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C’est l’homme aux mille tours, Muse, qu’il faut me dire,

Celui qui tant erra quand, de Troade, il eut pillé la ville sainte,

Celui qui visita les cités de tant d’hommes et connut leur esprit,

Celui qui, sur les mers, passa par tant d’angoisses,

En luttant pour survivre et ramener ses gens.
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ON THE SEMICLASSICAL MAGNETIC LAPLACIAN
AND CONNECTED TOPICS

NICOLAS RAYMOND

ABSTRACT. The aim of this course is to introduce the reader to the general techniques ap-

pearing in the spectral theory of the semiclassical magnetic Laplacian. We explain how we

can construct quasi-eigenpairs and how the investigation of the magnetic Laplacian can be re-

duced to the one of model operators. In particular, the localization estimates of Agmon and

the Born-Oppenheimer approximation are discussed in this course. We also propose to analyze

two recent examples and we finally provide some other perspectives (Birkhoff normal form and

semiclassical waveguides).

1. INTRODUCTION

The aim of this course is to introduce the reader to the techniques appearing in the spectral

theory of the semiclassical magnetic Laplacian. This fascinating subject has been extensively

studied in the last fifteen years by many authors. The study of the magnetic Laplacian is

the occasion to deal with the standard semiclassical and spectral methods. Therefore we will

focus this lecture on the magnetic Laplacian, but we will also propose other applications.

In particular, we will discuss connected perspectives such as the Birkhoff normal form and

waveguides.

1.1. Motivation. Before defining the operator that we analyze in this course, let us mention

the different motivations.

The first motivation arises from the mathematical theory of superconductivity. A model for

this theory (see [91]) is given by the Ginzburg-Landau functional:

G(ψ,A) =

∫

Ω

|(−i∇ + κσA)ψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx+ κ2

∫

Ω

|σ∇× A − σβ|2 dx,

where: Ω ⊂ R
d is the place occupied by the superconductor, ψ is the so-called order parameter

(|ψ|2 is the density of Cooper pairs), A is a magnetic potential and β the applied magnetic

field. The parameter κ is characteristic of the sample (the superconductors of type II are

such that κ >> 1) and σ corresponds to the intensity of the applied magnetic field. Roughly

speaking, the question is to know what the nature of minimizers is. Are they normal, that is

(ψ,A) = (0,F ) with ∇ × F = β (and ∇ · F = 0), or not ? We can mention the important

result of Giorgi-Phillips [44] which states that, if the applied magnetic field does not vanish,

then, for σ large enough, the normal state is the unique minimizer of G (with the divergence

free condition). When analyzing the local minimality of (0,F ), we are led to compute the
2
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Hessian of G at (0,F ) and to analyze the positivity of:

(−i∇ + κσA)2 − κ2.

For further details, we refer to the book of Fournais and Helffer [39] and also [69, 70]. There-

fore the theory of superconductivity leads to investigate an operator which is in the form

(−ih∇ + A)2, where h > 0 is small (κ is assumed to be large). We will define it more in

details in the next subsection.

The second motivation is to understand at which point there is an analogy between the

electric Laplacian −h2∆ + V (x) and the magnetic Laplacian (−ih∇ + A)2. For instance,

it is well-known that we can perform WKB constructions for the electric Laplacian (see the

book of Dimassi and Sjöstrand [29, Chapter 3]) and that such constructions do not seem to

be possible in general for the magnetic case (see the course of Helffer [55, Section 6] and

the references therein). In some generic situations, we can prove accurate asymptotic (in the

semiclassical regime: h→ 0) expansions for the eigenvalues of the electric Laplacian and also

provide a very fine (WKB) approximation of the attached eigenfunctions. For the magnetic

situation, such accurate expansions are difficult to obtain. In fact, the more we know about

the expansion of the eigenpairs, the more we can estimate the tunnel effect in the spirit of

the electric tunnel effect of Helffer and Sjöstrand (see for instance [51, 52]) when there are

symmetries. Estimating the magnetic tunnel effect is still a widely open question directly

related to the approximation of the eigenfunctions (see [53] for electric tunneling in presence

of magnetic field and [11] in the case with corners).

As we will see in this course we will focus on problems with magnetic fields. Nevertheless,

the generality of the techniques and ideas will lead us to discuss other topics such as the

Birkhoff normal form and the spectrum of waveguides. In fact, the reader can consider this

course as an introduction to general semiclassical and spectral techniques through the example

of the magnetic Laplacian.

1.2. Definition of the Magnetic Laplacian. Let us now define the operators which will be

mainly analyzed in this course. We will assume that Ω is bounded and Lipschitzian and that

A ∈ C∞(Ω,Rd).

• The magnetic operator. Let us denote A = (A1, · · · , Ad). We consider the 1-form1:

ωA =
d∑

k=1

Akdxk.

We introduce the exterior derivative of ωA:

σβ := dωA =
∑

j<k

βj,kdxj ∧ dxk.

In dimension 2, the only coefficient is β12 = β = ∂x1
A2−∂x2

A1. In dimension 3, the magnetic

vector is defined as:

β = (β1, β2, β3) = (β23,−β13, β12) = ∇× A.

1We refer to [4, Chapter 7] to introduce the k-forms.
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We will discuss in this course the spectral properties of the self-adjoint realizations of the

magnetic operator:

Lh,A,Ω =
d∑

k=1

(−ih∂k + Ak)
2,

where h > 0 is a parameter (related to the Planck constant). We notice the fundamental

property, called gauge invariance:

e−iφ(−i∇ + A)eiφ = −i∇ + A + ∇φ
so that:

e−iφ(−i∇ + A)2eiφ = (−i∇ + A + ∇φ)2.

• The Dirichlet realization. Let us consider the following quadratic form which is defined for

u ∈ C∞
0 (Ω) by:

Qh,A(u) =

∫

Ω

|(−ih∇ + A)u|2 dx ≥ 0.

The standard Friedrichs procedure (see [88, p. 177]) allows to define a self-adjoint operator

LDir
h,A whose (closed) quadratic form is:

Qh,A(u) =

∫

Ω

|(−ih∇ + A)u|2 dx ≥ 0, u ∈ H1
0 (Ω)

and such that:

〈LDir
h,Au, v〉 = Qh,A(u, v), u, v ∈ C∞

0 (Ω).

The domain of the Friedrichs extension is defined as:

Dom(LDir
h,A) =

{
u ∈ H1

0 (Ω) : Lh,Au ∈ L2(Ω)
}
.

When Ω is regular, we have the characterization:

Dom(LDir
h,A) = H1

0 (Ω) ∩H2(Ω).

• The Neumann realization. We consider the other quadratic form defined by:

Qh,A(u) =

∫

Ω

|(−ih∇ + A)u|2 dx, u ∈ C∞(Ω).

This form admits a Friedrichs extension (a closure) defined by:

Qh,A(u) =

∫

Ω

|(−ih∇ + A)u|2 dx, u ∈ H1(Ω).

By the Friedrichs theorem, we can define a self-adjoint operator LNeu
h,A whose domain is given

by:

Dom(LNeu
h,A ) =

{
u ∈ H1(Ω) : Lh,Au ∈ L2(Ω), (−ih∇ + A)u · ν = 0, on ∂Ω

}
.

When Ω is regular, this becomes:

Dom(LNeu
h,A ) =

{
u ∈ H1(Ω) : u ∈ H2(Ω), (−ih∇ + A)u · ν = 0, on ∂Ω

}
.

The main operators being now defined, let us recall a few elements of spectral theory.
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1.3. Elements of spectral theory.

• Spectrum of an unbounded operator. Let A be an unbounded operator on an Hilbert space

H with domain Dom(A). We recall the following characterizations of its spectrum σ(A), its

essential spectrum σess(A) and its discrete spectrum σdis(A):

• Spectrum: λ ∈ σ(A) if and only if (A− λ Id) is not invertible from Dom(A) onto H ,

• Essential spectrum: λ ∈ σess(A) if and only if (A − λ Id) is not Fredholm2 from

Dom(A) into H (see [88, Chapter VI] and [68, Chapter 3]),

• Discrete spectrum: σdis(A) := σ(A) \ σess(A).

We list now several fundamental properties of essential and discrete spectrum.

