noise of±1.0 dB.

Inversion with measurement
errors of±0.5/±1 dB Soil moisture (mv) Surface roughness (rms)

No a priori information Bias RMSE Bias RMSE
on mv and rms (cm3 cm−3) (cm3 cm−3) (cm) (cm)

θ = 25◦ 0/0 0.044/0.063 0/0 0.53/0.70
θ = 35◦ 0/0 0.058/0.071 0/0 0.72/0.80
θ = 45◦ 0/0 0.046/0.064 0/0 0.66/0.83

A priori information on mv

θ = 25◦ 0/0 0.037/0.046 0/0 0.50/0.64
θ = 35◦ 0/0 0.044/0.049 0/0 0.66/0.73
θ = 45◦ 0/0 0.036/0.045 0/0 0.61/0.75

A priori information on rms

θ = 25◦ 0/0 0.039/0.055 −0.04/−0.07 0.46/0.53
θ = 35◦ 0/0 0.044/0.058 −0.06/−0.07 0.50/0.54
θ = 45◦ 0/0 0.036/0.052 −0.03/−0.06 0.43/0.52

A priori information on mv and rms

θ = 25◦ 0/0 0.035/0.043 −0.04/−0.06 0.45/0.51
θ = 35◦ 0/0 0.036/0.043 −0.04/−0.07 0.47/0.52
θ = 45◦ 0/0 0.031/0.041 −0.03/−0.06 0.43/0.51

simulations) and real datasets (RADARSAT-2 data). The soil
parameters estimated using the networks developed above
were compared with the reference data.

3.1 Synthetic dataset

The inversion approach was first tested on synthetic data in
order to study its performance for a large range of soil char-
acteristics (rms and mv) and sensor configurations (θ). In this
paper, three incidence angles were studied in detail: 25◦, 35◦,
and 45◦. These incidences are selected to cover the range of
incidence angles available on the satellite SARs.

All statistical indexes were computed to evaluate the per-
formance of the inversion procedure and to determine the
retrieval errors on mv and rms. Table 2 shows the inver-
sion results for the±0.5 and±1 dB noise conditions. The
three incidence angles analyzed in this study (25◦, 35◦,
and 45◦) showed similar performance on the soil mois-
ture estimation. For example, in the case of neural net-
works with a priori information on mv, the RMSE on the
mv estimates vary between 0.036 cm3 cm−3 (θ = 25◦ and
45◦) and 0.044 cm3 cm−3 (35◦) for ±0.5 dB noise condi-
tion and between 0.045 cm3 cm−3 (θ = 25◦ and 45◦) and
0.049 cm3 cm−3 (θ = 35◦) for ±1 dB noise condition. The
performance of the algorithm is slightly behind at incidence
angle of 35◦. This could be explained by the fact that the sen-
sitivity of radar signal to mv and rms is the strongest for the

incidence angles of 25◦ and 45◦, respectively (for incidences
between 25◦ and 45◦), whereas the incidence of 35◦ allows
an intermediate sensitivity of the radar signal with mv and
rms. Table 2 also shows that the inversion algorithm provides
un-biased soil moisture estimates.

The introduction of a priori information on one or two
soil parameters (mv, rms, or mv and rms) improves the
mv estimates. This improvement reaches 0.02 cm3 cm−3

(RMSE) for a noise on the radar backscattering coefficients
of ±0.5 dB, and 0.03 cm3 cm−3 for a noise of±1 dB. For
a noise of±0.5 dB, the improvement observed on the mv
estimates is of the same order in the case of a priori infor-
mation on mv or rms. For a higher noise (±1 dB), results
show better estimates of mv in the case of a priori informa-
tion on mv than in the case of a priori information on rms.
Moreover, the results from the simulated dataset show that
the introduction of a priori information on both mv and rms
provides similar accuracy on the mv estimates than the case
with a priori information on mv alone (difference lower than
0.005 cm3 cm−3). Consequently, the improvement gained by
the a priori information on rms is minor.

