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Methods for computing stress intensity factors (SIFs) for crack tips and generalized SIFs (GSIFs) for Vnotch tips in two-dimensional (2-D) domains were addressed in many papers in the past five decades, starting with [START_REF] Irwin | Onset of fast crack propagation in high strength steel and aluminum alloys[END_REF][START_REF] Irwin | Analysis of stresses and strains near the end of a crack transversing a plate[END_REF]. In realistic three-dimensional domains however, edge singularities (crack fronts and V-notch tip 1 curves) attracted much scarcer attention due to the complexity of the solution in the vicinity of edges (except a pioneering work as early as 1946, by Sneddon [START_REF] Sneddon | The distribution of stress in the neighbourhood of a crack in an elastic solid[END_REF], for the penny-shaped crack in an infinite domain). The SIFs and GSIFs are variable along such edges, defining univariate functions called edge stress intensity functions (ESIFs) and generalized edge stress intensity functions (GESIFs).

In the vicinity of straight and circular edges an explicit asymptotic series of the singular solutions was provided [START_REF] Costabel | A quasidual function method for extracting edge stress intensity functions[END_REF][START_REF] Omer | Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method[END_REF][START_REF] Yosibash | Edge stress intensity functions in polyhedral domains and their extraction by a quasidual function method[END_REF][START_REF] Yosibash | Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains[END_REF]. Each term of this series is characterized by:

• an exponent α k which belongs to a discrete set {α k , k ∈ N} of eigenvalues depending only on the geometry and the operator, and which determines the level of non-smoothness of the singularity. Any eigenvalue α k is computed by solving a 1-D problem. • a generalized eigenfunction expansion φ k,j,ℓ (ϕ) ( ϕ is an angular coordinate transverse to the edge) which depends on the geometry of the domain and the operator. The terms of this expansion are computed by solving a set of 1-D problems. • a function along the edge, denoted by A k (θ) ( θ is a coordinate along the edge) and called "generalized edge flux/stress intensity function" (GEFIF/GESIF) which determines the "amount of energy" residing in each singularity.

Based on the explicit representation of the solution to the Laplace and elasticity system in the vicinity of a circular edge in [START_REF] Yosibash | Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains[END_REF], here we extend the quasidual function method (QDFM) presented in the framework of 3-D straight edges in [START_REF] Costabel | A quasidual function method for extracting edge stress intensity functions[END_REF][START_REF] Omer | Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method[END_REF] to circular edges. This extension is demonstrated on the basis of the the Laplace equation. This is because it is a simpler elliptic operator that allows more transparent analytic computations and invokes all necessary characteristics of the elasticity system. Thus, the characteristics of the QDFM for circular edges can be more easily addressed so to be extended thereafter to the elasticity system for the computation of ESIFs for cracks occurring usually in pipes and pressure vessels.

We construct the quasidual functions (QDF) K

(α j )
n,m adapted to circular edges. They are the essential ingredient used to define a new functional, τ → J ρ 0 [τ, K (α j ) n,m ] , which is a surface integral on a torus of minor radius ρ 0 having the singular edge as its axis. The result of this functional determines an explicit representation of the GEFIF of the solution τ in a certain basis of functions, as opposed to other methods providing pointwise values along the edge. Since the GEFIF on a circular edge is a periodic function, it will be natural to construct the QDFs in such a way that the functional determines the Fourier coefficients of the GEFIF. Furthermore, the new method allows to extract the GEFIFs away from the singular edge, thus enables the use of coarse meshes and alleviates the necessity of complex refined mesh generation in the vicinity of 3-D singular edges. The obtained results are both accurate, efficient and robust.

Notation and preliminaries are introduced in section 2 and the dual-function method in 2-D domains, known also as the contour-integral method [START_REF] Blum | On finite element methods for elliptic equations on domains with corners[END_REF][START_REF] Babuška | The post-processing approach in the finite element method -Part 2: The calculation of stress intensity factors[END_REF], is recalled. It serves as the basis to the QDFM. In section 3 we extend the QDFM to circular domains by providing a mathematical analysis on its theoretical performance. It is then used in section 4 to extract the GEFIFs from axisymmetric solutions along circular cracks and circular V-notch edges. Our method can be compared with the method of the singular complement of [START_REF] Ciarlet | The Fourier singular complement method for the Poisson problem. II. Axisymmetric domains[END_REF]. Numerical examples using the p -version of the finite element method are also provided to demonstrate the efficiency of the QDFM in practical applications. Circular edges in nonaxisymmetric cases are addressed in section 5, and we summarize our results in section 6.

A PATH-INDEPENDENT INTEGRAL AROUND A CORNER IN 2-D

The Laplace equation in a 2-D domain expressed in polar coordinates (ρ, ϕ) located in the singular point P (see Figure 1) is given by

∆τ = 1 ρ 2 (ρ∂ ρ ) 2 + ∂ ϕϕ τ = 0 in Ω, (1) 
with either Dirichlet or Neumann homogeneous boundary conditions (BCs) on the faces Γ 1 and Γ 2 ( ϕ = ϕ 1 , ϕ 2 ) intersecting at P ,

τ = 0 on Γ 1 ∪ Γ 2 Drichlet BCs (2) ∂τ ∂ n = ∇τ • n = 0 on Γ 1 ∪ Γ 2 Neumann BCs ( 3 
)
where n is the outward normal vector. Solutions to (1) with ( 2) or (3) expand in the vicinity of P as asymp- 
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τ = k≥0 A k ρ α k φ k (ϕ) (4) 
where both the eigenvalues α k and eigenfunctions φ k (ϕ) may be, for the Laplace equation, explicitly computed [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]. They can be expressed as follows

α k = kπ ω and φ k (ϕ) = ρ kπ ω sin kπ ω (ϕ -ϕ 1 ) (Dirichlet) ρ kπ ω cos kπ ω (ϕ -ϕ 1 ) (Neumann)
. Each primal eigenpair is associated with a dual eigenpair ( -α k , ψ k (ϕ) ), that satisfies the PDE and BCs but does not belong to the energy space (equivalent to the H 1 (Ω) Sobolev space). For the Laplace equation ψ k (ϕ) ≡ φ k (ϕ) . These dual eigenpairs are used to construct dual singular functions

K (α j ) def = B j ρ -α j ψ j (ϕ), (5) 
where:

B j = 1 2α j D j (6) 
with the constant D j defined as the scalar product of the angular functions:

D j = ϕ 2 ϕ 1 φ j (ϕ)ψ j (ϕ) dϕ = ϕ 2 ϕ 1 φ 2 j (ϕ) dϕ . (7) 
The dual-function method, known also as the contour-integral method, is very efficient for the extraction of the generalized flux intensity factors (GFIFs) utilizing a path-independent integral [START_REF] Blum | On finite element methods for elliptic equations on domains with corners[END_REF][START_REF] Babuška | The post-processing approach in the finite element method -Part 2: The calculation of stress intensity factors[END_REF] along a path starting on Γ 1 and terminating on Γ 2 :

J Γ * τ, K (α j ) def = Γ * K (α j ) ∂ ρ τ -τ ∂ ρ K (α j ) dΓ = A j . (8) 
Here dΓ = ρ dϕ . Furthermore, J Γ * τ, K (α j ) is path-independent.

THE SURFACE-INTEGRAL

J ρ [τ, K (α j ) n,m ] AROUND A CIRCULAR EDGE IN 3-D 3.1.
Local coordinates around a circular edge. Consider a circular singular edge in a 3-D domain, generated by rotating the singular point P around the x 3 axis as shown in Figure 2. Cylindrical coordinates are (r, θ, x 3 ) with the distance r to the axis and the rotation angle θ . In general, neither the domain, nor the boundary conditions have to be axisymmetric, but for ease of presentation we consider the 3-D domain generated by the cross-section Ω . Locating a polar coordinate system (ρ, ϕ) at P , we have the relations

r = R + ρ cos ϕ and x 3 = ρ sin ϕ .
and the Laplace operator can be written in (ρ, ϕ, θ) coordinates as (see [START_REF] Yosibash | Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains[END_REF]):

             ∆ = 1 ρ 2 1 (1 + ρ R cos ϕ) 2 ∆(ϕ; ∂ ϕ , ρ∂ ρ , ∂ θ ) with ∆ def = 1 + ρ R cos ϕ 2 (ρ∂ ρ ) 2 + ∂ ϕϕ + 1 + ρ R cos ϕ × ρ R [cos ϕρ∂ ρ -sin ϕ∂ ϕ ] + ρ R 2 ∂ θθ (9) 
In the vicinity of the circular edge let the function τ satisfy

∆τ = 0, i.e. ∆(ϕ; ∂ ϕ , ρ∂ ρ , ∂ θ )τ (ϕ, ρ, θ) = 0, (10) 
with homogeneous Dirichlet or Neumann BCs on the re-entrant faces

τ = 0 on ϕ = ϕ 1 , ϕ = ϕ 2 , Dirichlet BCs (11) ∇τ • n = 0 on ϕ = ϕ 1 , ϕ = ϕ 2 , Neumann BCs (12) 
The interior equation [START_REF] Maz | Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten[END_REF] with [START_REF] Omer | Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method[END_REF] or ( 12) is completed by (non-zero) regular boundary conditions on the rest of the boundary of Ω .
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3-D domain of interest Ω and the (ρ, ϕ, θ) coordinate system.

3.2.

Primal singular functions and their shadows. According to [START_REF] Maz | Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten[END_REF], solutions τ to the 3-D problem [START_REF] Maz | Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten[END_REF] with BCs [START_REF] Omer | Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method[END_REF] or [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF] expand as asymptotic series in powers of ρ and log ρ as ρ → 0 . The structure of this asymptotic series is driven by the principal part ∆ prcp of the operator ∆ , frozen along the edge. Using (9), we find ∆ prcp = ρ -2 (ρ∂ ρ ) 2 + ∂ ϕϕ . As a consequence, the 3-D asymptotic series is generated by the 2-D eigenpairs α k and φ k presented in Section 2. Due to the regularity of data, the 3-D asymptotic series takes the general form of a sum in k ≥ 1 of singular packets

τ (ϕ, ρ, θ) ≃ ρ→0 k≥0 A k (θ)ρ α k φ 0,k,0 (ϕ) + Z k [A k ](ϕ, ρ, θ). (13) 
The functions φ 0,k,0 def = φ k are called primal (singular) functions. Each of the higher order terms Z k has a composite structure involving so-called shadow functions. Since the operator ∆ has constant coefficients with respect to the variable θ and involves no first-order derivative with respect to θ , the general form appearing in [START_REF] Maz | Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten[END_REF] simplifies. In the non-resonant case (i.e. when α k -α j is never integer) Z k involves even-order derivatives of A k and a two-parameter family of shadow functions: φ ℓ,k,i for ℓ = 0, 2, 4, . . . and i = 0, 1, 2, . . .