Lemma 1.1 (Weyl criterion). We have λ ∈ σess(A) if and only if there exists a sequence

(un) ∈ Dom(A) such that ‖un‖H = 1, (un) has no subsequence converging in H and (A −
λ Id)un →

n→+∞
0 in H .

From this lemma, one can deduce (see [68, Proposition 2.21 and Proposition 3.11]):

Lemma 1.2. The discrete spectrum is formed by isolated eigenvalues of finite multiplicity.

• The example of the magnetic Laplacian. Since Ω is bounded and Lipschitzian, the form do-

mains H1
0 (Ω) and H1(Ω) are compactly included in L2(Ω) (by the Riesz-Fréchet-Kolmogorov

criterion, see [17]) so that the corresponding Friedrichs extensions LDir
h,A and LNeu

h,A have com-

pact resolvents. Therefore these operators have discrete spectra and we can consider the non

decreasing sequences of their eigenvalues (λDir
n (h))n∈N∗ and (λNeu

n (h))n∈N∗ .

Remark 1.3. Let us give a basic example of Fredholm operator. We consider P = LDir
h,A when

Ω is bounded and regular. Let us take λ an eigenvalue of P (λ ∈ R since P is self-adjoint). As

we said ker(P − λ) has finite dimension. Since P is self-adjoint, we can write:

ℑ(P − λ) = ker(P − λ)⊥.

This is easy to see that the image of P − λ is closed. There exists c > 0 such that (exercise):

‖(P − λ)u‖ ≥ c‖u‖2, ∀u ∈ ker(P − λ)⊥.

Let us now assume that we have (P − λ)un → v ∈ L2(Ω), with un ∈ ker(P − λ)⊥. We

immediately deduce that (un)n∈N is a Cauchy sequence and the conclusion follows. P is a

Fredholm operator.

1.4. The Harmonic Oscillator. Before going further we shall discuss the spectrum of the

harmonic oscillator which we will encounter many times in this lecture. We introduce a useful

notation:

Dx = −i∂x
and we are interested in the self-adjoint realization on L2(R) of:

Hharm = D2
x + x2.

2We recall that an operator is said to be Fredholm if its kernel is finite dimensional, its range is closed and with

finite codimension.
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In terms of the philosophy of the last section, this operator is defined as the Friedrichs extension

associated with the closed quadratic form defined by:

Qharm(ψ) = ‖ψ′‖2 + ‖xψ‖2, ψ ∈ B1(R),

where

B1(R) = {ψ ∈ L2(R) : ψ′ ∈ L2(R), xψ ∈ L2(R)}.
The domain of the operator can be characterized (thanks to the difference quotients method,

see [17, Theorem IX. 25]) as:

Dom(Hharm) = {ψ ∈ L2(R) : ψ′′ ∈ L2(R), x2ψ ∈ L2(R)}.

The self-adjoint operator Hharm has compact resolvent since B1(R) is compactly included in

L2(R). Its spectrum is a sequence of eigenvalues which tends to +∞. Let us explain how we

can get the spectrum of Hharm. We let:

a =
1√
2

(
d

dx
+ x

)
, a∗ =

1√
2

(
− d

dx
+ x

)
.

We have:

[a, a∗] = aa∗ − a∗a = 1.

We let:

f0(x) = e−x
2/2.

We investigate the spectrum of a∗a. We have: af0 = 0. We let fn = (a∗)nf0. This is easy

to prove that a∗afn = nfn and that afn = nfn−1. The (fn) form a Hilbertian basis of L2(R).
These functions are called Hermite’s functions. The eigenvalues of Hharm are the numbers

2n+ 1, n ∈ N. They are simple and associated with the normalized Hermite’s functions.

Exercise. 3 We wish to study the 2D harmonic oscillator: −∆ + |x|2.

(1) Write the operator in terms of radial coordinates.

(2) Explain how the spectral analysis can be reduced to the study of:

−∂2
ρ − ρ−1∂ρ + ρ−2m2 + ρ2,

on L2(ρdρ) with m ∈ Z.

(3) Perform the change of variable t = ρ2.
(4) For which α is t 7→ tαe−t/2 an eigenfunction ?

(5) Conjugate the operator by t−m/2et/2. On which space is the new operator Lm acting ?

Describe the new scalar product.

(6) Find eigenvalues of Lm by noticing that RN [X] is stable by Lm.

(7) Conclude.

3This exercise is an example of exact WKB expansions. We will recognize Laguerre’s polynomials.
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1.5. The Case with Constant Magnetic Field. Let us now come back to the magnetic Lapla-

cian, in dimension 2. We consider the case with constant magnetic field. By the gauge invari-

ance, the magnetic Laplacian can be written in the form:

h2D2
x1

+ (hDx2
− x1)

2.

We want to determine its spectrum. If we use the Fourier transform with respect to x2, we

observe that it is unitarily equivalent to:

h2D2
x1

+ (hξ2 − x1)
2.

If we use the translation x1 = x̃1 + hξ2, we get the unitarily equivalent operator:

h2D2
x̃1

+ x̃2
1.

The spectrum is essential. The elements of the spectrum are given by (2n+1)h, n ∈ N. These

“eigenvalues” have infinite mutliplicity.

Remark 1.4. We observe that the investigation of the Laplacian with constant magnetic field

leads to use transformations in the phase space R
4. Indeed the symbol (in terms of the Weyl

quantization) of the magnetic Laplacian is:

ξ2
1 + (ξ2 − x1)

2

and is transformed into:

ξ̃2
1 + x̃2

1.

Such transformations are called “symplectic” and corresponds to transformations which pre-

serve the structure of the Hamilton-Jacobi equations (classical mechanics).

1.6. What do we know in general ? We can try to give a panorama of the numerous results

concerning the semiclassical spectral analysis of the magnetic Laplacian. For that purpose, we

divide the exposition into two parts.

1.6.1. Constant magnetic field.

• Dimension 2. In 2D the constant magnetic field case is treated when Ω is a disk (with

Neumann condition) by Bauman, Phillips and Tang in [6] (see also [7, 28] and [8] for the

Dirichlet case). In particular, they prove a two terms expansion in the form:

λ1(h) = Θ0h− C1

R
h3/2 + o(h3/2),

where Θ0 ∈ (0, 1) andC1 > 0 are universal constants which will be defined later. This result is

generalized to smooth and bounded domains by Helffer and Morame in [58] where it is proved

that:

λ1(h) = Θ0h− C1κmaxh
3/2 + o(h3/2),

where κmax is the maximal curvature of the boundary. Let us emphasize that, in these papers,

the authors are only concerned by the first terms of the asymptotic expansion of λ1(h). In the

case of smooth domains the complete asymptotic expansion of all the eigenvalues is done by

Fournais and Helffer in [38].
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When the boundary is not smooth, we may mention the papers of Jadallah and Pan [64, 78].

In the semiclassical regime, we refer to the papers of Bonnaillie-Noël, Dauge and Fournais

[9, 13, 12]. For a numerical investigation, the reader may consider the paper [11].

• Dimension 3. In 3D the constant magnetic field case (with intensity 1) is treated by Helffer

and Morame in [60] under generic assumptions on the (smooth) boundary of Ω:

λ1(h) = Θ0h+ γ̂0h
4/3 + o(h4/3),

where the constant γ̂0 is related to the magnetic curvature of a curve in the boundary along

which the magnetic field is tangent to the boundary. The case of the ball is analyzed in details

by Fournais and Persson in [40]. When the boundary is not smooth, the problem is studied in

the thesis of N. Popoff [81] and a complete expansion of all the eigenvalues is performed in

[82].

1.6.2. Variable magnetic field.

• Dimension 2. For the case with a non vanishing variable magnetic field, we refer to [69, 83]

for the first terms of the lowest eigenvalue. For a complete expansion, we can refer to [85].

For the Dirichlet case, we can refer to [56] and to the paper in preparation by Faure, Raymond

and Vũ Ngo. c [37].

When the magnetic field vanishes, the first analysis of the lowest eigenvalue is due to Mont-

gomery in [74] soon followed by Helffer and Morame in [57] (see also [79]). The most recent

investigations in this case are the papers [48, 50] and [30]. In particular, in [30], a complete

expansion is proved and solves the conjecture of Helffer [55, Section 5.2].