Moreover, the performances of the neural networks were
analyzed as a function of the rms and mv values (Figs. 2
and 3). For a noise of±1 dB, results showed that for a given
rms between 1.0 cm and 3.6 cm, the RMSE on the mv esti-
mates is of the same order for incidence angles between 20◦

and 45◦. Results show that the RMSE on mv varies slightly
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Fig. 2. Box plots of soil moisture estimates (cm3 cm−3) retrieved from the synthetic dataset. Training and validation datasets correspond to
a noise on the backscattering coefficients of±1 dB. Four rms and four mv values were plotted: rms = 0.5, 1, 2, 3.5 cm; mv = 0.05, 0.15, 0.25,
0.40 cm3 cm−3.
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Fig. 3. Box plots of surface roughness estimates (cm) from the synthetic dataset. Training and validation datasets correspond to a noise
on the backscattering coefficients of±1 dB. Four rms and four mv values were plotted: rms = 0.5, 1, 2, 3.5 cm; mv = 0.05, 0.15, 0.25,
0.40 cm3 cm−3.
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with the rms for rms between 1.0 cm and 3.6 cm (between
0.05 and 0.07 cm3 cm−3 in the case of no a priori informa-
tion on mv and rms). For rms lower than 1.0 cm, the RMSE
increases with the incidence angle in the case of no a pri-
ori information on mv and rms (from 0.075 cm3 cm−3 to
0.12 cm3 cm−3 for rms = 0.5 cm) and decreases when the rms
increases (for rms between 0.5 and 1 cm). As example for an
incidence angle of 45◦, RMSE on mv is of 0.12 cm3 cm−3

for rms = 0.5 cm and of 0.06 cm3 cm−3 for rms = 0.9 cm). In
the case of a priori information on rms, the same behaviour is
revealed with slightly lower RMSE values. Using the neural
network developed with a priori information on mv alone or
with a priori information on both mv and rms, the RMSE on
mv shows values between 0.04 cm3 cm−3 (for high rms) and
0.06 cm3 cm−3 (for low rms) for incidence angles between
20◦ and 45◦, and rms between 0.5 and 3.6 cm.

Concerning the dependence between the RMSE on the mv
estimates and the reference value of mv, results indicate that
for a noise of±1 dB the RMSE is about 0.02 cm3 cm−3 for
mv = 0.05 cm3 cm−3 with or without a priori information on
the soil parameters. Moreover, weak dependence is observed
between the RMSE on the mv estimates and the reference
values of mv for mv between 0.05 and 0.35 cm3 cm−3. The
RMSE is about 0.06 cm3 cm−3 in the case of no a priori in-
formation on the soil parameters, 0.05 cm3 cm−3 in the case
of a priori information on mv, and 0.04 cm3 cm−3 in the case
of information a priori on rms alone or on both mv and rms.
For mv between 0.35 and 0.45 cm3 cm−3, the RMSE is about
0.09 cm3 cm−3 in the case of no information a priori on the
soil parameters, 0.075 cm3 cm−3 in the case of a priori infor-
mation on mv, and 0.06 cm3 cm−3 in the case of information
a priori on rms alone or on both mv and rms.

The difference between the estimated and reference mv
shows that the neural networks overestimates the mv for high
rms-values (>1.1 cm) and underestimates it for low rms-
values (<1.1 cm). Indeed, in our inversion procedure of radar
signals, the NN estimates the rms parameter in the range 0.3
to 3.6 cm. To estimate the rms in the case of smooth to mod-
erate soils, the NN will propose for rms only estimated val-
ues higher than 0.3 cm and thus sometimes an estimate which
could be higher than the optimal value. This overestimation
of rms will lead to an underestimation of mv. The opposite
phenomenon occurs for the estimate of high values of rms,
where an overestimation of mv is observed.

For a given rms between 1.1 cm and 3.6 cm, the bias is
of the same order for incidence angles between 25◦ and
45◦. Moreover, the bias on the mv estimates increases with
rms for rms-values between 1.1 and 3.5 cm. For lower rms
(<1.1 cm) and a noise of±1dB, the bias increases when the
incidence angle increases and decreases when the rms in-
creases between 0.5 and 1.1 cm. The use of a priori infor-
mation on mv reduces clearly the bias. It varies from−0.08
to +0.04 cm3 cm−3 in the case of no a priori information on
the soil parameters and from−0.02 to +0.02 cm3 cm−3 in
the case of a priori information on both mv and rms. Under-

estimations between−0.06 and−0.04 cm3 cm−3 on mv are
also observed for high mv (>0.4 cm3 cm−3) without or with
a priori information on the soil parameters. For mv between
0.05 and 0.4 cm3 cm−3, overestimations on mv could reach
0.04 cm3 cm−3.