∀k ≥ 1, Z k [A k ](ϕ, ρ, θ) ≃ ρ→0 ℓ=0,2,4,••• i≥0 ℓ+i>0 ∂ ℓ θ A k (θ) ρ α k ρ R i+ℓ φ ℓ,k,i (ϕ). (14) 
Fortunately, the important case of cracks, which is a priori resonant, enters also in this framework by virtue of the absence of logarithmic terms, [START_REF] Costabel | Asymptotics without logarithmic terms for crack problems[END_REF]. Thus we write

τ = k≥0 ℓ=0,2,4,••• ∂ ℓ θ A k (θ) ρ α k i≥0 ρ R i+ℓ φ ℓ,k,i (ϕ) (15) 
where A k (θ) are the generalized edge flux intensity functions (GEFIFs).

Remark 1. The explicit ODEs for the determination of φ ℓ,k,i provided in [START_REF] Yosibash | Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains[END_REF] are written in a more abstract form here for the purpose of mathematical proofs (where we also introduce many notations and indices local to this section).

The generalized relations satisfied by all φ ℓ,k,i may be described with the help of the expansion of the Laplace operator ∆ defined in [START_REF] Irwin | Analysis of stresses and strains near the end of a crack transversing a plate[END_REF] with respect to powers of ρ R :

∆ = 2 ℓ=0 2 i=0 ρ R i+ℓ ∂ ℓ θ M ℓ,i (ϕ; ∂ ϕ , ρ∂ ρ ) (16) 
where the M ℓ,i are partial differential operators of order ≤ 2 , with coefficients independent of ρ . Explicitly we have (note that

M 0,0 = ρ 2 ∆ prcp )          M 0,0 = (ρ∂ ρ ) 2 + ∂ ϕϕ , M 0,1 = 2 cos ϕ (ρ∂ ρ ) 2 + 1 2 (ρ∂ ρ ) + ∂ ϕϕ -sin ϕ ∂ ϕ , M 0,2 = cos 2 ϕ (ρ∂ ρ ) 2 + (ρ∂ ρ ) + ∂ ϕϕ -1 2 sin 2ϕ ∂ ϕ , M 1,i = 0, i = 0, 1, 2, M 2,0 = 1, M 2,1 = 0, M 2,2 = 0. (17)
For each k , the equations that φ ℓ,k,i satisfy are found relying on the fact that each singular packet in (13)

A k (θ)ρ α k φ 0,k,0 (ϕ) + Z k [A k ](ϕ, ρ, θ)
is a formal solution of [START_REF] Maz | Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten[END_REF], for any coefficient A k . Thus we find for each k ≥ 1

2 ℓ=0 2 i=0 ρ R i+ℓ ∂ ℓ θ M ℓ,i (ϕ; ∂ ϕ , ρ∂ ρ ) ℓ ′ ≥0 i ′ ≥0 ∂ ℓ ′ θ A k (θ)ρ α k ρ R i ′ +ℓ ′ φ ℓ ′ ,k,i ′ (ϕ) = 0. ( 18 
)
Using the relation

M ℓ,i (ϕ; ∂ ϕ , ρ∂ ρ )ρ α k ρ R i ′ +ℓ ′ = ρ α k ρ R i ′ +ℓ ′ M ℓ,i (α k + ℓ ′ + i ′ )
where M ℓ,i (β) is a shorthand for M ℓ,i (ϕ; ∂ ϕ , β) , equation (18) becomes

ρ α k 2 ℓ=0 2 i=0 ℓ ′ ≥0 i ′ ≥0 ρ R i+ℓ+i ′ +ℓ ′ ∂ ℓ+ℓ ′ θ A k (θ) M ℓ,i (α k + ℓ ′ + i ′ )φ ℓ ′ ,k,i ′ (ϕ) = 0. (19) 
Setting λ = ℓ + ℓ ′ and µ = i + i ′ , we find the equivalent relation

λ≥0 µ≥0 2 ℓ=0 2 i=0 ρ R λ+µ ∂ λ θ A k (θ) M ℓ,i (α k + λ -ℓ + µ -i)φ λ-ℓ,k,µ-i (ϕ) = 0. ( 20 
)
This relation holds for any function A k (θ) and for all ρ > 0 if and only if

2 ℓ=0 2 i=0 M ℓ,i (α k + λ -ℓ + µ -i) φ λ-ℓ,k,µ-i (ϕ) = 0, ∀λ, µ ≥ 0 (21)
Equation ( 21) is the key for the recursive construction of the shadow terms (the explicit recursive equations are given in [START_REF] Yosibash | Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains[END_REF]). In [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF] we provide formulas for the functions φ ℓ,k,i (ϕ) in the case of a penny-shaped crack and a 90 • V-notch with Neumann BCs.

3.3.

Dual singular functions, their shadows, and the surface-integral. To extract the generalized edge flux intensity functions A k (θ) , we extend the path independent-integral presented in the previous section.

Similar to the primal functions and their shadows, for any j ≥ 1 , we introduce the dual function ψ 0,j,0 def = ψ j and its shadows ψ h,j,f so that same relations as (21) are satisfied

2 ℓ=0 2 i=0 M ℓ,i (-α j + λ -ℓ + µ -i) ψ λ-ℓ,j,µ-i (ϕ) = 0, ∀λ, µ ≥ 0 (22)
Explicit instances of equation ( 22) are provided in sections 4 and 5. Formulas for the functions ψ ℓ,k,i (ϕ) are given in [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF] in case of homogeneous Neumann BCs. Quasidual functions (QDF) are defined as the sum of a dual eigenfunction and a finite number of its dual shadows. To each QDF is associated an exponent α j , two non-negative cut-off integers n and m and a (test) function B j = B j (θ) , defining the function K

(α j ) n,m [B j ] as: K (α j ) n,m [B j ] def = m h=0,2,4,••• ∂ h θ B j (θ)ρ -α j n f =0 ρ R h+f ψ h,j,f (ϕ) (23) 
The angular functions B j are not specified at this stage and will be later chosen as trigonometric functions. When no confusion is possible, the mention of B j will be omitted in the notation of the QDF. Multiplying ∆τ = 0 by K

(α j )
n,m , then integrating over the subdomain Ω * (see Figure 2) and applying Green's theorem one obtains,

0 = ∂Ω * (K (α j ) n,m ∇τ -τ ∇K (α j ) n,m ) • n dΓ + Ω * τ ∆K (α j ) n,m dΩ. ( 24 
)
The Laplace operator applied on K

(α j ) n,m , i.e. ∆K (α j )
n,m is zero only when n, m → ∞ . For a finite n and m ∆K (α j ) n,m = 0 , thus the last term in (24) does not vanish in general.

On the two flat surfaces Γ 1 and Γ 2 homogeneous boundary conditions are prescribed thus either τ = 0 and K (α j ) n,m = 0 , or ∂ nτ = 0 and ∂ nK (α j ) n,m = 0 , for a circular closed edge thus (24) reduces to:

0 = 2π 0 ϕ 2 ϕ 1 (K (α j ) n,m ∇τ -τ ∇K (α j ) n,m ) • n ρ 0 (R + ρ 0 cos ϕ)ρ 0 dϕdθ (25) 
+ 2π 0 ϕ 1 ϕ 2 (K (α j ) n,m ∇τ -τ ∇K (α j ) n,m ) • n ρ 1 (R + ρ 1 cos ϕ)ρ 1 dϕdθ + Ω * τ ∆K (α j )
n,m dΩ .

Since ∇ • n ρ 0 = ∂ ρ and ∇ • n ρ 1 = -∂ ρ , we obtain: 2π 0 ϕ 2 ϕ 1 K (α j ) n,m ∂ ρ τ -τ ∂ ρ K (α j ) n,m ρ 0 (R + ρ 0 cos ϕ)ρ 0 dϕdθ (26) = 2π 0 ϕ 2 ϕ 1 K (α j ) n,m ∂ ρ τ -τ ∂ ρ K (α j ) n,m ρ 1 (R + ρ 1 cos ϕ)ρ 1 dϕdθ - Ω * τ ∆K (α j )
n,m dΩ.

Definition 2. For ρ > 0 small enough, we define the surface-integral

J ρ [τ, K (α j )
n,m ] over the torus of minor radius ρ and major radius R that surrounds the circular edge by:

J ρ τ, K (α j ) n,m def = 2π 0 ϕ 2 ϕ 1 K (α j ) n,m ∂ ρ τ -τ ∂ ρ K (α j ) n,m ρ (R + ρ cos ϕ)ρ dϕdθ. (27) 
With the new notation, (26) becomes

J ρ 0 τ, K (α j ) n,m -J ρ 1 τ, K (α j ) n,m = - Ω * τ ∆K (α j ) n,m dΩ. ( 28 
)
In contrast with the homogeneous 2-D case as shown in section 2, cf [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], the integral J ρ τ, K

(α j )
n,m is surfacedependent, i.e., it depends on ρ : Lemma 3. For any chosen τ satisfying ∆τ = 0 and zero BC's in a neighborhood of the circular edge, for any chosen positive integers j , n and m , for any smooth chosen function B j , there holds for ρ 0 ≥ ρ 1 > 0 small enough

J ρ 0 τ, K (α j ) n,m -J ρ 1 τ, K (α j ) n,m = O ρ 0 →0 ρ α 1 -α j +min{m,n}+1 ρ 0 ρ 1 (29)
Proof. We have to evaluate ∆K (α j ) n,m . For this we consider ∆K (α j ) n,m . Applying (16), and in similarity with (19) we find

∆K (α j ) n,m = ρ -α j 2 ℓ=0 2 i=0 m h=0 n f =0 ρ R i+ℓ+f +h ∂ ℓ+h θ B j M ℓ,i (-α j + h + f ) ψ h,j,f (30) 
= ρ -α j m+2 λ=0 n+2 µ=0 min{2,m+2-λ} ℓ=0 min{2,n+2-µ} i=0 ρ R λ+µ ∂ λ θ B j (31) M ℓ,i (-α j + λ -ℓ + µ -i) ψ λ-ℓ,j,µ-i .
Using (22) we observe that the terms involving values of λ and µ such that min{2, m + 2 -λ} = 2 and min{2, n + 2 -µ} = 2 cancel in the sum (31), so it becomes

∆K (α j ) n,m = ρ -α j m+2 λ=m+1 m+2-λ ℓ=0 n+2 µ=0 min{2,n+2-µ} i=0 ρ R λ+µ ∂ λ θ B j (32) M ℓ,i (-α j + λ -ℓ + µ -i) ψ λ-ℓ,j,µ-i + ρ -α j m λ=0 2 ℓ=0 n+2 µ=n+1 n+2-µ i=0 ρ R λ+µ ∂ λ θ B j M ℓ,i (-α j + λ -ℓ + µ -i) ψ λ-ℓ,j,µ-i .
Then formula (29) is a straightforward consequence of the expansion (15) of τ , and of the identities ( 9), ( 32) and (28).