• Dimension 3. When the magnetic field is variable (with Neumann condition on a smooth

boundary), the first term of λ1(h) is given by Lu and Pan in [70]. The next terms in the

expansion are investigated in [84]. A toy model is also analyzed in [86] where a complete

expansion of the eigenpairs is established. The generalization of [86] to general magnetic

fields and general smooth boundaries is still an open and difficult problem. The case with

Dirichlet boundary condition is partially studied by Helffer and Kordyukov in [49] and by

Raymond and Vũ Ngo. c (in progress).

1.7. Comments on the philosophy of the proofs related to the magnetic Laplacian. We

can now make some general comments about the results on the semiclassical spectral analysis

of the magnetic Laplacian. It is quite natural that the more we know about the eigenvalues, the

more we learn about the eigenfunctions and conversely. As we have noticed, many results only

concern the lowest eigenvalue λ1(h) and a few terms in its expansion. Therefore, in general,

the corresponding expansion of the eigenfunction is not known. Even the main term of this

expansion is not well understood. To understand the eigenpairs, we will be led to introduce ap-

proximate eigenvalues and eigenfunctions ; we will observe that formal power series give hints

about the structure of the spectrum. In fact, in almost all the papers that we have mentioned,

these power series expansions are used as a fundamental step to guess the behavior of the true

eigenpairs. The most difficult part of the analysis is to prove that such a formal investigation

completely describes the spectrum. We will see that the transition from “a few terms of λ1(h)”
to “a complete expansion of λn(h)” is not only a technical problem, but reflects the deepest
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properties of the magnetic Laplacian. In particular, we will have to establish accurate local-

ization (and micro-localization) properties of the true eigenfunctions (in the spirit of Agmon,

see [1]) as it is the case in [38] where the authors have to combine a very fine analysis using

pseudo-differential calculus (to catch the a priori behavior of the eigenfunctions with respect

to a phase variable) and the Grushin reduction machinery (see [46]). Fortunately, in this course

we will see how we can avoid the introduction of the pseudo-differential calculus. The basic

idea to analyze the spectrum of an operator is to compare it to a simplest one. For that purpose,

we will use many change of variables, functions and gauge to simplify the “principal symbol”

of the magnetic Laplacian: All these changes correspond to unitary conjugations which will

be completely explicit and known as Fourier Integral Operators (see the classical references

[90, 29, 72] and maybe also the initial paper of Egorov [33]). After these reductions (which

can be compared to the Birkhoff normal form, see [92, 21, 93]), we will be reduced to an op-

erator which has the “Born-Oppenheimer form”, a notion coming from the original paper [16]

and generalized by Martinez (see for instance [71, 66]). This “principal part” of the magnetic

Laplacian will allow us to deduce the complete asymptotic expansion of the eigenpairs. Here

this is interesting to underline that the operator which approximates the magnetic Laplacian

(and which can be studied through the Born-Oppenheimer approximation) is nothing but the

beginning of a Birkhoff normal form.

1.8. Organization. In Section 2 we recall the fundamental theorems in spectral theory and

provide examples of applications. In Section 3 we discuss important model operators related

to the magnetic Laplacian and recall formulas of Kato’s theory. In Section 4 we explain how

the magnetic Laplacian can be reduced to the models. In Section 5 we introduce the estimates

of Agmon which describe some localization properties of the eigenfunctions. In Section 6,

we discuss elementary aspects of the Born-Oppenheimer theory in relation with the model

operators. In Section 7, we provide a complete example of application of the philosophy

developed in the previous sections ; in particular we analyze the case when the magnetic field

vanishes in 2D. In Section 8, we describe a example in 3D with a non smooth boundary. In

Section 9, we investigate the magnetic Laplacian in terms of symplectic geometry and present

the Birkhoff normal form procedure. In Section 10, we analyze the Dirichlet spectrum of an

isosceles triangle whose aperture goes to zero. In Section 11, we investigate the spectrum of

broken waveguides.

• Acknowledgments. The author is grateful to his colleagues and collaborators which have

directly or indirectly influenced the contents and the presentation of this course: V. Bonnaillie-

Noël, M. Dauge, N. Dombrowski, F. Faure, S. Fournais, B. Helffer, D. Krejčiřı́k, Y. Lafranche,

F. Nier, T. Ourmières, M. Persson, N. Popoff and S. Vũ Ngo. c. He is also grateful to H. Najar

for his invitation to give a lecture in Tunisia.
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2. SPECTRAL THEOREM AND QUASIMODES

This section is devoted to recall basic tools in spectral analysis.

2.1. Min-max principle. We give a standard method to estimate the discrete spectrum and

the bottom of the essential spectrum of a self-adjoint operator A on an Hilbert space H . We

recall first the definition of the Rayleigh quotients of a self-adjoint operator A.

Definition 2.1. The Rayleigh quotients associated with the self-adjoint operator A on H of

domain Dom(A) are defined for all positive natural number j by

λj(A) = inf
u1,...,uj∈Dom(A)

independent

sup
u∈[u1,...,uj ]

〈Au, u〉H
〈u, u〉H

.

Here [u1, . . . , uj] denotes the subspace generated by the j independent vectors u1, . . . , uj .

The following statement gives the relation between Rayleigh quotients and eigenvalues.

Theorem 2.2. Let A be a self-adjoint operator of domain Dom(A). We assume that A is semi-

bounded from below. We set γ = minσess(A). Then the Rayleigh quotients λj of A form a

non-decreasing sequence and there holds

(1) If λj(A) < γ, it is an eigenvalue of A,

(2) If λj(A) ≥ γ, then λj = γ,

(3) The j-th eigenvalue < γ of A (if exists) coincides with λj(A).

A consequence of this theorem which is often used is the following:

Proposition 2.3. Suppose that there exists a ∈ R and an n-dimensional space V ⊂ DomA
such that:

〈Aψ,ψ〉 ≤ a‖ψ‖2.

Then, we have:

λn(A) ≤ a.

Remark 2.4. For the proof we refer to [68, Proposition 6.17 and 13.1] or to [89, Chapter XIII].

Let us give a characterization of the bottom of the essential spectrum (see [80] and also

[39]).

Theorem 2.5. Let V be real-valued, semi-bounded potential and A ∈ C1(Rn) a magnetic

potential. Let PA,V be the corresponding self-adjoint, semi-bounded Schrödinger operator.

The, the bottom of the essential spectrum is given by:

inf σess(PV,A) = Σ(PV,A),

where:

Σ(PV,A) = sup
K⊂Rn

[
inf

‖φ‖=1
〈PV,Aφ, φ〉 |φ ∈ C∞

0 (Rn \K)

]
.

Let us notice that generalizations including the presence of a boundary are possible.
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2.2. The Spectral Theorem. We state a theorem which will be one of the fundamental tools

in this course.

Theorem 2.6. Let us assume that (A,Dom(A)) is a self-adjoint operator. Then, if λ /∈ σ(A),
we have:

‖(A− λ)−1‖ ≤ 1

d(λ, σ(A))
.

Remark 2.7. This theorem is known as the spectral theorem and a proof can be found in

[89] and [65, Section VI.5]. An immediate consequence of this theorem is that, for all ψ ∈
Dom(A):

‖ψ‖d(λ, σ(A)) ≤ ‖(A− λ)ψ‖.
In particular, if we find ψ ∈ Dom(A) such that ‖ψ‖ = 1 and ‖(A − λ)ψ‖ ≤ ε, we get:

d(λ, σ(A)) ≤ ε.

2.3. Quasimodes for the 1D Electric Laplacian. We illustrate the application of the spec-

tral theorem in the case of the electric Laplacian Lh,V = −h2∆ + V (x). We assume that

V ∈ C∞(R,R), that V (x) → +∞ when |x| → +∞ and that it admits a unique and non

degenerate minimum at 0. This example is also the occasion to understand more in details

how we construct quasi-eigenpairs in general. From a heuristic point of view, we guess that

the lowest eigenvalues correspond to functions localized near the minimum of the potential

(intuition coming from the classical mechanics). Therefore we can use a Taylor expansion of

V near 0:

V (x) =
V ′′(0)

2
x2 +O(|x|3).

We can then try to compare −h2∆+V (x) with −h2∆ +
V ′′(0)

2
x2. For an homogeneity reason,

we try the rescaling x = h1/2y. The electric operator becomes:

L̃h,V = −h∆y + V (h1/2y).