Moreover, the results reveal a great difficulty of estimat-
ing correctly the soil roughness. Similar accuracies on the
rms estimates were obtained in the Cases 1 (no a priori in-
formation on the soil parameters) and 2 (a priori information
on mv), or in the Cases 3 (a priori information on rms) and 4
(a priori information rms and mv). However, the accuracy is
slightly better if a priori information on the rms is available
(Cases 3 and 4). Using the most favourable cases (3 and 4),
the mean RMSE on the rms estimates is about 0.45 cm for a
noise of±0.5 dB and 0.5 cm for a noise of±1 dB. The bias
between the estimated rms and the reference rms was low for
all the four studied cases (between 0 and−0.07 cm).

The NNs underestimate the rms estimates for the high
values of reference rms (>2.5 cm) and overestimates it for
low and medium surface roughness (<2.5 cm). The use of a
priori information on rms allows reducing very clearly the
bias and the RMSE on rms for low reference rms values
whereas the bias and the RMSE on rms stay unchanged for
the high values of rms. With a priori information on rms, the
bias on the rms estimates does not exceed the±0.5 cm for
reference rms values between 0.5 and 3.1 cm and is about
−1 cm for reference rms values about 3.6 cm. The RMSE
on the rms estimates is lower than 0.5 cm for reference rms
lower than 3.1 cm and is about 1.1 cm for reference rms val-
ues about 3.5 cm. The analysis of rms estimates, as a func-
tion of reference mv values, shows also that the difference
between the estimated and the reference rms is unchanged
with the incidence angle for a given mv. Moreover, the neu-
ral networks underestimate the rms estimates for mv lower
than 0.25 cm3 cm−3 and overestimate for mv higher than
0.25 cm3 cm−3. The RMSE on the rms estimates increases
slightly with the incidence angle for a given reference mv
value when no a priori information on the rms was consid-
ered (from 0.6 cm at 25◦ to 0.85 cm at 45◦). With a priori
information on rms, the RMSE is of the same order for all
incidence angles and reference mv values (about 0.5 cm).

3.2 RADARSAT-2 dataset

The retrieval capacity of NN is then analyzed using the
RADARSAT-2 dataset. Table 3 gives the statistical results
obtained for the estimation of mv and rms according to in-
version configurations 1, 2, and 4 as defined in Sect. 2.4:

– No a priori information on mv and rms

– With a priori information on mv given expert knowl-
edge (dry to wet soils or very wet soils). The a pri-
ori information on mv is provided by an expert us-
ing meteorological data (precipitations, temperature)
and terrain knowledge. The expert chooses among two
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Table 3. Inversion approach results for RADARSAT-2 data. The format of results is “a/b”, where “a” corresponds to statistics using a noise
of ±0.5 dB, and “b” corresponds to statistics using a noise of±1.0 dB. The neural networks trained with data generated at incidence angles
of 35◦ and 45◦ were used for images acquired at incidence angles near of 35◦ and 45◦, respectively.

Soil moisture (mv) Surface roughness (rms)

Bias (cm3/cm3) RMSE (cm3/cm3) R2 Bias (cm) RMSE (cm) R2

Without a priori informa-
tion on mv and rms

0.029/−0.018 0.145/0.098 0.13/0.29 −0.41/0.05 0.94/0.73 0.00/0.02

With a priori information
on mv (expert knowledge)

0.031/0.003 0.107/0.065 0.36/0.66 −0.60/−0.19 1.11/0.69 0.00/0.07

With a priori information
on mv and rms usingα1
and anisotropy

−0.012/−0.015 0.101/0.083 0.35/0.49 −0.73/−0.18 1.56/0.66 0.10/0.13

simple configurations: (1) very wet after an intense
rainy episode (mv>0.30 cm3 cm−3) or (4) dry to wet
soils for dates far from a rainy episode or for areas with
fast drying out of soil (mv<0.30 cm3 cm−3).

– With a priori information on mv and rms using the
thresholds on the polarimetric parametersα1 and A

(α1 <10◦ andA < 0.3 for dry to wet soils and smooth
areas;α1 <10◦ and A ≥ 0.3 for dry to wet soils and
rough areas;α1 ≥10◦ andA < 0.3 for very wet soils and
smooth areas;α1 ≥10◦ andA ≥ 0.3 for very wet soils
and smooth areas).