3.4. Extracting circular GEFIFs using the quasidual-function method. We now prove the following theorem that shows how the J ρ integral evaluated with the quasi-dual functions (23) allow an accurate evaluation of moments of the coefficients A k in the expansion [START_REF] Yosibash | Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains[END_REF]. Theorem 4. Let the function τ satisfy interior equation [START_REF] Maz | Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten[END_REF] with boundary conditions [START_REF] Omer | Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method[END_REF] or [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF]. With K (α j ) n,m [B j ] defined by (23) and D j in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], there hold the following formulas for the extraction of the GEFIF A j of τ , cf (15): (i) Concerning the first GEFIF A 1 , we have:

J ρ τ, K (α 1 ) n,m [B 1 ] = 2α 1 RD 1 2π 0 A 1 B 1 dθ + O ρ 1+min{n,m} (33) 
(ii) This formula generalizes to the next GEFIF A j , j = 2, 3, . . . if there are no resonances (i.e. in the case when α j -α k is not an integer for k < j ):

J ρ τ, K (α j ) n,m [B j ] = 2α j RD j 2π 0 A j B j dθ + O ρ α 1 -α j +1+min{n,m} (34) 
Returning to the definitions ( 27) and [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], formula (34) results in:

2π 0 ϕ 2 ϕ 1 K (α j ) n,m [B j ] ∂ ρ τ -τ ∂ ρ K (α j ) n,m [B j ] ρ (R + ρ cos ϕ)ρ dϕdθ = 2π 0 A j B j dθ 2α j R ϕ 2 ϕ 1 φ 2 j dϕ + O ρ α 1 -α j +1+min{n,m} . (35) 
This means that the J ρ integral used with the QDF K

(α j ) n,m [B j ]
allows the extraction of the moment of A j against B j if n and m are chosen larger than α j -α 1 . Then the error O ρ α 1 -α j +1+min{n,m} converges to 0 as ρ → 0 . In practice, the use of larger values for n and m allows to take larger values of ρ for a same level of error. This permits to combine this extraction method with not strongly refined meshes.

Remark 5. In the axisymmetric case, all functions A k are constant along the edge. Thus we choose B j as constant functions. This corresponds to the angular mode of order 0 . Hence the associated QDFs satisfy

K (α j ) n,0 [B j ] = K (α j ) n,m [B j ]
for all m . Remark 6. In the general case, taking m = n optimizes the number of shadow functions with respect to m and n so that (34) becomes

J ρ τ, K (α j ) n,m [B j ] = 2α j RD j 2π 0 A j B j dθ + O ρ α 1 -α j +1+n (36) 
In fact, when m is even we have K

(α j ) n,m = K (α j ) n,m+1 , thus n = m + 1 is optimal.
Remark 7. The generalization of this method to the case of the equation ∆τ = F with a smooth function F depends on the values of F along the edge. If F is zero with its derivatives, the method can be used without modification. In the opposite case, one has first to determine a particular solution of the equation ∆τ pol = F pol with BCs, where F pol the Taylor expansion of F along the edge. In a second step, the method will be used for τ -τ pol and provide the GEFIF of τ .

Proof. of Theorem 4. First we investigate the surface-integral

J ρ [τ, K (α j )
n,m ] when τ is replaced by finite sums of primal functions with their shadows. Recall definition ( 23)

K (α j ) n,m [B j ] = m h=0,2,4,••• ∂ h θ B j (θ) ρ -α j n f =0 ρ R h+f ψ h,j,f (ϕ) . ( 37 
)
Likewise we define finite singular expansions

τ (α k ) n,m [A k ] def = m ℓ=0,2,4,••• ∂ ℓ θ A k (θ) ρ α k n i=0 ρ R ℓ+i φ ℓ,k,i (ϕ) . ( 38 
)
Although in the expansion ( 15) the series associated with the eigenvalue α k includes an infinite number of terms, for the mathematical analysis we first consider a finite sum. We investigate the surface integrals

J ρ τ (α k ) n ′ ,m ′ [A k ], K (α j ) n,m [B j ] .
Instead of (28), we have

J ρ 0 τ (α k ) n ′ ,m ′ [A k ], K (α j ) n,m [B j ] -J ρ 1 τ (α k ) n ′ ,m ′ [A k ], K (α j ) n,m [B j ] = Ω * K (α j ) n,m [B j ] ∆τ (α k ) n ′ ,m ′ [A k ] -τ (α k ) n ′ ,m ′ [A k ] ∆K (α j ) n,m [B j ] dΩ. (39) 
Since ∆τ

(α k ) n ′ ,m ′ [A k ] satisfies mutatis mutandis (32), one obtains that K (α j ) n,m [B j ] ∆τ (α k ) n ′ ,m ′ [A k ] -τ (α k ) n ′ ,m ′ [A k ] ∆K (α j ) n,m [B j ] = ρ α k -α j n+m+n ′ +m ′ +4 ν=1+min{n,m,n ′ ,m ′ } ρ ν F ν (ϕ, θ). ( 40 
)
where the functions F ν do not depend on ρ , but depend on all other data. Taking the relation ( 9) between ∆ and ∆ into account and the fact that dΩ = ρ(R + ρ cos ϕ)dρdϕdθ we find a sequence of real coefficients G ν such that

Ω * K (α j ) n,m [B j ] ∆τ (α k ) n ′ ,m ′ [A k ] -τ (α k ) n ′ ,m ′ [A k ] ∆K (α j ) n,m [B j ] dΩ = ∞ ν=1+min{n,m,n ′ ,m ′ } ρ α k -α j +ν ρ 0 ρ 1 G ν (41)
The series in the right hand side of ( 41) is convergent for ρ 0 small enough. We combine (39) with (41) for ρ 0 = ρ and ρ 1 = ε :

J ρ τ (α k ) n ′ ,m ′ [A k ], K (α j ) n,m [B j ] -J ε τ (α k ) n ′ ,m ′ [A k ], K (α j ) n,m [B j ] = ∞ ν=1+min{n,m,n ′ ,m ′ } ρ α k -α j +ν G ν - ∞ ν=1+min{n,m,n ′ ,m ′ } ε α k -α j +ν G ν . ( 42 
)
We consider ρ as fixed and let ε tend to 0 . We can write

J ε τ (α k ) n ′ ,m ′ [A k ], K (α j ) n,m [B j ] = C + ∞ ν=1+min{n,m,n ′ ,m ′ } ε α k -α j +ν G ν . ( 43 
)
where C is a constant independent of ε . Now, using (27) and expressions (37)-(38), we find coefficients

H k,j | n,m,n ′ ,m ′ ν [A k , B j ] given by H k,j | n,m,n ′ ,m ′ ν [A k , B j ] = R 1-ν m h=0,2, n f =0 m ′ ℓ=0,2, n ′ i=0 h+f +ℓ+i=ν 2π 0 ∂ ℓ θ A k (θ) ∂ h θ B j (θ) dθ (α k + α j + ℓ + i -h -f ) ϕ 2 ϕ 1 φ ℓ,k,i (ϕ) ψ h,j,f (ϕ) dϕ + R 1-ν m h=0,2, n f =0 m ′ ℓ=0,2, n ′ i=0 h+f +ℓ+i=ν-1 2π 0 ∂ ℓ θ A k (θ) ∂ h θ B j (θ) dθ (α k + α j + ℓ + i -h -f ) ϕ 2 ϕ 1 φ ℓ,k,i (ϕ) ψ h,j,f (ϕ) cos ϕ dϕ
(44) such that for any ρ small enough

J ρ τ (α k ) n ′ ,m ′ [A k ], K (α j ) n,m [B j ] = n+m+n ′ +m ′ +1 ν=0 ρ α k -α j +ν H k,j | n,m,n ′ ,m ′ ν [A k , B j ]. (45) 
Using this for ρ = ε and combining with (43) we obtain

n+m+n ′ +m ′ +1 ν=0 ε α k -α j +ν H k,j | n,m,n ′ ,m ′ ν [A k , B j ] = C + ∞ ν=1+min{n,m,n ′ ,m ′ } ε α k -α j +ν G ν . (46) 
We note that by definition, the coefficient

H k,j | n,m,n ′ ,m ′ ν [A k , B j ] does not depend on n, m, n ′ , m ′ as soon as ν ≤ min{n, m, n ′ , m ′ } . We denote it by H k,j ν [A k , B j ]
. Thus, identifying the powers of ε in (46), we find that

H k,j ν [A k , B j ] = 0, ∀ν ≤ min{n, m, n ′ , m ′ } such that α k -α j + ν = 0. (47) 
In contrast, when α k -α j +ν = 0 , the factor H k,j ν [A k , B j ] does not need to be zero. Typically α k -α j +ν = 0 for k = j and ν = 0 . In this case, (44) yields

If k = j, H k,j 0 [A k , B j ] ≡ H k,k 0 [A k , B k ] = 2π 0 A k (θ)B k (θ) dθ 2α k R ϕ 2 ϕ 1 φ 2 k (ϕ) dϕ . (48)
From ( 45) and (47) we deduce for m ′ ≥ m and n ′ ≥ n

J ρ τ (α k ) n ′ ,m ′ [A k ], K (α j ) n,m [B j ] =              O ρ→0 ρ α k -α j +1+min{n,m} if α j -α k ∈ {0, . . . , min{n, m}} H k,j ν [A k , B j ] + O ρ→0 ρ α k -α j +1+min{n,m} if α j -α k := ν ∈ {0, . . . , min{n, m}} (49) 
By linearity we deduce from ( 15) and (49) (considering the entire solution τ , so that we can take n ′ ≥ n and m ′ ≥ m )

J ρ τ, K (α j ) n,m [B j ] = k ρ α k -α j    min{n,m} ν=0 ρ ν H k,j ν [A k , B j ] + O ρ→0 ρ 1+min{n,m}    (50) 
In particular, if j = 1 the only non-zero coefficient H k,j ν is for k = j = 1 and ν = 0 . Combining (47)-(50), we have proved the theorem.

In the following sections, we specify the use of the extraction formula (35) for axisymmetric as well as nonaxisymmetric solutions in domains with circular edges. We also extend the method to cases for which α k -α j are integers ("resonant" case). Numerical tests will demonstrate the efficiency of (35) for extracting GEFIFs from numerical solutions.