Let us use the Taylor formula:

V (h1/2y) ∼ V ′′(0)

2
hy2 +

∑

j≥3

hj/2
V (j)(0)

j!
yj.

This provides the formal expansion:

L̃h,V ∼ h

(
H0 +

∑

j≥1

hj/2Hj

)
,

where

H0 = −∂2
y +

V ′′(0)

2
y2.

We look for a quasimode in the form:

u ∼
∑

j≥0

uj(y)h
j/2
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and an eigenvalue:

µ ∼ h
∑

j≥0

µjh
j/2.

Let us investigate the system of PDE that we get when solving in the formal series:

L̃h,V u ∼ µu.

• Term of order h. We get the equation:

H0u0 = µ0u0.

Therefore we can take for (µ0, u0) a L2-normalized eigenpair of the harmonic oscillator.

• Term of order h2. We solve:

(H0 − µ0)u1 = (µ1 −H1)u0.

We want to determine µ1 and u1. We can verify that H0 − µ0 is a Fredholm operator so that a

necessary and sufficient condition to solve this equation is given by:

〈(µ1 −H1)u0, u0〉 = 0.

Lemma 2.8. Let us consider the equation:

(2.1) (H0 − µ0)u = f,

with f ∈ S(R) such that 〈f, u0〉 = 0. The (2.1) admits a unique solution which is orthogonal

to u0 and this solution is in the Schwartz class.

Proof. Let us just sketch the proof to enlighten the general idea. We know that we can find

u ∈ Dom(H0) and that u is determined modulo u0 which is in the Schwartz class. Therefore,

we have: y2u ∈ L2(R) and u ∈ H2(R). Let us introduce a smooth cutoff function χR(y) =
χ (R−1y). χRy

2u is in the form domain of H0 as well as in the domain of H0 so that we can

write:

〈H0(χRy
2u), χRy

2u〉 = 〈[H0, χRy
2]u, χRy

2u〉 + 〈χRy2u(µ0u+ f), χRy
2u〉.

The commutator can easily be estimated and, by dominate convergence, we find the existence

of C > 0 such that for R large enough we have:

‖χRy3u‖2 ≤ C.

The Fatou lemma involves:

y3u ∈ L2(R).

This is then a standard iteration procedure which gives that ∂ly(y
ku) ∈ L2(R). The Sobolev

injection (Hs(R) →֒ Cs− 1

2 (R) for s > 1
2
) gives the conclusion.

�

This determines a unique value of µ1 = 〈H1u0, u0〉. For this value we can find a unique

u1 ∈ S(R) orthogonal to u0.

• Iteration. This is easy to see that this procedure can be continued at any order.
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• Application of the spectral theorem. Let us consider the (µj, uj) that we have constructed

and let us introduce:

UJ,h =
J∑

j=0

uj(y)h
j/2, µJ,h = h

J∑

j=0

µjh
j/2.

We estimate:

‖(L̃h,V − µJ,h)UJ,h‖.
By using the Taylor formula and the definition of the µj and uj , we have:

‖(L̃h,V − µJ,h)UJ,h‖ ≤ CJh
(J+1)/2,

since h(J+1)/2‖y(J+1)/2UJ,h‖ ≤ CJh
(J+1)/2 due to the fact that uj ∈ S(R). The spectral theo-

rem implies:

d
(
µJ,h, σdis(L̃h,V )

)
≤ CJh

(J+1)/2.

2.4. Magnetic Example. Let us now give an explicit example of construction of quasimodes

for the magnetic Laplacian in R
2. We investigate the operator:

Lh,A = (hD1 + A1)
2 + (hD2 + A2)

2,

with domain:

DomLh,A = {ψ ∈ L2(R2) :
(
(hD1 + A1)

2 + (hD1 + A2)
2
)
ψ ∈ L2(R2)}.

2.4.1. Compact resolvent ? Let us state an easy lemma.

Lemma 2.9. We have:

Qh,A(ψ) ≥
∣∣∣∣
∫

R2

hβ(x)|ψ|2 dx
∣∣∣∣ , ∀ψ ∈ C∞

0 (R2).

Proof. We notice that:

[hD1 + A1, hD2 + A2] = −ihβ.
We find:

〈[hD1 + A1, hD2 + A2]ψ, ψ〉 = −ih
∫

R2

β|ψ|2 dx.

By integration by parts, we deduce:

|〈[hD1 + A1, hD2 + A2]ψ, ψ〉| ≤ 2‖(hD1 + A1)ψ‖‖(hD2 + A2)ψ‖ ≤ Qh,A(ψ).

�

Proposition 2.10. Suppose that A ∈ C∞(R2) and that β = ∇× A ≥ 0 and β(x) →
|x→+∞|

+∞.

Then, Lh,A has compact resolvent.

Proof. This is an application of the Riesz-Fréchet-Kolmogorov theorem, see [17, Theorem

IV.25] (the form domain has compact injection in L2(R2)). �
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2.4.2. Quasimodes. Let us give a simple example inspired by [56]. Let us choose A such that

β = 1 + x2 + y2. We take A1 = 0 and A2 = x+ x3

3
+ y2x. We study:

Lh,A = h2D2
x +

(
hDy + x+

x3

3
+ y2x

)2

.

Let us try the rescaling x = h1/2u, y = h1/2v. We get a new operator:

L̃h,A = hD2
u + h

(
Dv + u+ h

u3

3
+ hv2u

)2

.

Let us conjugate by the partial Fourier transform with respect to v ; we get the unitarily equiv-

alent operator:

L̂h,A = hD2
u + h

(
ξ + u+ h

u3

3
+ huD2

ξ

)2

.

Let us now use the transvection: u = ǔ− ξ̌, ξ = ξ̌. We have:

Du = Dǔ, Dξ = Dǔ +Dξ̌.

We are reduced to the study of:

Ľh,A = hD2
ǔ + h

(
ǔ+ h

(ǔ− ξ̌)3

3
+ h(ǔ− ξ̌)(Dξ +Dǔ)

2

)2

We can expand Ľh,A in formal power series:

Ľh,A = hP0 + h2P1 + · · · ,
where P0 = D2

ǔ + ǔ2 and P1 = 2
3
ǔ(ǔ− ξ̌)3 + (ǔ− ξ̌)(Dξ̌ +Dǔ)

2ǔ+ ǔ(ǔ− ξ̌)(Dξ̌ +Dǔ)
2.

Let us look for quasi-eigenpairs in the form

λ ∼ hλ0 + h2λ1 + · · · , ψ ∼ ψ0 + hψ1 + · · ·

• Term of order h. We solve the equation:

P0ψ0 = λ0ψ0.

We take λ0 = 1 and ψ0(ǔ, ξ̌) = g0(ǔ)f0(ξ̌) where g0 is the first normalized eigenfunction of

the harmonic oscillator. f0 is a function to be determined.

• Term of order h2. The second equation of the formal system is:

(P0 − λ0)ψ1 = (λ1 − P1)ψ0.

The Fredholm condition gives, for all ξ̌:

〈(λ1 − P1)ψ0, g0〉L2(Rǔ) = 0.

Let us analyze the different terms which appear in this differential equation. There should be

a term in ξ̌3. Its coefficient is: ∫
ǔg0(ǔ)

2 dǔ = 0.
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For the same parity reason, there is no term in ξ̌. Let us now analyze the term in Dξ̌. Its

coefficient is:

〈(Dǔǔ+ ǔDǔ)g0, ǔg0〉 = 0,

for a parity reason. In the same way, there is no term in ξ̌D2
ξ̌
. The coefficient of ξ̌Dξ̌ is:

2

∫
(ǔDǔ −Dǔǔ)g0g0 dǔ = 0.

The compatibility equation is in the form:

(aD2
ξ̌
+ bξ̌2 + c)f0 = λ1f0.

It turns out that (exercise):

a = b = 2

∫
ǔ2g2

0 dǔ = 1.

In the same way c can be explicitly found. This leads to a family of choices for (λ1, f0): We

can take λ1 = c+ (2m+ 1) and f0 = gm the corresponding Hermite function.

This construction provides us a family of quasimodes (which are in the Schwartz class). By

the spectral theorem, we infer that, for each m ∈ N, there exists Cm > 0 such that:

d
(
h+ (2m+ 1 + c)h2, σdis(Ph,A)

)
≤ Cmh

3.