The estimations of soil moisture (mv) and surface roughness
(rms) are illustrated in Figs. 4 and 5. Results show that the
precision on the estimates of soil moisture is better using the
neural networks trained on simulated data when±1 dB noise
is added than using the neural networks trained with data at
±0.5 dB. This is probably due to the noise of RADARSAT-2
data, which is closer to±1 dB than to±0.5 dB (Table 3). In-
deed, without the use of a priori information on mv and rms,
the RMSE decreases from 0.145 cm3 cm−3 (noise 0.5 dB) to
0.098 cm3 cm−3 (noise±1 dB). The introduction of a con-
straint on mv provides better agreement between the esti-
mated and measured soil moisture, with a significant de-
crease of the bias and the RMSE on the estimation of mv. In
the case of a priori information on mv, the RMSE decreases
from 0.107 cm3 cm−3 (noise ±0.5 dB) to 0.065 cm3 cm−3

(noise±1 dB) (Table 3). Using the a priori information on
mv and rms from the polarimetric parametersα1 and A,
and adding noise of±1 dB, the RMSE on the mv estimates
slightly decreased from 0.098 cm3 cm−3 without a constraint
on mv and rms to 0.083 cm3 cm−3 with a constraint on mv
and rms. In conclusion, the use of expert knowledge on mv
seems to be more relevant than applying the polarimetric
parametersα1 and A. The weak improvement of mv and
rms estimates using the polarimetric parameters in the in-
version process can be explained by low dynamics ofα1 and
A in C-band (Baghdadi et al., 2012). However, the bias is

reduced by using a priori information on the soil param-
eters mv and rms (usingα1 and A). The bias was about
−0.02 cm3 cm−3 for the case without a constraint on mv and
rms and +0.003 cm3 cm−3 with a priori information on mv
(expert knowledge) with a noise of± 1 dB (Table 3).

For the estimation of surface roughness, the use of neural
networks built with a noise of±1 dB again provides better
results in comparison to neural networks trained with a noise
of ±0.5 dB (Table 3). With a noise of±1 dB, the results ob-
tained for the rms estimates are practically the same for the
three studied cases with an RMSE about 0.70 cm (Table 3).
Figure 5 shows also that the estimation of rms is very difficult
for high surface roughness values (rms> 2 cm). Indeed, the
radar signal in C-band is very sensitive to the soil roughness
only for rms values lower than 2 cm (Baghdadi et al., 2002b).
Beyond this threshold, the radar signal increases very slightly
with the rms. In Baghdadi et al. (2002b), the mean difference
between theσ ◦ values for rms = 2 cm and rms = 4 cm reaches
a maximum of 1 dB. For surface roughness lower than 2 cm,
the precision on the soil roughness estimates is better with an
RMSE about 0.5 cm and a difference between estimated and
measured rms smaller than 0.2 cm on average.

3.3 Operational mapping of soil moisture using
RADARSAT-2 images

Surface soil moisture mapping was carried out over the Thau
basin (France) using RADARSAT-2 images acquired be-
tween November 2010 and March 2011 (Table 1). Based on
polarimetric SAR images (HH, HV and VV polarizations),
the neural networks developed from IEM simulated data are
used for mapping the surface soil moisture over bare soils.
The neural networks trained with a noise of±1 dB are se-
lected due to the better correspondence with the noise level
in RADARSAT-2 imagery.

Soil moisture estimates are obtained for several mapping
scales: an estimate for each bare agricultural field, an aver-
age estimate on the basin, and an estimate for each cell of
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Fig. 4. Retrieved soil moisture versus in situ measurements.(a,
b): without a constraint on mv and rms;(c, d): with a constraint
on mv (expert knowledge);(e, f): use ofα1 and anisotropy to de-
termine the possible values of mv and rms. Each point corresponds
to one training plot (using the mean backscattering coefficient of all
pixels of the reference plot).The reference plots are at the outside of
the RADARSAT-2 image of 11 January 2011. The neural networks
trained with data generated at incidence angles of 35◦ and 45◦ were
used for images acquired at incidence angles near of 35◦ and 45◦,
respectively.

a predefined grid. For mapping at the field scale, the radar
signal is averaged for each field. The estimation of mean
soil moisture on the basin scale uses the mean backscatter-
ing coefficient of all bare soil pixels present in the basin. For
mapping soil moisture on grid cells ofN meters byM me-
ters each, the basin is subdivided in a regular grid and the
mean backscattering coefficient for each grid cell is deter-
mined from averaging the values of all bare soil pixels within
each grid cell.