EXTRACTING CIRCULAR GEFIFS FOR AXISYMMETRIC SOLUTIONS BY THE QDFM

In the axisymmetric case the coefficients A k are θ independent, so the solution τ may be expressed as follows

τ (ρ, ϕ) = k≥0 A k ρ α k i≥0 ρ R i φ 0,k,i (ϕ). (51) 
Thus, for the QDFs K

(α j )
n,0 [B j ] in the axisymmetric case, we take B j being θ independent (a constant) and m = 0 :

K (α j ) n,0 (ρ, ϕ)[B j ] = B j ρ -α j n f =0 ρ R f ψ 0,j,f (ϕ). ( 52 
)
The explicit equations for the dual eigenfunctions and their shadows ψ 0,j,f (ϕ) are obtained from ( 22) and [START_REF] Yosibash | Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains[END_REF]:

α 2 j ψ 0,j,0 + ψ ′′ 0,j,0 = 0, (53) 
(-α j + 1) 2 ψ 0,j,1 + ψ ′′ 0,j,1 = --α j cos ϕ ψ 0,j,0 -sin ϕ ψ ′ 0,j,0 , (54) 
(-α j + i) 2 ψ 0,j,f + ψ ′′ 0,j,f = -[(-α j + f )(-α j + f -1) cos ϕ ψ 0,j,f -1 (55) 
-sin ϕ ψ ′ 0,j,f -1 + cos ϕ ψ ′′ 0,j,f -1 , f ≥ 2, for ϕ 1 < ϕ < ϕ 2 , completed by homogeneous BCs ψ 0,j,f = 0 on ϕ 1 , ϕ 2 homogeneous Drichlet BCs (56)

∂ ϕ ψ 0,j,f = 0 on ϕ 1 , ϕ 2 homogeneous Neumann BCs. (57) Since B j is constant, the QDF K (α j ) n,0 [B j ] coincides with K (α j ) n,n [B j ] .
Taking into account that 2π 0 A j B j dθ = 2πA j B j , we find that formula (34) becomes in the axisymmetric case:

J ρ τ, K (α j ) n,0 [B j ] = 4πα j RD j A j B j + O ρ α 1 -α j +n+1 , (58) 
Therefore, choosing B j as:

B j = 1 4πα j RD j (59) 
equations ( 58) and (60) result in A j alone with a remainder dependent on ρ . We illustrate this formula by several particular examples. We even find an improvement for a circular crack with Neumann BC's: For a certain finite set of integers j and n we have found that, with B j given by (59)

J ρ τ, K (α j ) n,0 [B j ] = A j + O ρ 2(α 1 -α j +n+1) . ( 60 
)
Remark 8. In the general situation of non-axisymmetric data, the use of constant B j given by (59) provides an approximation of the mean value of the GESIF

1 2π 2π 0 A j (θ) dθ,
with the same rates (58) or (60). 11 ) as follows (the explicit expressions for φ 0,k,i are provided in [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF]):

α k = 0, 1 2 , 1, 3 2 , 2, 5 2 , 3, • • • . We represent τ up to O(ρ
τ = A 0 + A 1 ρ 1/2 10 i=0 ρ R i φ 0,1,i + A 2 ρ 10 i=0 ρ R i φ 0,2,i (61) 
+ A 3 ρ 3/2 9 i=0 ρ R i φ 0,3,i + A 4 ρ 2 9 i=0 ρ R i φ 0,4,i + + • • • + A 21 ρ 21/2 φ 0,21,0 + O(ρ 11 ).
Remark 9. Knowing the explicit expansion (61) is not required to implement the QDFM. We provide it for two reasons: First to investigate the cancelations leading to the super convergence rate (60), and second to implement boundary data in numerical models, so that the exact solution is close to (61).

Remark 10. The eigenfunctions and shadows associated with the integer eigenvalues are orthogonal to the dual eigenfunctions and dual shadows associated with half-integer eigenvalues under the J ρ integral. This is the reason that the terms associated with A 0 , A 2 , A 4 , • • • are absent from formulas (66) and sequel.

Because (61) is independent of θ , the first terms φ 0,j,0 = φ j and ψ 0,j,0 = ψ j of the primal and dual singular functions are given by

φ j (ϕ) = ψ j (ϕ) = cos jϕ 2 j = 0, 2, 4, • • • sin jϕ 2 j = 1, 3, 5, • • • ϕ ∈ (-π, π). (62) 
Thus according to (7) D j = π and we choose as in (59)

B j = 1 4π 2 α j R = 1 2jπ 2 R . (63) 
4.1.1. Extracting A 1 . To extract A 1 , according to (63) we take B 1 = 1/(2π 2 R) . In order to simplify notations, we write

K (1/2) n,0 def = K (1/2) n,0 [B 1 ] with B 1 = 1 2π 2 R . ( 64 
)
For a crack the quasi-dual functions K

(1/2) n,0
have a particular simple form (when compared to other ones, see [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF]). We find

K (1/2) n,0 = 1 2π 2 R ρ -1/2 n i=0 (-1) i β i sin (2i + 1)ϕ 2 ρ R i ( 65 
)
with the constants β i given in Table 1. . The expected convergence rates as ρ → 0 are given in (49). Here, relying on the explicit expressions of the primal singular and shadow angular functions φ 0,k,i and their dual analogues ψ 0,j,f provided in [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF], we calculate J ρ 0 τ, K

β 0 β 1 β 2 β
(1/2) n,0
for n = 0, . . . , 3 and obtain the following.

J ρ 0 τ, K (1/2) 0,0 = A 1 1 - ρ 3 0 64R 3 + • • • + A 3 ρ 2 0 4R + • • • (66) + A 5 - ρ 4 0 32R 2 + • • • + A 7 ρ 6 0 128R 3 + • • • + • • • = A 1 + O ρ 2 0 R J ρ 0 τ, K (1/2) 1,0 = A 1 1 - 3ρ 5 0 2 10 R 5 + • • • + A 3 3ρ 6 0 1120R 5 + • • • (67) + A 5 - 3ρ 4 0 32R 2 + • • • + A 7 ρ 6 0 64R 3 + • • • + A 9 - 9ρ 8 0 2 11 R 4 + • • • + • • • = A 1 + O ρ 4 0 R 2 J ρ 0 τ, K (1/2) 2,0 = A 1 1 - 75ρ 7 0 2 17 R 7 + • • • + A 3 ρ 8 0 2 8 7R 7 + • • • (68) + A 5 - 5ρ 8 0 2 9 7R 6 + • • • + A 7 5ρ 6 0 128R 3 + • • • + A 9 - 15ρ 8 0 2 11 R 4 + • • • + • • • = A 1 + O ρ 6 0 R 3 J ρ 0 τ, K (1/2) 3,0 = A 1 1 - 245ρ 9 0 2 21 R 9 + • • • + A 3 ρ 10 0 2 8 33R 9 + • • • (69) + A 5 - 5ρ 10 0 2 9 33R 8 + • • • + A 7 35ρ 10 0 2 9 99R 7 + • • • + A 9 - 35ρ 8 0 2 11 R 4 + • • • + • • • = A 1 + O ρ 8 0 R 4
One may observe from formulas (66)-(69) that for a circular crack in an axisymmetric case, the first GEFIF A 1 may be extracted by the QDFM, using K

(1/2) n,0
with an improved remainder as in (60) when compared to (58):

J ρ 0 τ, K (1/2) n,0 = A 1 + O ρ n+1 0 ρ 0 R n+1 (70) 
The remainder corresponds to the contribution of A 2n+3 if it is non-zero. When compared with the proved generic rates of convergence, cf (49), which particularize as

J ρ τ (k/2) n,0 [A k ], K (1/2) n,0 =      A 1 + O ρ→0 ρ 1+n if k = 1, O ρ→0 ρ (k-1)/2+1+n if k ≥ 3, (71) 
we observe that a coincidence of the rates occurs when k = 2n + 3 and a practical improvement otherwise.

4.1.2.

Extracting A 3 -the problem of resonance and its remedy. By same methods presented, we aim at computing

J ρ 0 [τ, K (α 3 =3/2) n,0
] with

K (3/2) n,0 def = K (3/2) n,0 [B 3 ] with B 3 = 1 6π 2 R , (72) 
Since α 3 > α 1 , according to the general principles, cf (58), one should use a QDF which has at least one shadow, i.e., K

(3/2) 1,0
or one with a larger n . More precisely, the proved generic convergence rates, cf (49), particularize as

J ρ τ (k/2) n,0 [A k ], K (3/2) n,0 =                    O ρ→0 ρ 0 if k = 1 and n = 0, γA 1 + O ρ→0 ρ n if k = 1 and n ≥ 1, A 3 + O ρ→0 ρ 1+n if k = 3, O ρ→0 ρ (k-3)/2+1+n if k ≥ 5, (73) 
where the constant γ is a shorthand for the coefficient

H 1,3 1 [A 1 = 1, B 3 ]
. But since the remainders have de facto better decay properties, we may use K

(3/2) 0,0 as well. With K (3/2) 0,0 = 1 6π 2 R ρ -3/2 sin 3ϕ 2 , (74) 
we find

J ρ 0 [τ, K (3/2) 0,0 ] = A 1 1 3R + 5ρ 3 0 768R 4 + • • • + A 3 1 - 3ρ 4 0 560R 4 + • • • (75) + A 5 ρ 2 0 4R + • • • = A 1 1 3R + A 3 + O ρ 2 0 R .
We encounter a "resonance" when trying to extract A j associated with α j = α k + ν , so that j > k and ν ∈ N . This "resonance" can be easily removed if we consider K

(1/2) 0,0

, which extracts exactly A 1 , see (66).

Instead of K

(3/2) 0,0 only, we choose the extraction function:

K(3/2) 0,0 def = K (3/2) 0,0 + cK (1/2) 0,0 with c = -1 3R so one obtains J ρ 0 [τ, K(3/2) 0,0 ] = A 3 + O ρ 2 0 R , (76) 
which leads to the lowest order extraction formula for A 3 .

If we try to use the QDF:

K (3/2) 1,0 = 1 6π 2 R ρ -3/2 sin 3 2 ϕ - 1 4 sin 5ϕ 2 ρ R (77) then computing J ρ 0 [τ, K (3/2)
1,0 ] with (61) results:

J ρ 0 τ, K (3/2) 1,0 = A 1 1 3R + ρ 3 0 192R 4 + • • • + A 3 1 - ρ 2 0 12R 2 + • • • (78) + A 5 ρ 4 0 96R 3 + • • • + A 7 - 9ρ 4 0 96R 2 + • • • + • • • = 1 3R A 1 + A 3 + O ρ 2 0 R 2
In view of (78) due to the resonance we construct again the modified QDF:

K(3/2) 1,0 def = K (3/2) 1,0 - 1 3R K (1/2) 1,0 (79) 
= 1 6π 2 R ρ -3/2 sin 3ϕ 2 - 1 4 ρ R sin 5ϕ 2 - ρ R sin ϕ 2 + 1 4 ρ R 2 sin 3ϕ 2 
This leads to the extraction formula for A 3 :

J ρ 0 [τ, K(3/2) 1,0 ] = A 3 + O ρ 2 0 R 2 , (80) 
In a similar manner we may construct:

K(3/2) 2,0 def = K (3/2) 2,0 - 1 3R K (1/2) 2,0 (81) 
= 1 6π 2 R ρ -3/2 sin 3ϕ 2 - 1 4 ρ R sin 5ϕ 2 + ρ R 2 1 4 sin 3ϕ 2 + 3 32 sin 7ϕ 2 - ρ R sin ϕ 2 + 1 4 ρ R 2 sin 3ϕ 2 - 3 32 ρ R 3 sin 5ϕ 2
and obtain that:

J ρ 0 τ, K(3/2) 2,0 = A 3 + O ρ 4 0 R 3 (82) 
As one notices, the remedy to the "resonance" problem is to calculate

K (3/2) n,0
without taking the resonance with α 1 into account. Then the modified QDF is defined

K(3/2) n,0 def = K (3/2) n,0 - 1 3R K (1/2) n,0
that extracts A 3 for any n .