Remark 2.11. One could continue the expansion at any order and one could also consider the

other possible values of λ0 (next eigenvalues of the harmonic oscillator).

Remark 2.12. The fact that the construction can be continued as much as the appearance of the

harmonic oscillator is a clue that our initial scaling is actually the good one. We can also guess

that the lowest eigenfunctions are concentrated near zero at the scale h1/2 if the quasimodes

approximate the true eigenfunctions.
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3. MAGNETIC MODEL OPERATORS

As we mentioned in the introduction, the analysis of the magnetic Laplacian leads to the

study of numerous model operators. We saw in the last example that the harmonic oscillator

is such a model.

3.1. De Gennes Operator. The analysis of the 2D magnetic Laplacian with Neumann con-

dition on R
2
+ makes the so-called de Gennes operator to appear. We refer to [25] where this

model is studied in details (see also [39]). This operator is defined as follows. For ξ ∈ R, we

consider the Neumann realization H(ξ) in L2(R+) associated with the operator

(3.1) − d2

dt2
+ (t− ξ)2, Dom(H(ξ)) = {u ∈ B2(R+) : u′(0) = 0}.

The operator H(ξ) has compact resolvent by standard arguments. By the Cauchy-Lipschitz

theorem, all the eigenvalues are simple.

Notation 3.1. The lowest eigenvalue of H(ξ) is denoted µ(ξ) ; the associated L2-normalized

and positive eigenstate is denoted by uξ = u(·, ξ).

We easily get that uξ is in the Schwartz class.

Lemma 3.2. The function ξ 7→ µ(ξ) is smooth and so is ξ 7→ u(·, ξ).

Proof. The family (H(ξ))ξ∈R is analytic of type (A), see [65, p. 375]. �

Lemma 3.3. ξ 7→ µ(ξ) admits a unique minimum and it is non degenerate.

Proof. This an easy application of the min-max principle which proves that

lim
ξ→−∞

µ(ξ) = +∞.

Let us now show that:

lim
ξ→+∞

µ(ξ) = 1.

The de Gennes operator is equivalent to the operator −∂2
t + t2 on (−ξ,+∞) with Neumann

condition at −ξ. Let us begin with upper bound. An easy and explicit computation gives:

µ(ξ) ≤ 〈(−∂2
t + t2)e−t

2/2, e−t
2/2〉L2((−ξ,+∞)) →

ξ→+∞
1.

Let us investigate the converse inequality. Let us prove some concentration of uξ near 0 when

ξ increases (the reader can compare this with the estimates of Agmon of Section 5). We have:
∫ +∞

0

(t− ξ)2|uξ(t)|2 dt ≤ µ(ξ).

If λ(ξ) is the lowest Dirichlet eigenvalue, we have:

µ(ξ) ≤ λ(ξ).

By monotonicity of the Dirichlet eigenvalue with respect to the domain, we have, for ξ > 0:

λ(ξ) ≤ λ(0) = 3.
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It follows that: ∫ 1

0

|uξ(t)|2 dt ≤
3

(ξ − 1)2
, ξ ≥ 2.

Let us introduce the test function: χ(t)uξ(t) with χ supported in (0,+∞) and being 1 for

t ≥ 1. We have:

〈(−∂2
t+(t−ξ)2)χ(t)uξ(t), χ(t)uξ(t)〉L2(R) ≥ ‖χ(·+ξ)uξ(·+ξ)‖2

L2(R) = ‖χuξ‖2
L2(R) = 1+O(|ξ|−2).

Moreover, we get:

〈(−∂2
t + (t− ξ)2)χ(t)uξ(t), χ(t)uξ(t)〉L2(R) = 〈(−∂2

t + (t− ξ)2)χ(t)uξ(t), χ(t)uξ(t)〉L2(R+).

We have:

〈(−∂2
t + (t− ξ)2)χ(t)uξ(t), χ(t)uξ(t)〉L2(R+) = µ(ξ)‖χuξ‖2 + ‖χ′uξ‖2

which can be controlled by the concentration result. We infer that, for ξ large enough:

µ(ξ) ≥ 1 − C|ξ|−1.

From these limits, we deduce the existence of a minimum strictly less than 1.

We now use the Feynman-Hellmann formula which will be established later. We have:

µ′(ξ) = −2

∫

t>0

(t− ξ)|uξ(t)|2 dt.

For ξ < 0, we get an increasing function. Moreover, we see that µ(0) = 1. The minima are

obtained for ξ > 0.

We can write that:

µ′(ξ) = 2

∫

t>0

(t− ξ)2uξu
′
ξ dt+ ξ2uξ(0)2.

This implies:

µ′(ξ) = (ξ2 − µ(ξ))uξ(0)2.

Let ξc a critical point for µ. We get:

µ′′(ξc) = 2ξcuξc(0)2.

The critical points are all non degenerate. They correspond to local minima.We conclude

that there is only one critical point and that is the minimum. We denote it ξ0 and we have

µ(ξ0) = ξ2
0 . �

We let:

(3.2) Θ0 = µ(ξ0),

(3.3) C1 =
u2
ξ0

(0)

3
.

Exercise. We propose to prove be elementary means that ξ 7→ µ(ξ) and ξ 7→ u(·, ξ) are

smooth. Let us fix ξ1 ∈ R and z ∈ C \ σ(H(ξ1)).

(1) Prove that, for ξ close enough to ξ1, H(ξ)− z is invertible. For that purpose, one could

show that: t(H(ξ1) − z)−1 is bounded with a uniform bound with respect to z.
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FIGURE 1. ξ 7→ µk(ξ), for k = 1, 2, 3, 4

(2) Prove that ξ 7→ (H(ξ) − z)−1 is analytic as soon as ξ is close to ξ1.

(3) Establish the resolvent formula:

(H(ξ1) − z)−1 − (H(ξ) − z)−1 = (ξ1 − ξ)(H(ξ) − z)−1(2t− ξ − ξ1)(H(ξ1) − z)−1.

(4) By using the fact that H(ξ) has compact resolvent and is self-adjoint, prove that:

PΓ(ξ) =
1

2iπ

∫

Γ

(H(ξ) − z)−1 dz

is the projection on the space generated by the eigenfunctions associated with eigen-

values enclosed by the smooth contour Γ.

(5) Prove that:

‖PΓ(ξ) − PΓ(ξ1)‖ ≤ C|ξ − ξ1|,
when ξ is close to ξ1. See [65, I.8].

(6) Deduce that near each µn(ξ1) there exists an element µp(ξ) and conversely.

(7) Deduce that ξ 7→ µk(ξ) are continuous functions near ξ1.
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(8) Conclude that, if Γ is a coutour small enough around µn(ξ1), then, for ξ close enough

to ξ1, it only contains µn(ξ). Finally, prove that the corresponding normalized eigen-

function is analytic with respect to ξ and so is the eigenvalue.

3.2. Montgomery Operator. Let us now discuss another important model. This one was

introduced by Montgomery in [74] to study the case of vanishing magnetic fields in 2D (see

also [79] and [60, Section 2.4]). This model was revisited by Helffer in [47] and generalized

by Helffer and Persson in [61].

The Montgomery operator with parameters η ∈ R and δ > 0 is the self-adjoint realization

on R of:

(3.4) Mη,δ = D2
t +

(
−η +

δ

2
t2
)2

.

The Montgomery operator has clearly compact resolvent.

Notation 3.4. The lowest eigenvalue of Mη,δ is denoted by νδ(η)

In fact, νδ is related to ν1. Indeed, we can perform a rescaling t = δ−1/3τ so that Hη,δ is

unitarily equivalent to:

δ2/3

(
D2
τ + (−ηδ−1/3 +

1

2
τ 2)2

)
= δ2/3Mηδ−1/3,1.

It is known (see [47, 61]) that, for all δ > 0:

(3.5) η 7→ νδ(η) admits a unique and non-degenerate minimum at a point η0.

We may write:

(3.6) inf
η∈R

νδ(η) = δ2/3ν1(η0).

For fixed δ > 0, the family (Mη,δ)η∈R is an analytic family of type (B) so that the eigenpair

(ν1(η), uη) has an analytic dependence on η (see [65]).

Numerical computations of η0 and νη0 are performed by V. Bonnaillie-Noël (see [61, Table

1]) and give η0 ≈ 0.35 and ν1(η0) ≈ 0, 57. It is also proved that:

lim
|η|→+∞

ν1(η) = +∞.