The estimation of soil moisture is performed only on bare
soils or soils with thin vegetation layer. A land use/land cover

Fig. 5. Retrieved rms surface height versus in situ measurements.
(a, b): without a constraint on mv and rms;(c, d): with a constraint
on mv (expert knowledge);(e, f): use ofα1 and anisotropy to de-
termine the possible values of mv and rms. Each point corresponds
to one training plot (using the mean backscattering coefficient of all
pixels of reference plot).The reference plots are at the outside of
the RADARSAT-2 image of 11 January 2011. The neural networks
trained with data generated at incidence angles of 35◦ and 45◦ were
used for images acquired at incidence angles near of 35◦ and 45◦,
respectively.

map was produced for the Thau basin using remote sensing
data and ground observations (2010–2011). First, only agri-
cultural fields intended for growing cereals (wheat) and mar-
ket gardens were selected (sometimes without vegetation)
the other agricultural fields. Next, the Normalized Difference
Vegetation Index (NDVI) was computed using Landsat-5 op-
tical images (December 2010, February and March 2011),
and an NDVI value under an empirical threshold of 0.25
was found for mapping bare soils and areas with thin veg-
etation cover. For each SAR image, the bare soil map used
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Fig. 6. Examples of soil moisture maps over bare agricultural areas
for four different dates. The estimation of soil moisture was carried
out for each bare agricultural parcel using expert knowledge on mv.

corresponds to the one obtained from the optical image with
the closest acquisition date.

Figure 6 shows the temporal variation of soil moisture esti-
mated by RADARSAT-2 for four different dates (18 Novem-
ber and 4 December 2011; 15 and 18 March). The estima-
tion of soil moisture was carried out for each bare agricul-
tural field using a priori information on mv based on ex-
pert knowledge or polarimetric parametersα1 andA. Based
on the meteorological data (precipitations and temperature)
over the basin (Fig. 7), the expert chooses among two sim-
ple configurations. The soils are supposed very wet if the
SAR image is acquired after an intense rainy episode. In
this case, the soil moisture contents will be in general es-
timated between 0.25 and 0.45 cm3 cm−3. For a SAR im-
age acquired far from a rainy episode or in a context of fast
drying out of soil (high temperatures), the expert assumes
dry or wet soils with moisture contents which will be es-
timated lower than 0.35 cm3 cm−3. A priori information of
very wet soils was provided for 15 and 18 March acquisi-
tions whereas an information of dry to wet soils was given
for the other images.

The comparison between soil moistures estimated from
SAR images and in situ moistures shows good agreement.
For example, on 18 November 2010, dry soil was observed
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Fig. 7. Soil moisture contents from in situ measurements accord-
ing to RADARSAT-2 acquisition dates, and meteorological data
(daily precipitation and mean daily temperature). Precipitation and
air temperature were taken from a meteorological station installed
in the basin (near S̀ete city).

over the basin, with a low average moisture content of
around 0.16 cm3 cm−3 (with expert knowledge on mv). In-
deed, no rainfalls were recorded during the eight days pre-
ceding the acquisition of this satellite image. The weak pre-
cipitation on 30 November 2010 (5.4 mm) maintained the
same moisture content on 4 December as on 18 Novem-
ber (about 0.19 cm3 cm−3). After significant precipitation be-
tween 12 March and 15 March 2011 (85 mm), the radar soil
moisture increased from 0.19 cm3 cm−3 on 22 February 2011
to 0.36 cm3 cm−3 on 15 March 2011. Radar soil moistures
estimated on 18 March 2011 were lower (0.34 cm3 cm−3)

than those of 15 March 2011. This tendency is completely
coherent because there was no precipitation recorded be-
tween the two dates and the soil has thus started to dry off.
The air temperature during the SAR acquisitions was higher
than 5◦C.