Remark 11. In the case of A 5 , two resonances occur ( α 5 = α 1 + 2 = α 3 + 1 ), then we construct the modified QDF by addition of the two QDFs associated with α 1 and α 3 , multiplied by two constants:

K(5/2) n,0 def = K (5/2) n,0 - 2 5R K (3/2) n,0 + 2 15R 2 K (1/2) n,0 .
Using this formula for j = 5 , we can demonstrate by analytic computations the validity of the following estimate for j = 5 and n = 0, 1, 2, 3 :

J ρ 0 τ, K(α j ) n,0 =    A j + O ρ 2 R n+1 n < α j -α 1 A j + O ρ 2(α 1 -α j )+n+1 ρ R n+1 n ≥ α j -α 1 (83) 
Formulas ( 76), (80), (82) show the same estimate for j = 3 and n = 0, 1, 2 .

In the general case of resonance, for j = 2ℓ + 1 , the modified QFM takes the form:

K(α j ) n,0 = K (α j ) n,0 + c 1 K (α j -1) n,0 + • • • + c ℓ K (α 1 )
n,0 . 4.2. Axisymmetric solution of a 3π/2 V-notch with homogeneous Neumann BCs. We apply the QDFM for the extraction of the GEFIFs associated with a circular 3π/2 V-Notch (ω = 3π/2, ϕ 1 = -π, ϕ 2 = π/2) and homogenous Neumann BCs. In this case the eigenvalues are α k = 0, 2 3 , 4 3 , 6 3 , 8 3 • • • , and the solution τ can be expressed as follows (see [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF] for the expressions of φ ℓ,k,i ):

τ = A 1 ρ 2/3 8 i=0 ρ R i φ 0,1,i + A 2 ρ 4/3 8 i=0 ρ R i φ 0,2,i + A 3 ρ 2 7 i=0 ρ R i φ 0,3,i (84) 
+ A 4 ρ 8/3 6 i=0 ρ R i φ 0,4,i + • • • + A 14 ρ 28/3 φ 0,14,0 + O(ρ 10 )
The first terms φ 0,j,0 = φ j and ψ 0,j,0 = ψ j of the primal and dual singular functions are:

φ j (ϕ) = ψ j (ϕ) = sin 2jϕ 3 - (-1) j √ 3 cos 2jϕ 3 , j = 1, 2, 4, 5, . . . . (85) 
Thus the quantity D j in ( 7) is equal to π .

4.2.1.

Extracting A 1 . We first construct the QDF K We extract A 1 by the pseudo-surface independent integral (35) using K

(2/3) 3,0 def = K (2/3) 3,0 [B 1 ] with B 1 = 3 8π 2 R according to (59): K (2/3) 3,0 = 3 8π 2 R ρ -2/
(2/3) 0,0 , . . . , K

(2/3) 3,0

. Combining (86) with the expansion (84), we check that in the V-notch case there is no improvement of the general convergence result (58). We obtain:

J ρ 0 τ, K (2/3) n,0 = A 1 + O ρ 0 R n+1 , n = 0, 1, 2, 3 (87) 
the main contribution to the remainder being that of A 1 . . According to (88) and (84) we find the same orders of convergence as in the general case (58):

Extracting

J ρ 0 τ, K (4/3) 0,0 = A 2 + O ρ -2/3 0 ρ 0 R n+1 . ( 89 
)
Remark 12. We checked by several computations that for a circular 3π/2 V-notch in an axisymmetric case, the GEFIFs A j may be extracted by the QDFM using K (α j ) n,0 according to the theoretical estimate (35).

Remark 13. For extracting A 4 associated with α 4 = 8/3 = α 1 + 2 the resonance situation occurs and the modified QDF must be used instead of the "regular" one. In this case of resonance we still obtain the theoretical estimate using the modified QDF for n ≥ α j -α 1 :

J ρ 0 τ, K(α j ) n,0 =    A j + O ρ 2 0 R n+1 n < α j -α 1 A j + O ρ α 1 -α j 0 ρ 0 R n+1 n ≥ α j -α 1 (90)
4.3. Extracting A j from p -FE solutions. Using the QDFM we extract A j from p -FE solutions because in general the exact solution τ is not known, but only its approximation τ FE . A Visual Basic program was created for extracting the GEFIF's from the FE solution.

As an example, an axisymmetric FE model of a body with a circular singular edge is considered. Here the exact solution τ EX is approximated by the finite element solution τ FE , and the integral J ρ 0 [τ FE , K (α j ) n,0 ] is computed numerically. τ FE is extracted on a torus surface which surrounds the circular singular edge (see Figure 3) and K (α j ) n,0 is computed analytically. Because the extracted values of τ FE are discrete, we compute the integral J ρ 0 [τ FE , K (α j ) n,0 ] by a Gauss quadrature:

J ρ0 [τ FE , K (αj) n,0 ] = = 2π ϕ2 ϕ1 K (αj) n,0 (ρ 0 , ϕ) × ∂ ρ τ FE (ρ 0 , ϕ) -τ FE (ρ 0 , ϕ) × ∂ ρ K (αj) n,0 (ρ 0 , ϕ) ρ 0 R 1 + ρ 0 R cos ϕ dϕ = 2π ϕ 2 -ϕ 1 2 1 -1 K (αj ) n,0 (ρ 0 , ϕ(ξ)) × ∂ ρ τ FE (ρ 0 , ϕ(ξ)) -τ FE (ρ 0 , ϕ(ξ)) × ∂ ρ K (αj )
n,0 (ρ 0 , ϕ(ξ))

×ρ 0 R 1 + ρ 0 R cos(ϕ(ξ)) dξ = π(ϕ 2 -ϕ 1 ) n GP i=1 W i K (αj ) n,0 (ρ 0 , ϕ (ξ i )) × ∂ ρ τ FE (ρ 0 , ϕ (ξ i )) -τ FE (ρ 0 , ϕ (ξ i )) × ∂ ρ K (αj )
n,0 (ρ 0 , ϕ (ξ i ))

×ρ 0 R 1 + ρ 0 R cos (ϕ (ξ i )) (91) with ϕ(ξ i ) = ϕ 2 -ϕ 1 2 ξ i + ϕ 2 + ϕ 1 2 , ( 92 
)
and ξ i and W i being abscissas and weights of the Gauss quadrature, and n GP is the number of the Gauss points used for the numerical integration.

Sources of error in

A j when extracted by J ρ 0 [τ FE , K (α j ) n,0 ] . Extraction of A j by J ρ 0 [τ FE , K (α j )
n,0 ] involves three sources of errors:

(1) The error due to the truncation of K (α j ) n,0 : Computing A j with n being a finite number, a truncation error is introduced according to (58) and ( 60). ( 2) The numerical error using τ FE instead of τ EX :

Using FE solutions for approximating τ EX , a numerical error is included in our computations. We may estimate the numerical error by estimating the FE error. We expect that the error in the extracted GEFIFs is smaller than the error in the energy norm.

(3) The numerical integration error:

The values of τ FE are discrete therefore we use a Gauss quadrature for the evaluation of the integral (91). The Gaussian quadrature order n GP determines the numerical integration error.

4.3.2.

A specific example: a torus with a circular crack and axisymmetric Neumann BCs. The accuracy of the numerical procedure based on p -FE methods is firstly demonstrated on a simple problem of an inner cracked torus. Consider a torus with an axis (which is a circle) of a radius R = 1 , and a minor radius of 1/2 , i.e. the torus is defined by 

Ω = {(ρ, ϕ, θ) | 0 < ρ < 1/2, -π < ϕ < π, 0 ≤ θ < 2π } . The radial coordinate r is bounded by 1/2 = r 1 < r < r 2 < 3/2 . A crack
A 0 = A 2 = A 4 = A 6 = A 7 = • • • = 0 , and A 1 = A 3 = A 5 = 1 .
Because an axisymmetric case is considered, we perform an axisymmetric FE analysis, using the mesh shown in Figure 4-Right. The analytic formula for the boundary conditions coincides with the exact solution up to an order of (ρ/R) 10.5 due to the truncation of series with respect to the index i .

The integral J ρ 0 is computed using a quadrature of order 90(= n GP ) and τ FE is extracted from a FE solution at p = 8 having an error of 0.02% in energy norm.

We extract the first three EFIFs A 1 , A 3 , A 5 for different values of ρ 0 and consider an increasing number of dual shadow functions for the QDF K (α j ) n,0 . For A 3 and A 5 the modified QDFs K(α j ) n,0 are of course utilized. The relative error as percentage of the "extracted A FE j " is defined as:

e A j % = 100 × A FE j -A Exact j A Exact j ( 93 
)
Figures 567present the convergence of the extracted A FE j . The convergence rates of the extracted A FE j match the convergence rates according to the estimates in (60).

As expected, the error in the extracted EFIFs is smaller than the errors in the FE solution. To quantify the 

R

integration error we monitor the relative error as percentage of A 1 , A 3 , A 5 extracted by

J ρ 0 [τ FE , K (α 1 )
2,0 ] and

J ρ 0 [τ FE , K(α j ) 2
,0 ] when j = 3, 5 for different quadrature orders n GP . Table 2 presents a summary of these relative errors (percentage). One may observe that for n GP ≥ 32 the error due to the Gauss quadrature is negligible. 

A specific example: a penny shaped crack in a finite cylinder with axisymmetric

ρ 0 /R = 1/2 ρ 0 /R = 1/4 ρ 0 /R = 1/10 n GP = 10 n GP = 32 n GP = 90 n GP = 10 n GP = 32 n GP = 90 n GP = 10 n GP = 32 n GP = 90 e A 1 % 4 

R=1 r

x 3 q r j 2H=2 T 1 (r,x 3 =1,q) T 3 (r=2,x 3 ,q) T 2 (r,x 3 =-1,q) f=4 FIGURE 8. A cylinder with a penny-shaped crack and BCs.

Because the domain and the boundary conditions (94)-(96) are θ independent, axisymmetric FE models were considered. To compute "benchmark values" of A j (because the exact values are unknown) we constructed a refined FE model as shown in Figure 9(a). These "benchmark A j " are extracted from the refined FE models by the pointwise contour integral method [START_REF] Babuška | The post-processing approach in the finite element method -Part 2: The calculation of stress intensity factors[END_REF] implemented in StressCheck1 using 20 terms and a path radius of 0.01 . The error in the energy norm in the refined FE model is 0.05% . In comparison, a coarse FE The difference between the benchmark first three EFIFs and these computed by the QDFM at ρ 0 = 1/2 using 32 integration point is summarized in Table 3. A j for j = 3, 5 are extracted by J ρ 0 [τ, K(α j ) n,0 ] . TABLE 3. Relative error (percentage) between A j extracted by SC using the refined mesh at ρ 0 = 0.01 and these extracted by the QDFM at ρ 0 = 1/2 using the coarse mesh, for different number of dual shadow functions.