3.3. Popoff Operator. The next model operator that we will encounter has been introduced

more recently by Popoff in [81] in order to study the Neumann Laplacian on an edge in a

constant magnetic field. Let us defined the corner with fixed angle α ∈ (0, π):

Cα = {(t, z) ∈ R
2 : |z| ≤ t tan

(α
2

)
}.

The edge of angle α is defined by:

Eα = R × Cα.

We are interested in the Neumann realization on L2(Eα, dsdtdz) of the following operator:

Lα = D2
t +D2

z + (Ds − t)2.
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Using the Fourier transform with respect to s, we have the decomposition (into a direct integral,

see [89, p. 281-284]):

Lα =

∫ ⊕
Lα,η dη,

where we have introduced the following Neumann realization on L2(Cα, dtdz):

Lα,η = D2
t +D2

z + (η − t)2,

where η ∈ R is a parameter.

Notation 3.5. For each α ∈ (0, π), we denote by ν(α, η) the lowest eigenvalue (which is

simple) of Lα,η and we denote by uα,η the corresponding eigenfunction.

Notation 3.6. ν(α) denotes the bottom of the spectrum of Lα.

We have:

ν(α) = inf
η∈R

ν(α, η).

• Properties related to Lα,η and Lα. Let us gather a few elementary properties:

Lemma 3.7. We have:

(1) The function (0, π) ∋ α 7→ ν(α) is non increasing.

(2) For all η ∈ R, the function (0, π) ∋ α 7→ ν(α, η) is decreasing.

(3) The function (0, π) × R ∋ (α, η) 7→ ν(α, η) is analytic.

We will admit that (open question):

Assumption 3.8. For all α ∈ (0, π), η 7→ ν(α, η) has a unique critical point denoted by η0(α)
and it is non degenerate.

Under this assumption and using the analytic implicit function theorem, we deduce:

Lemma 3.9. Under Assumption 3.8, the function (0, π) ∋ α 7→ η0(α) is analytic and so is

(0, π) ∋ α 7→ ν(α). Moreover the function (0, π) ∋ α 7→ ν(α) is decreasing.

3.4. Helffer-Lu-Pan Operator. Let us present a last model operator appearing in 3D in the

case of smooth Neumann boundary (see [70, 59, 10]).

We denote by x = (s, t) the coordinates in R
2 and by Ω the half-plane:

Ω = R
2
+ = {x = (s, t) ∈ R

2, t > 0}.
We introduce the self-adjoint Neumann realization on the half-plane Ω of the Schrödinger

operator Lθ with potential Vθ:

Lθ = −∆ + Vθ = D2
s +D2

t + Vθ,

where Vθ is defined for any θ ∈ (0, π
2
) by

Vθ : x = (s, t) ∈ Ω 7−→ (t cos θ − s sin θ)2.
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We can notice that Vθ reaches its minimum 0 all along the line t cos θ = s sin θ, which makes

the angle θ with ∂Ω. We denote by Dom(Lθ) the domain of Lθ and we consider the associated

quadratic form Qθ defined by:

Qθ(u) =

∫

Ω

(
|∇u|2 + Vθ|u|2

)
dx,

whose domain Dom(qθ) is:

Dom(Qθ) = {u ∈ L2(Ω), ∇u ∈ L2(Ω),
√
Vθ u ∈ L2(Ω)}.

Let σn(θ) denote the n-th Rayleigh quotient of Lθ. Let us recall some fundamental spectral

properties of Lθ when θ ∈
(
0, π

2

)
.

It is proved in [59] that σess(Lθ) = [1,+∞) and that θ 7→ σn(θ) is non decreasing. More-

over, the function (0, π
2
) ∋ θ 7→ σ1(θ) is increasing, and corresponds to a simple eigen-

value < 1 associated with a positive eigenfunction (see [70, Lemma 3.6]). As a consequence

θ 7→ σ1(θ) is analytic (see [65, Chapter 7]).

• A few numerical simulations. Let us provide a few numerical experiments (coming from

[10]) related to the Helffer-Lu-Pan operator. Below we give the result of numerical simula-

tions giving the first eigenvalues of Lθ as a function of θ. The next figure describes the first
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FIGURE 2. σn(θ; 100, 100, 100) for n = 1, . . . , 4 (ordinates) versus ϑ = 2θ/π
(abscissa). Sampling: ϑ = k/100, 1 ≤ k ≤ 99.

eigenmode for different values of θ.
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σ̆1(θ) 1.0001656284 0.99987798948 0.99910390126 0.99445407220

FIGURE 3. First eigenmode of Lθ for θ = ϑπ/2 with ϑ = 0.9, 0.85, 0.8 and 0.7.

3.5. Kato Theory: Feynman-Hellmann Formulas. As we can notice, all the operators that

we have introduced depend on parameters and are analytic of type (B) in terms of Kato’s

theory. Moreover, we also observe that the lowest eigenvalues of the previous model operators

are simple, we systematically deduce that they analytically depend on the parameters.

In order to illustrate the Feynman-Hellmann formulas, let us examine a few examples.

• De Gennes operator. Let us prove propositions which are often used in the study of the

magnetic Laplacian.

For ρ > 0 and ξ ∈ R, let us introduce the Neumann realization on R+ of:

Hρ,ξ = −ρ−1∂2
τ + (ρ1/2τ − ξ)2.

By scaling, we observe that Hρ,ξ is unitarily equivalent to Hξ and that H1,ξ = Hξ (the corre-

sponding eigenfunction is u1,ξ = uξ).

Remark 3.10. The introduction of the scaling parameter ρ is related to the Virial theorem

(see [94]) which was used by physicists in the theory of superconductivity (see [31] and also

[3, 20]). We also refer to the papers [84] and [85] where it is used many times.

The form domain of Hρ,ξ is B1(R+) and is independent from ρ and ξ so that the family

(Hρ,ξ)ρ>0,ξ∈R
is an analytic family of type (B). The lowest eigenvalue of Hρ,ξ is µ(ξ) and we
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will denote by uρ,ξ the corresponding normalized eigenfunction:

uρ,ξ(τ) = ρ1/4uξ(ρ
1/2τ).

Since uξ satisfies the Neumann condition, we observe that ∂mρ ∂
n
ξ uρ,ξ also satisfies it. In order

to lighten the notation and when it is not ambiguous we will write H for Hρ,ξ, u for uρ,ξ and µ
for µ(ξ).

The main idea is now to take derivatives of:

(3.7) Hu = µu

with respect to ρ and ξ. Taking the derivative with respect to ρ and ξ, we get the proposition:

Proposition 3.11. We have:

(3.8) (H − µ)∂ξu = 2(ρ1/2τ − ξ)u+ µ′(ξ)u

and

(3.9) (H − µ)∂ρu =
(
−ρ−2∂2

τ − ξρ−1(ρ1/2τ − ξ) − ρ−1τ(ρ1/2τ − ξ)2
)
u.

Moreover, we get:

(3.10) (H − µ)(Su) = Xu,

where

X = −ξ
2
µ′(ξ) + ρ−1∂2

τ + (ρ1/2τ − ξ)2

and

S = −ξ
2
∂ξ − ρ∂ρ.

Proof. Taking the derivatives with respect to ξ and ρ of (3.7), we get:

(H − µ)∂ξu = µ′(ξ)u− ∂ξHu

and

(H − µ)∂ρu = −∂ρH.
We have: ∂ξH = −2(ρ1/2τ − ξ) and ∂ρH = ρ−2∂2

τ + ρ−1/2τ(ρ1/2τ − ξ). �

Taking ρ = 1 and ξ = ξ0 in (3.8), we deduce, with the Fredholm alternative:

Corollary 3.12. We have:

(Hξ0 − µ(ξ0))vξ0 = 2(t− ξ0)uξ0 ,

with:

vξ0 = (∂ξuξ)|ξ=ξ0 .

Moreover, we have: ∫

τ>0

(τ − ξ0)u
2
ξ0
dτ = 0.
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Corollary 3.13. We have, for all ρ > 0:
∫

τ>0

(ρ1/2τ − ξ0)u
2
ρ,ξ0

dτ = 0

and: ∫

τ>0

(τ − ξ0) (∂ρu)ρ=1,ξ=ξ0
u dτ = −ξ0

4
.