Figure 8 compares the soil moisture estimates averaged on
all training plots (using the mean backscattering coefficients)
and the corresponding in situ measurements. Results show
better precision on the soil moisture estimates when a scale
larger than the plot was used (mean of all training plots for
each SAR date). For each image date, the soil moisture was
estimated by using the mean backscattering coefficient of all
pixels present in the training plots. The difference between
soil moisture estimates and in situ soil moistures is on av-
erage near zero. The RMSE is about 0.056 cm3 cm−3 with
no a priori information on soil parameters, 0.032 cm3 cm−3

with expert knowledge on mv, and 0.035 cm3 cm−3 using
α1 andA.

4 Conclusions

The objective of this study was to assess the capacity of es-
timating soil moisture over bare agricultural areas using C-
band polarimetric SAR. An inversion technique based on
the Multi-Layer Perceptron neural network was developed
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Fig. 8. Comparison between the estimated mv-values and those
measured. The error bars on the measured and estimated soil mois-
ture values correspond to one standard deviation. Each point corre-
sponds to the mean of soil moisture values of a given image date
using all training plots.The reference plots are at the outside of the
RADARSAT-2 image of 11 January 2011.

to estimate soil surface parameters from SAR data. Neural
networks (NNs) were trained with radar backscattering coef-
ficients generated from the Integral Equation Model (IEM).
The backscattering coefficients in HH, HV and VV polar-
izations were simulated using the IEM model for a wide
range of radar incidence angle, soil moisture (mv), and sur-
face roughness (rms). The NNs were then applied to an-
other simulated dataset and a real dataset composed of ten
RADARSAT-2 images in polarimetric mode to validate the
inversion technique and to determine the precision on the soil
moisture and surface roughness estimates.

The best mv estimation results were obtained when a priori
information was given to mv. The a priori information on mv
can be provided by an expert using meteorological data (e.g.
precipitations, temperature) and terrain knowledge (e.g. soil
type). The expert chooses among two simple configurations.
The soils are supposed very wet if the SAR image is acquired
after an intense rainy episode, and dry or wet for SAR images
acquired far from a rainy episode or in a context of fast drying
out of soil (high temperatures). Moreover, the use of polari-
metric parameters in the inversion procedure was tested. The
polarimetric parameterα1 was used to discriminate two soil
moisture classes (very wet soils, and dry to wet soils) and
the anisotropy parameterA to separate two soil roughnesses
(smooth withk rms< 1.0 and rough withk rms≥ 1.0). The
inversion errors obtained with the RADARSAT-2 images on
the mv estimates is about 0.065 cm3 cm−3 with a priori infor-
mation on mv compared with 0.098 cm3 cm−3 without a pri-
ori information on the soil parameters. The use of polarimet-
ric parameters slightly improves the soil moisture estimates
in comparison to the case without a priori information on the
soil parameters (0.083 as compared to 0.098 cm3 cm−3). This
is due to the weak dynamics of the polarimetric parameters
with the soil parameters for the C-band.

Results show also that the estimation of soil surface
roughness (rms) is possible with an accuracy around
0.5 cm (RMSE). The estimation is better for rms lower
than 2 cm. For higher rms, the NNs underestimate the
surface roughness.

The results of this study indicate that the inversion tech-
nique using data generated by the electromagnetic model
IEM are able to retrieve the soil moisture and surface rough-
ness with acceptable accuracy. These inversion results are
encouraging and indicate good potential for applying a neu-
ral network for soil parameters estimation. Nevertheless, we
note that the introduction of a constraint of pre-information
on soil moisture improves mv estimation. The quality of
the estimation of soil moisture is probably not correlated
to the incidence angle of SAR images (tested between
25◦ and 45◦).

The accuracy of soil moisture content estimates obtained
in this study (0.065 cm3 cm−3) could satisfy the require-
ments of operational users of soil moisture products. Walker
and Houser (2004) found that surface soil moisture obser-
vations for satellite products must have an accuracy better
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that 0.05 cm3 cm−3 to positively impact soil moisture fore-
casts. The current or future SAR sensors (e.g. RADARSAT-
2, TerraSAR-X, CosmoSky-Med, Sentinel-1) can provide
weekly soil moisture maps at a fine spatial scale (better than
50 m). However, the need of hydrological and agricultural
communities in terms of soil moisture accuracy and spatial
and temporal scale/resolution should be analyzed in detail
and compared to the potential of SAR-derived products.

Moreover, our approach could be tested on a dual-
polarization SAR imagery scenario in order to evaluate its
performance for the future GMES Sentinel-1 radar images.
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