Number of dual shadow functions

n = 0 n = 1 n = 2 n = 3 n = 4
% error in A 1 23.723 1.729 0.070 0.063 0.061 % error in A 3 2.901 1.900 0.316 0.008 0.010 % error in A 5 1.122 1.452 0.964 0.178 0.055 Remark 14. One may observe that extracting A j using the coarse FE mesh by J ρ 0 =1/2 [τ FE , K (α j ) 4,0 ] results in very accurate values. The relative error in the extracted A j s is smaller than the FE relative error in energy norm. 

NONAXISYMMETRIC SOLUTIONS

For nonaxisymmetric cases, the solution τ can be expressed as follows [START_REF] Yosibash | Circular edge singularities for the Laplace equation and the elasticity system in 3-D domains[END_REF]:

τ (ρ, ϕ, θ) = k≥0 ℓ=0,2,4••• ∂ ℓ θ A k (θ)ρ α k i≥0 ρ R ℓ+i φ ℓ,k,i (ϕ), (97) 
and the QDFs will also depend on θ because of the functions B j (θ) :

K (α j ) n,m (ρ, ϕ, θ) def = m h=0,2,4••• ∂ h θ B j (θ)ρ -α j n f =0 ρ R h+f ψ h,j,f (ϕ). (98) 
The explicit ODEs for the determination of the dual eigenfunctions and dual shadow functions, ψ h,j,f (ϕ) , are obtained from (22):

For h = 0 :

Equations ( 53)-( 55) for the axisymmetric case hold.

For h = 2, 4, 6 • • • , f ≥ 0 : (-α j + f + h) 2 ψ h,j,f + ψ ′′ h,j,f = (99) 
-(h + f -α j -1) [2(h + f -α j ) -1] cos ϕ ψ h,j,(f -1) + sin ϕ ψ ′ h,j,(f -1) -2 cos ϕ ψ ′′ h,f,(f -1) -(h -α j + f -2)(h -α j + f -1) cos 2 ϕ ψ h,j,(f -2) + cos ϕ sin ϕ ψ ′ h,j,(f -2) -cos 2 ϕ ψ ′′ h,j,(f -2) -ψ (h-2),j,f with homogeneous BCs, ψ h,j,f (ϕ) = 0, on ϕ = ϕ 1 , ϕ 2 , Homogeneous Drichlet BCs, (100) 
∂ ϕ ψ h,j,f (ϕ) = 0, on ϕ = ϕ 1 , ϕ 2 , Homogeneous Neumann BCs. (101) 
For a circular closed edge (θ ∈ [0, 2π]) , by elliptic regularity along the edge So they can be expanded as a convergent Fourier series:

A k (θ) = a k 0 + ∞ p=1 a k 2p-1 cos(pθ) + ∞ p=1 a k 2p sin(pθ). (102) 
In this case the QDFM amounts to extract a finite number of the coefficients a kq with q = 0, . . . , Q and to approximate A k by its truncated Fourier series

A [Q] k (θ) def = a k 0 + 1≤2p-1≤Q a k 2p-1 cos(pθ) + 2≤2p≤Q a k 2p sin(pθ). (103) 
5.1. B j (θ) for a nonaxisymmetric case. For extracting the coefficients a jq , we choose B jq (θ) orthogonal to all functions in (103) except the one that multiplies a jq , i.e., B jq (θ) is chosen as

B jq (θ) = b jq cos(qθ) for even q or B jq (θ) = b jq sin(qθ) for odd q . ( 104 
)
Substituting in (35) one obtains:

J ρ 0 [τ, K (α j ) n,m [B jq ]] = 2π 0 A j B jq dθ 2α j R ϕ 2 ϕ 1 φ 2 j dϕ + O ρ α 1 -α j +1+min{n,m} = a jq + O ρ α 1 -α j +1+min{n,m} (105) 
where for a circular closed edge of radius R , b jq is given by:

b j 0 = 1 4α j π 2 R , q = 0 (106) b jq = 1 2α j π 2 R , q = 0 (107) 5.2. 
A circular crack with homogeneous Neumann BCs. Following section 4.1, we represent τ up to a power of ρ 21/2 (the explicit expressions for φ ℓ,k,i are provided in [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF]):

τ = A 1 (θ)ρ 1/2 10 i=0 ρ R i φ 0,1,i + ∂ 2 θ A 1 (θ)ρ 1/2 ρ R 2 8 i=0 ρ R i φ 2,1,i (108) 
+ ∂ 4 θ A 1 (θ)ρ 1/2 ρ R 4 6 i=0 ρ R i φ 4,1,i + • • • + ∂ 10 θ A 1 (θ)ρ 1/2 ρ R 10 φ 10,1,0 + A 2 (θ)ρ 10 i=0 ρ R i φ 0,2,i + ∂ 2 θ A 2 (θ)ρ ρ R 2 8 i=0 ρ R i φ 2,2,i + ∂ 4 θ A 2 (θ)ρ ρ R 4 6 i=0 ρ R i φ 4,2,i + • • • + ∂ 10 θ A 2 (θ)ρ ρ R 10 φ 10,2,0 + • • • + A 21 ρ 21/2 φ 0,21,0
To extract any of the coefficients a 1q of the first GSIF A 1 (θ) , a special quasi-dual function K

(1/2)
n,m [B 1q ] needs to be employed. For n = 1 and m = 2 we have calculated

K (1/2) 1,2 [B 1q ] = B 1q (θ)ρ -1/2 sin ϕ 2 - 1 4 sin 3ϕ 2 ρ R (109) 
+∂ 2 θ B 1q (θ)ρ -1/2 - 1 2 sin ϕ 2 ρ R 2 + - 1 4 sin ϕ 2 + 3 8 sin 3ϕ 2 ρ R 3 
For example for B 1 0 (θ) = b 1 0 , the QDF in (109) is:

K (1/2) 1,2 [B 1 0 ] = b 1 0 (θ)ρ -1/2 sin ϕ 2 - 1 4 sin 3ϕ 2 ρ R , which coincides with K (1/2) 1,2
given by (65). For B 1 1 (θ) = b 1 1 cos(θ) the QDF in (109) is:

K (1/2) 1,2 [B 1 1 ] = b 1 1 cos(θ)ρ -1/2 sin ϕ 2 - 1 4 sin 3ϕ 2 ρ R (110) -b 1 1 cos(θ)ρ -1/2 - 1 2 sin ϕ 2 ρ R 2 + - 1 4 sin ϕ 2 + 3 8 sin 3ϕ 2 ρ R 3
and so on for q = 2, • • • (in the sequel, for our FE computations, we go up to q = 8 , approximating nine coefficients).

Substituting ( 108) and ( 109) in (35) we calculate:

J ρ 0 τ , K (1/2) 1,2 [B 1q ] = (111) 2π 0 πR × 1 - 3ρ 5 0 1024R 5 + • • • A 1 (θ) + 3ρ 6 0 1120R 5 + • • • A 3 (θ) + - 3ρ 4 0 32R 2 + • • • A 5 (θ) + • • • + - ρ 2 0 2R 2 - ρ 3 0 4R 3 - 5ρ 4 0 24R 4 + • • • A ′′ 1 (θ) + ρ 4 0 4R 3 + 3ρ 5 0 32R 4 + • • • A ′′ 3 (θ) + - 47ρ 6 0 448R 4 + • • • A ′′ 5 (θ) + • • • × B 1q (θ) + ρ 2 0 2R 2 + ρ 3 0 4R 3 - 29ρ 4 0 48R 4 + • • • A 1 (θ) + - ρ 4 0 4R 3 + 5ρ 5 0 32R 4 + • • • A 3 (θ) + - 7ρ 6 0 64R 4 + • • • A 5 (θ) + • • • + ρ 4 0 12R 4 + • • • A ′′ 1 (θ) + - ρ 6 0 10R 5 + • • • A ′′ 3 (θ) + 57ρ 8 0 896R 6 + • • • A ′′ 5 (θ) + • • • × B ′′ 1q (θ) dθ.
The coefficient a 1 0 , for example, is obtained by using

B 1 0 (θ) = b 1 0 = 1 2π 2 R in (111), J ρ 0 τ, K (1/2) 1,2 [B 1 0 ] = a 1 0 + O ρ 2 0 ρ 0 R 2 , (112) 
which is coherent with (67) in the axisymmetric case.

For a 1 1 we need B 1 1 (θ) = b 1 1 cos(θ) = 1 π 2 R cos(θ) , so (111) becomes,

J ρ 0 τ, K (1/2) 1,2 [B 1 1 ] = a 1 1 + O ρ 2 0 ρ 0 R 2 . (113) 
Similarly, we extract a 1q by computing

J ρ 0 [τ, K (α j ) n,m [B 1q ]]
for different n and m with different B 1q (θ) and summarize the remainder of . Based on the results in Tables 13-15 and similar calculations we conclude that:

J ρ 0 [τ, K (α 1 ) n,m [B 1q ]] in Appendix B in
J ρ 0 τ, K (α j ) n,m [B jq ] = a jq + O ρ 2(α 1 -α j )+n+1 0 ρ 0 R n+1 + ρ α 1 -α j 0 ρ 0 R m+2 . ( 114 
)
Observing that the second term in the right hand side is larger compared to the first term, then for the optimal remainder, m = n -1 , and (114) gives back the estimate in (35).