Corollary 3.14. We have:

(Hξ0 − µ(ξ0))S0u =
(
∂2
τ + (τ − ξ0)

2
)
uξ0 ,

where:

S0u = − (∂ρuρ,ξ)|ρ=1,ξ=ξ0
− ξ0

2
vξ0 .

Moreover, we have:

‖∂τuξ0‖2 = ‖(τ − ξ0)uξ0‖2 =
Θ0

2
.

The next proposition deals with the second derivative of (3.7) with respect to ξ.

Proposition 3.15. We have:

(Hξ − µ(ξ))wξ0 = 4(τ − ξ0)vξ0 + (µ′′(ξ0) − 2)uξ0 ,

with

wξ0 =
(
∂2
ξuξ
)
|ξ=ξ0

.

Moreover, we have: ∫

τ>0

(τ − ξ0)vξ0uξ0 dτ =
2 − µ′′(ξ0)

4
.

Proof. Taking the derivative of (3.8) with respect to ξ (with ρ = 1), we get:

(Hξ − µ(ξ))∂2
ξuξ = 2µ′(ξ)∂ξuξ + 4(τ − ξ)∂ξuξ + (µ′′(ξ) − 2)uξ.

It remains to take ξ = ξ0 and to write the Fredholm alternative. �

• Helffer-Lu-Pan operator. The following result is obtained in [10].

Proposition 3.16. For all θ ∈
(
0, π

2

)
, we have:

σ1(θ) cos θ − σ′
1(θ) sin θ > 0.

Moreover, we have:

lim
θ→π

2

θ<π
2

σ′
1(θ) = 0.

Proof. For γ ≥ 0, we introduce the operator (see [86]):

L(θ, γ) = D2
s +D2

t + (t(cos θ + γ) − s sin θ)2

and we denote by σ1(θ, γ) the bottom of its spectrum. Let ρ > 0 and α ∈ (0, π
2
) satisfy

cos θ + γ = ρ cosα and sin θ = ρ sinα.
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We perform the rescaling t = ρ−1/2t̂, s = ρ−1/2ŝ and obtain that L(θ, γ) is unitarily equivalent

to:

ρ(D2
ŝ +D2

t̂ + (t̂ cosα− ŝ sinα)2) = ρLα.
In particular, we observe that σ1(θ, γ) = ρσ1(α) is a simple eigenvalue: there holds

(3.11) σ1(θ, γ) =
√

(cos θ + γ)2 + sin2 θ σ1

(
arctan

(
sin θ

cos θ + γ

))
.

Performing the rescaling t̃ = (cos θ + γ)t, we get the operator L̃(θ, γ) which is unitarily

equivalent to L(θ, γ) :

L̃(θ, γ) = D2
s + (cos θ + γ)2D2

t̃ + (t̃− s sin θ)2.

We observe that the domain of L̃(θ, γ) does not depend on γ ≥ 0. Denoting by ũθ,γ the

L2-normalized and positive eigenfunction of L̃(θ, γ) associated with σ1(θ, γ), we write:

L̃(θ, γ)ũθ,γ = σ1(θ, γ)ũθ,γ.

Taking the derivative with respect to γ, multiplying by ũθ,γ and integrating, we get the Feynman-

Hellmann formula:

∂γσ1(θ, γ) = 2(cos θ + γ)

∫

Ω

|Dtũθ,γ|2dsdt ≥ 0.

We deduce that, if ∂γσ1(θ, γ) = 0, then Dtũθ,γ = 0 and ũθ,γ only depends on s, which is a

contradiction with ũθ,γ ∈ L2(Ω). Consequently, we have ∂γσ1(θ, γ) > 0 for any γ ≥ 0. An

easy computation using formula (3.11) provides:

∂γσ1(θ, 0) = σ1(θ) cos θ − σ′
1(θ) sin θ.

The function σ1 is analytic and increasing. Thus we deduce:

∀θ ∈
(
0,
π

2

)
, 0 ≤ σ′

1(θ) <
cos θ

sin θ
σ1(θ).

We get:

0 ≤ lim inf
θ→π

2

θ<π
2

σ′
1(θ) ≤ lim sup

θ→π
2

θ<π
2

σ′
1(θ) ≤ 0,

which ends the proof. �
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4. REDUCTION TO LOCAL MODELS

We explain in this section how we can perform a reduction of the magnetic Laplacian to

local models.

4.1. Partition of Unity and Localization Formula. The presentation is inspired by [23]. We

introduce the following partition of unity:
∑

j

χ2
j,R = 1,

where the χj,R is a smooth cutoff function supported in a ball of center xj and radius R > 0.

Moreover, we can find such a partition of unity so that:
∑

j

‖∇χj,R‖2 ≤ CR−2.

The following formula is usually called “IMS formula” and allows to localize the electro-

magnetic Laplacian.

Proposition 4.1. Let ψ ∈ Dom(qh,A,V ). We have:

Qh,A,V (ψ) =
∑

j

Qh,A,V (χj,Rψ) − h2
∑

j

‖∇χj,Rψ‖2.

Proof. The proof is easy and instructive. By a density argument, it is enough to prove this for

ψ ∈ Dom(Ph,A,V ). We can write:

Qh,A,V (χj,Rψ) = 〈Ph,A,V χj,Rψ, χj,Rψ〉.
We let P = hDk + Ak and χ = χj,R. It is enough to estimate:

〈Pψ, Pχ2ψ〉 = 〈χPψ, [P, χ]ψ〉 + 〈χPψ, Pχψ〉
= 〈χPψ, [P, χ]ψ〉 + 〈Pχψ, Pχψ〉 + 〈[χ, P ]ψ, Pχψ〉
= 〈Pχψ, Pχψ〉 − ‖[P, χ]ψ‖2 + 〈χPψ, [P, χ]ψ〉 − 〈[P, χ]ψ, χPψ〉.

Taking the real part, we find:

〈Pψ, Pχ2ψ〉 = ‖Pχψ‖2 − ‖[P, χ]ψ‖2.

We have: [P, χ] = −ih∂kχ. It remains to take the sum and the conclusion follows. �

4.2. Magnetic Example. As we are going to see on an example, this localization formula is

very convenient to prove lower bounds for the spectrum. Let us continue the study of:

Lex
h,A = h2D2

x +

(
hDy + x+

x3

3
+ y2x

)2

.

Proposition 4.2. For all n ∈ N
∗, there exist h0 > 0 and C > 0 such that for h ∈ (0, h0):

λn(h) ≥ h− Ch5/4.
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Proof. We introduce a partition of unity with radiusR > 0 denoted by (χj,R)j . Let us consider

an eigenpair (λ, ψ). We have:

Qh,A(ψ) =
∑

j

Qh,A(χj,Rψ) − h2
∑

j

‖∇χj,Rψ‖2

so that:

Qh,A(ψ) ≥
∑

j

Qh,A(χj,Rψ) − CR−2h2‖ψ‖2

and:

λ‖ψ‖2 ≥
∑

j

Qh,A(χj,Rψ) − CR−2h2‖ψ‖2.

It remains to provide a lower bound for Qh,A(χj,Rψ). We choose R = hρ with ρ > 0, to be

chosen. We approximate the magnetic field in each ball by the constant magnetic field βj:

|β − βj| ≤ C‖x− xj‖.
In a suitable gauge, we have:

‖A − Alin
j ‖ ≤ C‖x− xj‖2,

where C > 0 does not depend on j. Then, we have, for all ε ∈ (0, 1):

Qh,A(χj,Rψ) ≥ (1 − ε)Qh,Alin
j
(χj,Rψ) − C2ε−1R4‖χj,Rψ‖2.

From the min-max principle, we deduce:

Qh,A(χj,Rψ) ≥
(
(1 − ε)βjh− C2ε−1h4ρ

)
‖χj,Rψ‖2.

Optimizing ε, we take: ε = h2ρ−1/2 and it follows:

Qh,A(χj,Rψ) ≥
(
βjh− Ch2ρ+1/2

)
‖χj,Rψ‖2.

We now choose ρ such that 2ρ + 1/2 = 2 − 2ρ. We are led to take: ρ = 3
8

and the conclusion

follows. �
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5. AGMON ESTIMATES

This section is devoted to the Agmon estimates in the semiclassical framework. We refer to

the classical references [1, 2, 54, 51, 52].