In the case of resonance, a modified QDF should be used, and instead of (114) one has:

J ρ 0 τ, K(α j ) n,m [B jq ] =    a jq + O ρ 2 0 R n+1 + ρ α 1 -α j 0 ρ 0 R m+2 , n < α j -α 1 a jq + O ρ 2(α 1 -α j )+n+1 0 ρ 0 R n+1 + ρ α 1 -α j 0 ρ 0 R m+2 , n ≥ α j -α 1 (115) 
5.3. A 3π/2 V-notch with homogeneous Neumann BCs. For a V-Notch ϕ ∈ [-π, π/2] with a general BCs, the solution τ can be presented as (see [START_REF] Shannon | Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90 • V-notch with Neumann boundary conditions[END_REF] for the explicit functions φ i,j,k ):

τ = A 1 (θ)ρ 2/3 10 i=0 ρ R i φ 0,1,i + ∂ 2 θ A 1 (θ)ρ 2/3 8 i=0 ρ R 2+i φ 2,1,i + • • • + ∂ 10 θ A 1 (θ)ρ 2/3 ρ R 10 φ 10,1,0 (116) + A 2 (θ)ρ 4/3 10 i=0 ρ R i φ 0,2,i + ∂ 2 θ A 2 (θ)ρ 4/3 8 i=0 ρ R 2+i φ 2,2,i + • • • + ∂ 10 θ A 2 (θ)ρ 4/3 ρ R 10 φ 10,2,0 + A 3 (θ)ρ 2 9 i=0 ρ R i φ 0,3,i + ∂ 2 θ A 3 (θ)ρ 2 7 i=0 ρ R 2+i φ 2,3,i + • • • + ∂ 8 θ A 3 (θ)ρ 2 1 i=0 ρ R 8+i φ 8,3,i + A 4 (θ)ρ 8/3 8 i=0 ρ R i φ 0,4,i + ∂ 2 θ A 4 (θ)ρ 8/3 6 i=0 ρ R 2+i φ 2,4,i + • • • + ∂ 8 θ A 4 (θ)ρ 8/3 1 i=0 ρ R 8+i φ 10,4,i
The quasi-dual function K

(2/3) 0,2

, for n = 0 and m = 2 , for example is,

K (2/3) 0,2 = B 1q (θ)ρ -2/3 sin 2ϕ 3 + 1 √ 3 cos 2ϕ 3 (117) +∂ 2 θ B 1q (θ)ρ -2/3 ρ R 2 - 1 4 √ 3 cos 2ϕ 3 - 3 4 sin 2ϕ 3 
Following the same procedure as in subsection 5.2, for extracting a 1 1 for example, B 1 1 (θ) is chosen to be

B 1 1 (θ) = 6 8π 2 R cos θ (118) 
and ( 116), ( 117) and ( 118) are used

J ρ 0 τ, K (2/3) 0,2 [B 1 1 ] = 1 + 10ρ 0 21πR + • • • a 1 1 + 2ρ 5/3 0 3πR + • • • a 2 1 (119) + 15 √ 3ρ 7/3 0 77πR + • • • a 3 1 + 10ρ 3 0 117πR + • • • a 4 1 = a 1 1 + O ρ 0 R Likewise, we compute J ρ 0 [τ, K (2/3) n,m [B 1q ]]
for different n and m using (116) and (117) for different B 1q (θ) . The remainder is presented in Tables 456.

TABLE 4. The remainder of J ρ 0 [τ, K (2/3) n,m [B 1 0 ]] B 1 0 (θ) = b 1 0 = 3 8π 2 R m = 0 m = 2 m = 4 n = 0 a 1 0 O( ρ 0 R ) a 1 0 O ρ 0 R a 1 0 O ρ 0 R n = 1 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 2 n = 2 a 1 0 O ρ 0 R 3 a 1 0 O ρ 0 R 3 a 1 0 O ρ 0 R 3 n = 3 a 1 0 O ρ 0 R 4 a 1 0 O ρ 0 R 4 a 1 0 O ρ 0 R 4 n = 4 a 1 0 O ρ 0 R 5 a 1 0 O ρ 0 R 5 a 1 0 O ρ 0 R TABLE 5. The remainder of J ρ 0 [τ, K (2/3) n,m [B 1 1 ]] B 1 1 (θ) = b 1 1 = 6 8π 2 R cos θ m = 0 m = 2 m = 4 n = 0 a 1 0 O ρ 0 R a 1 0 O ρ 0 R a 1 0 O ρ 0 R n = 1 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 2 a 1-0 O ρ 0 R 2 n = 2 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 3 a 1 0 O ρ 0 R 3 n = 3 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 4 a 1 0 O ρ 0 R 4 n = 4 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 4 a 1 0 O ρ 0 R 5 TABLE 6. The remainder of J ρ 0 [τ, K (2/3) n,m [B 1 3 ]] B 1 3 (θ) = b 1 3 = 6 8π 2 R cos 2θ m = 0 m = 2 m = 4 n = 0 a 1 0 O ρ 0 R a 1 0 O ρ 0 R a 1 0 O ρ 0 R n = 1 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 2 n = 2 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 3 a 1 0 O ρ 0 R 3 n = 3 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 4 a 1 0 O ρ 0 R 4 n = 4 a 1 0 O ρ 0 R 2 a 1 0 O ρ 0 R 4 a 1 0 O ρ 0 R 5
The results in Tables 4-6 follow the estimate in (35):

J ρ 0 [τ, K (α j ) n,m [B jq ]] = a jq + O ρ α 1 -α j 0 ρ 0 R n+1 + ρ 0 R m+2 (120) 
5.4. Extracting a jq (θ) from p -FE nonaxisymmetric solutions. The use of the QDFM in conjunction with p -FE nonaxisymmetric models for extracting A j (θ) is examined. Consider a 3-D FE model of a body with a circular singular edge (for example: a penny shaped crack). We compute

J ρ 0 [τ FE , K (α j ) n,m [B jq ]
] where τ FE is extracted from the FE solution over a torus surface which surrounds the circular singular edge. K (α j ) n,m is computed analytically. Because the values of τ FE are discrete we compute the integral

J ρ 0 [τ FE , K (α j ) n,m [B jq ]] by a Gauss quadrature. (121) Jρ 0 [τ FE , K (α j ) n,m [B jq ]] = θ 2 =2π θ 1 =0 ϕ 2 ϕ 1 K (α j ) n,m (ρ 0 , ϕ, B jq (θ)) × ∂ρτ FE (ρ 0 , ϕ, θ) -τ FE (ρ 0 , ϕ, θ) × ∂ρK (α j ) n,m (ρ 0 , ϕ, B jq (θ)) ×ρ 0 R 1 + ρ 0 R cos ϕ dϕdθ = π ϕ 2 -ϕ 1 2 1 -1 1 -1 K (α j ) n,m (ρ 0 , ϕ(ξ), B jq (θ(η))) × ∂ρτ FE (ρ 0 , ϕ(ξ), θ(η)) -τ FE (ρ 0 , ϕ(ξ), θ(η)) × ∂ρK (α j ) n,m (ρ 0 , ϕ(ξ), B jq (θ(η))) × ρ 0 R 1 + ρ 0 R cos(ϕ(ξ)) dξdη = π ϕ 2 -ϕ 1 2 n GP j=1 n GP i=1 W j W i K (α j ) n,m ρ 0 , ϕ (ξ i ) , B jq (θ(η j )) × ∂ρτ FE (ρ 0 , ϕ (ξ i ) , θ (η j )) -τ FE (ρ 0 , ϕ (ξ i ) , θ (η j )) × ∂ρK (α j ) n,m ρ 0 , ϕ (ξ i ) , B jq (θ(η j )) × ρ 0 R 1 + ρ 0 R cos (ϕ (ξ i ))
with ϕ(ξ i ) computed by (92), and θ(η j ) = θ 2 -θ 1 2 η j + θ 2 +θ 1 2 = π(η j + 1) . First we check a simple axisymmetric case by applying the axisymmetric crack solution (61) on the torus's outer boundary with A 1

(θ) = 1, A 2 (θ) = A 3 (θ) = • • • = 0 and R = 1 .
We extract the first nine terms of Ã1 (θ) , expecting that it is independent of θ . The integral J ρ 0 is computed by a Gauss quadrature with n GP = 90 and using the FE solution at p = 8 having a relative error in energy norm of 1.32% .

In Table 7 we summarize the results of the computation J ρ 0 =0.5 [τ FE , K expected, the extracted Ã1 (θ) is independent of θ and nicely converged to 1 .

Next, we consider a nonaxisymmetric case for which A 1 (θ) = 1 + 2 cos θ + 3 sin θ + 4 cos 2θ + 5 sin 2θ + 6 cos 3θ + 7 sin 3θ + 8 cos 4θ + 9 sin 4θ (122)

and

A 0 = A 2 (θ) = A 3 (θ) = • • • = 0 .
Applying on the outer surface of the torus the solution (108) with the single nonzero A 1 (θ) , the FE solution is obtained at p = 8 with a relative error in the energy norm of 0.98% . In Table 8 we present the % relative error in a 1q extracted by

J ρ 0 =1/4 [τ FE , K (1/2) 0,0 [B 1q ]] for different quadrature orders n GP .
One may notice that beyond 32 integration points the integration error is already negligible.

Convergence of extracted a jq for different n and m : As an example, we also extracted a 3 0 which is the constant value associated with A 3 (θ) so to make sure that it is practically zero. Indeed the extracted value is a 3 0 = 10 -4 .

We compute J ρ 0 =1/4 [τ FE , K ( 

Convergence as a function of ρ 0 :

We fix n = m = 4 and compute J ρ 0 [τ FE , K

(1/2) 4,4 [B 1q ]] with n GP = 32 for different ρ 0 s and summarize the results in Table 10. As expected, the error in the extracted a 1q decreases as ρ 0 decreases.

The numerical experiments confirm that the convergence rates of the extracted a FE 1q match the convergence rates according to the estimates in (35).

One may also notice that the relative error in the extracted a jq by J ρ 0 =0.5 [τ FE , K (α j ) 4,0 [B jq ]] is smaller than the relative error in energy norm.

5.4.2.

A general problem: a penny shaped crack in a cylinder. Consider again the cylinder with a penny shaped crack shown in Figure 8 with Dirichlet boundary conditions on its outer surface and homogeneous Neumann BCs on crack surfaces. Specifically, the following BCs are applied: Because an analytic solution to this problem is not available, we compute the first GEFIF A 1 (the most important one because it is associated with the singular flux) by the QDFM and also use the CIM [START_REF] Babuška | The post-processing approach in the finite element method -Part 2: The calculation of stress intensity factors[END_REF] implemented in the commercial FE code to obtain pointwise values of A 1 along the circular singular edge. For the CIM the extraction path radius is 0.0035 , thus requiring a refined mesh in the vicinity of the crack edge. The FE relative error in energy norm is 1.33% .

Extracted a 1q by J ρ 0 [τ FE , K

(1/2) 4,4 [B 1q ]] for ρ = 0.35 and ρ 0 = 1/4 using a Gauss quadrature of order 32 are given in Table 11. One may notice the fast convergence of the extracted coefficients a 1q as q increases. One observes that the extracted Ã1 (θ) at ρ 0 = 0.25 and at ρ 0 = 0.35 by the QDFM match closely each other and the pointwise values extract by the CIM at ρ 0 = 0.0035 . This demonstrates that the QDFM does not require a refined mesh in the vicinity of a circular crack tip which is a major advantage in 3-D domains, and at the same time produces a smooth and continuous GEFIF along the crack edge.

APPENDIX A. AN EXPLICIT EXPRESSION FOR K

(1/2) ∞,0 FOR A CIRCULAR CRACK If we evaluate the successive ratios of the β i 's in Table 1 we find a simple hypergeometric law. 12), we find the limit 

β i = 2i+1 2(2i+2) (Table
K (1/2) ∞,0 = 1 2π 2 ρR ℑ Z 1/2 1 + Z 2R -1/2 . n = 3 a 1 1 O ρ 0 R 2 a 1 1 O ρ 0 R 4 a 1 1 O ρ 0 R 6 n = 4 a 1 1 O ρ 0 R 2 a 1 1 O ρ 0 R 4 a 1 1 O ρ 0 R 6
B 1 3 (θ) = b 1 3 cos(θ) = 1 π 2 R cos(2θ) m = 0 m = 2 m = 4 n = 0 a 1 3 O ρ 0 R 2 + a 3 3 O ρ 0 ρ 0 R a 1 3 O ρ 0 R 2 + a 3 3 O ρ 0 ρ 0 R a 1 3 O ρ 0 R 2 + a 3 3 O ρ 0 ρ 0 R n = 1 a 1 3 O ρ 0 R 2 a 1 3 O ρ 0 R 4 + a 5 3 O ρ 2 0 ρ 0 R 2 a 1 3 O ρ 0 R 4 + a 5 3 O ρ 2 0 ρ 0 R 2 n = 2 a 1 3 O ρ 0 R 2 a 1 3 O ρ 0 R 4 a 1 3 O ρ 0 R 5 n = 3 a 1 3 O ρ 0 R 2 a 1 3 O ρ 0 R 4 a 1 3 O ρ 0 R 6 n = 4 a 1 3 O ρ 0 R 2 a 1 3 O ρ 0 R
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  Dirichlet BCs on the outer surface. Consider an axisymmetric FE model of a cylinder with a penny shaped crack. Homogeneous Neumann BCs are prescribed on the surface of the crack. On cylinder's outer surface Dirichlet BCs are prescribed, shown in Figure 8, given by τ 1 (r, x 3 = 1, θ) = -155.4 + 3.055r + 181.8r 2 -34.82r 3 + 6.43r 4 -1.27r 5 + 0.22r 6 (94) τ 2 (r, x 3 = -1, θ) = 155.4 -3.055r -181.8r 2 + 34.82r 3 -6.43r 4 + 1.27r 5 -0.22r 6 (95) τ 3 (r = 2, x 3 , θ) = 375.1x 3 (96)
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 9 FIGURE 9. (a) A refined FE model, (b) A coarse FE model. mesh shown in Figure 9(b) (the error in the energy norm is 0.35% ) was used for the extraction of the EFIFs by the QDFM. This is to demonstrate that no special refinements are required and a path away from the crack tip can be used for the QDFM. The benchmark values of the first three EFIFs extracted by the SC algorithm at ρ 0 = 0.01 are A 1 = 30.15, A 3 = 116.41, A 5 = 91.02 .The difference between the benchmark first three EFIFs and these computed by the QDFM at ρ 0 = 1/2 using 32 integration point is summarized in Table3. A j for j = 3, 5 are extracted by J ρ 0 [τ, K(α j ) n,0 ] .
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 10 FIGURE 10. Relative error (percentage) between A j extracted by SC and by the QDFM versus the number of dual shadow functions in the QDF.
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 41 A 3-D torus with a circular crack. Consider the simple case of an inner cracked torus discussed in subsection 4.3.2 and showed in Figure 4. Here, a 3-D FE model is constructed as shown in Fig 11.
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 11 FIGURE 11. The 3-D FE model and the mesh.

(1/ 2 )

 2 n,m [B 1q ]] for various n & m . As
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 1312 FIGURE 12. A penny shaped crack in a cylinder: 3-D FE model and a slice showing the crack.

  6679 7.249E-09 -0.9867 1.0735E-08 -0.1028 8.8255E-09 -1.7016E-02 -6.2489E-09 ρ 0 = 0.25 44.0975 -27.6584 7.038E-09 -0.9845 -4.7541E-09 -0.1015 1.2545E-09 -1.5772E-02 -3.6742E-09 The extracted a 1q are used in (103) to compute Ã1 (θ) which is shown in Fig 13 as a smooth curve compared to the pointwise values extracted by the CIM at ρ 0 = 0.0035 .
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 122 Successive ratios between coefficients in the expansion (65) of the QDF K(1/2) n,0 .One can prove that the sequence K(1/2) n,0 [B 1] is converging and compute its limit, as follows. Setting Z = ρe ıϕ , we have ρ i+1/2 sin (2i + 1)ϕ ℑZ i+1/2 , i = 0, 1, . . .

4 a 1 3 O ρ 0 R 6 Z
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TABLE 1 .

 1 Coefficients in the expansion (65) of the QDF K One may extrapolate from the values in Table 1 an explicit expression for K

	(1/2) n,0 .
	(1/2) ∞,0 as shown in Appendix A.

  A 2 . For extraction of A 2 we construct K

																					(4/3) 3,0	as follows
	K 3,0 (4/3)	=	3 16π 2 R	ρ -4/3 sin	4ϕ 3	-	1 √ 3	cos	4ϕ 3	(88)
		+ +	1 √ 4 -√ 3 3 cos 4 cos 7ϕ 3 4ϕ 3	-+	1 4 3 sin 4 sin 7ϕ 3 4ϕ -3 -7 4 √ sin 3 32 cos ϕ 3 + 10ϕ 7 4 √ 3 + 3	cos 3 32	ϕ 3 sin	ρ R 3 10ϕ	R ρ	2
		+	√ 32 3	cos	ϕ 3	-	3 32	sin	ϕ 3	+	17 √ 128 3	cos	7ϕ 3	-	51 128	sin	7ϕ 3	+
		+	5 128 √	3	cos	13ϕ 3	-	5 128	sin	13ϕ 3	+	7 16	sin	5ϕ 3	+	7 16 √	3	cos	3 5ϕ	R ρ	3
	The QDFs K 0,0 (4/3)	, K 1,0 (4/3)	and K 2,0 (4/3)	are obtained if one neglects the corresponding dual shadows in (88).
	We extract A 2 by the QDFM (35) using K 0,0 , . . . , K (4/3) 3,0 (4/3)

TABLE 7 .

 7 Extracted a 1q for different m and n in the case of a circular crack with homogeneous Neumann BCs

				Extracted a 1q by J ρ0=1/2 [τ, K	(1/2) n,m [B 1q ]]			
	a 10	a 11	a 12	a 13	a 14	a 15	a 16	a 17	a 18
	m = n = 0 0.99768 -1.78E-06 -3.36E-11 -1.08E-06 4.29E-12 1.20E-05 4.60E-11 -1.78E-03 -7.73E-11
	m = n = 2 1.00005 -8.22E-07 -3.83E-11 7.69E-07 6.77E-12 -3.05E-06 1.08E-10 2.49E-03 -2.65E-10
	m = n = 4 0.99988 -5.02E-07 -3.87E-11 1.71E-06 7.17E-12 -1.43E-05 1.29E-10 1.02E-02 -3.65E-10

TABLE 8 .

 8 % Relative error in extracted a 1q for different Gauss quadrature orders in the case of a circular crack with homogeneous Neumann BCs % Relative error in extracted a 1q by J ρ0=1/4 [τ, K GP = 10 4.35 71.79 23.09 146.83 280.13 603.73 175.98 351.58 546.34 n GP = 15 0.18 17.50 17.87 78.42 78.18 204.54 207.11 464.26 437.55 n GP = 32 0.25 17.65 17.60 78.24 78.25 205.85 205.84 450.87 450.86 n GP = 54 0.23 17.61 17.61 78.24 78.25 205.85 205.85 450.87 450.88 n GP = 90 0.22 17.62 17.61 78.25 78.24 205.84 205.84 450.86 450.87

	(1/2) 0,0 [B 1q ]]

1/2) n,m [B 1q ]] with n GP = 32 for different n and m and summarize the results in Table 9. The error in extracted a 1q does not decrease if m is not high enough in the extraction function K (α j ) n,m .

TABLE 9 .

 9 % Relative error in extracted a 1q for different n and m in the case of a circular crack with homogeneous Neumann BCs % Relative error in extracted a 1q by J ρ0=1/4 [τ, K = 0 0.004 3.610 3.593 14.670 14.671 33.921 33.920 62.495 62.491 m = 0 n = 2 0.023 3.659 3.642 14.787 14.789 34.161 34.160 62.920 62.917 m = 0 n = 4 0.023 3.659 3.642 14.787 14.789 34.161 34.160 62.921 62.917 m = 2 n = 0 0.004 0.939 0.922 4.528 4.530 13.321 13.321 32.056 32.051 m = 2 n = 2 0.023 0.166 0.148 1.382 1.385 6.345 6.345 20.090 20.084 m = 2 n = 4 0.023 0.095 0.077 1.092 1.095 5.675 5.674 18.858 18.852 m = 4 n = 0 0.004 0.894 0.877 3.807 3.809 9.624 9.624 20.212 20.207 m = 4 n = 2 0.023 0.102 0.084 0.345 0.348 1.004 1.004 2.868 2.862

	(1/2) n,m [B 1q ]]

TABLE 10 .

 10 % Relative error in extracted a 1q for different path radii ρ 0 in the case of a circular crack with homogeneous Neumann BCs. % Relative error in extracted a 1q by J ρ0 [τ, K = 0.5 0.014 1.033 0.985 9.463 9.496 71.832 71.813 433.227 433.180 ρ 0 = 0.4 0.011 0.206 0.180 1.462 1.468 10.004 10.001 54.463 54.450 ρ 0 = 0.3 0.018 0.039 0.035 0.142 0.138 0.914 0.914

	(1/2) 4,4 [B 1q ]]

TABLE 11 .

 11 Extracted a 1q for extracted at ρ 0 = 0.35, 0.25 for a cylinder with a penny shaped crack with homogeneous Neumann BCs.Extracted a 1q by J ρ0 [τ, K

	(1/2) 4,4 (B 1q )]

TABLE 15 .

 15 The remainder of J ρ 0 [τ, K

(1/2) n,m [B 1 3 ]]
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SUMMARY AND CONCLUSIONS

We extended the QDFM for extracting generalized edge flux intensity functions in the vicinity of a circular singular edge for axisymmetric as well as non-axisymmetric solutions. The formulation and performance of the method is demonstrated on the simplified Laplace equation. Although the QDFM is a mildly-surface-dependent integral, we demonstrated that by using a proper quasi-dual function K (α j ) n,m and proper extraction functions B j (θ) , one may extract the functional representation of the GEFIFs A k (θ) accurately and efficiently.

Because in general only a FE approximation or the solution is available, we demonstrated that the QDFM in conjunction with p -FE methods provide highly accurate GEFIFs. These were obtained as a function along the circular edge, and are much more accurate compared to the FE solution (superconvergence property). Another major advantage is the possibility to use the FE solution on a torus away from the singular edge, thus it is not necessary to have a refined FE mesh in the vicinity of the singularity (which is a complicated and tedious task in 3-D domains).

Following the successful formulation of the QDFM and its efficiency it is extended to the elasticity set of equations following the same methodology presented herein. A straight-forward extension is possible with only technical challenges but no conceptual difficulties.

APPENDIX B. TABLES WITH RESULTS OF THE SURFACE INTEGRAL IN