5.1. Agmon identity for the electro-magnetic Laplacian.

Proposition 5.1. Let Ω be a bounded open domain in R
m with Lipschitzian boundary. Let

V ∈ C0(Ω,R), A ∈ C0(Ω,Rm) and Φ a real valued Lipschitzian function on Ω. Then, for

u ∈ Dom(Lh,A,V ) (with Dirichlet or magnetic Neumann condition), we have:
∫

Ω

‖(−ih∇ + A)eΦu‖2 dx +

∫

Ω

(
V − h2‖∇Φ‖2e2Φ

)
|u|2 dx = ℜ〈Lh,A,V u, e2Φu〉.

Proof. We give the proof when Φ is smooth. Let us use the Green-Riemann formula:

m∑

k=1

〈(−ih∂k + Ak)
2u, e2Φu〉 =

m∑

k=1

〈(−ih∂k + Ak)u, (−ih∂k + Ak)e
2Φu〉,

where the boundary term has disappeared thanks to the boundary condition. In order to lighten

the notation, we let P = −ih∂k + Ak.

〈Pu, Pe2Φu〉 = 〈eΦPu, [P, eΦ]u〉 + 〈eΦPu, PeΦu〉
= 〈eΦPu, [P, eΦ]u〉 + 〈PeΦu, PeΦu〉 + 〈[eΦ, P ]u, PeΦu〉
= 〈PeΦu, PeΦu〉 − ‖[P, eΦ]u‖2 + 〈eΦPu, [P, eΦ]u〉 − 〈[P, eΦ]u, eΦPu〉.

We deduce:

ℜ
(
〈Pu, Pe2Φu〉

)
= 〈PeΦu, PeΦu〉 − ‖[P, eΦu]‖2.

This is then enough to conclude.

�

5.2. Example of application. Let us continue to study our favorite example (see Subsection

4.2).

Proposition 5.2. There exist C > 0, h0 > 0 such that, for h ∈ (0, h0) and (λ, ψ) an eigenpair

of Lex
h,A satisfying λ ≤ h+ Ch2, we have:

∫

R2

e2h
−1/8|x||ψ|2 dx ≤ C‖ψ‖2.

Proof. We consider an eigenpair (λ, ψ) as in the proposition and we use the Agmon identity,

jointly with the “IMS” formula (with balls of size h3/8):
∑

j

Qh,A(χj,he
Φψ) − h2‖∇χj,heΦψ‖2 − h2‖χj,h∇ΦeΦψ‖2 − λ‖χj,heΦψ‖2 = 0.

This becomes:∑

j

Qh,A(χj,he
Φψ) − (h+ Ch5/4)‖χj,heΦψ‖2 − h2‖χj,h∇ΦeΦψ‖2 ≤ 0.
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We need to give a lower bound for Qh,A(χj,he
Φψ):

Qh,A(χj,he
Φψ) ≥ (β(xj)h− Ch5/4)‖eΦχj,hψ‖2.

This implies:
∑

j

((β(xj) − 1)h− Ch5/4)‖eΦχj,hψ‖2 − h2‖χj,h∇ΦeΦψ‖2 ≤ 0.

We split the sum into two parts: the j such that |xj| ≥ C0h
1/8 and the j such that |xj| ≤ C0h

1/8,

for some C0 > 0 to be chosen. Moreover, we choose Φ(x) = h−1/8|x|.
Let us consider first j such that |xj| ≤ C0h

1/8. Due to the non-degeneracy of the minimum

of β, we get the existence of c0, ε0 > 0 such that, for all C0 > 0:

β(xj) − 1 ≥ min(c0C
2
0h

5/4, ε0).

Then, we choose C0 > 0 such that: c0C
2
0 − C > 0. Taking h small enough, we find the

inequality: ∑

|xj |≥C0h1/8

‖eΦχj,hψ‖2 ≤ C̃
∑

|xj |≤C0h1/8

‖eΦχj,hψ‖2 ≤ Ĉ‖ψ‖2.

Finally, we deduce:

‖eΦψ‖ ≤ C‖ψ‖.
�

• Numerical simulations. Let us give a few simulations of the eigenfunctions of Lex
h,A.

FIGURE 4. Eigenmodes
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Another example of application of the estimates of Agmon is the theory of the Born-

Oppenheimer approximation that we sketch in the next section.
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6. BORN-OPPENHEIMER APPROXIMATION

This section presents the main idea behind the Born-Oppenheimer approximation (see [71]).

We do not strive for maximum generality.

6.1. Heuristics and framework. Let us explain the question in which we are interested. We

shall study operators in L2(R × Ω) (with Ω ⊂ R
d) in the form:

H(h) = h2D2
z + A(z),

where A(z) = −∆t + P (t, z) is a family of semi-bounded self-adjoint operators, with P
polynomial. We will denote by Qh the corresponding quadratic form.

We want to analyze the low lying eigenvalues of this operator. We will assume that the

lowest eigenvalue ν(z) of A(z) (which is simple) admits, as a function of z, a unique and non

degenerate minimum at z0.

• Heuristics. We now try to understand the heuristics. We hope that H(h) can be described

by its “Born-oppenheimer” approximation:

HBO(h) = h2D2
z + ν(z),

with is a 1D electric Laplacian. Then, we guess that HBO(h) is well approximated by its

Taylor expansion:

h2D2
z + ν(z0) +

ν ′′(z0)

2
(z − z0)

2.

Therefore we imagine that the lowest eigenvalues of H(h) satisfy:

λn(h) = ν(z0) + h(2n− 1)

(
ν ′′(z0)

2

)1/2

+ o(h).

In the next subsections we explain how to make this heuristics rigorous.

6.2. Recall of Feynman-Hellmann formulas. We have:

A(z)vz = ν(z)vz.

This is easy to prove that (the details are left as an exercise):

〈A′(z0)vz0 , vz0〉 = 0,

(A(z0) − ν(z0))

(
d

dz
vz

)

|z=z0
= −A′(z0)vz0

and: 〈
A′(z0)

(
d

dz
vz

)

|z=z0
+
A′′(z0)

2
vz0 , vz0

〉
=
ν ′′(z0)

2
.
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6.3. Quasimodes. As usual we begin with the construction of suitable quasimodes. Instead

of H(h) we study:

H̃(h) = hD2
u + A(z0 + h1/2u).

In terms of formal power series, we have:

H̃(h) = A(z0) + h1/2uA′(z0) + h

(
u2A

′′(z0)

2
+D2

u

)
+ · · ·

We look for quasi-eigenpairs in the form:

λ ∼ λ0 + h1/2λ1 + hλ2 + · · · , ψ ∼ ψ0 + h1/2ψ1 + hψ2 + · · ·

• Term of order h0. We must solve:

A(z0)ψ0 = λ0ψ0.

Therefore, we choose λ0 = ν(z0) and ψ0(u, t) = vz0(t)f0(u).

• Term of order h1/2. We now meet the following equation:

(A(z0) − λ0)ψ1 = (λ1 − uA′(z0))ψ0.

The Feynman-Hellmann formula jointly with the Fredholm alternative implies that: λ1 = 0
and that we can take:

ψ1(u, t) = uf0(u)

(
d

dz
vz

)

|z=z0
(t) + uf1(u)vz0 .

• Term of order h1. The crucial equation is given by:

(A(z0) − ν(z0))ψ2 = λ2ψ0 − uA′(z0)ψ1 −
(
u2A

′′(z0)

2
+D2

u

)
ψ0.

The Fredholm alternative jointly with the Feynman-Hellmann formula provides:
(
D2
u +

ν ′′(z0)

2
u2

)
f0 = λ2f0.

This is an easy exercise to prove that this construction can be continued at any order.

6.4. Essential spectrum. Let us briefly discuss the properties related to the essential spec-

trum.

Assumption 6.1. Let us assume that lim inf
z→±∞

ν(z) > ν(z0) and that for all z:

inf
z
σess(A(z)) > ν(z0).

We infer (exercise), as a consequence of the theorem of Persson (see Theorem 2.5):

Proposition 6.2. Under Assumption 6.1, we have:

inf
h>0

inf σess (H(h)) > ν(z0).

As a corollary, we get:
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Proposition 6.3. There exists h0 > 0, C > 0, ε0 > 0 such that, for h ∈ (0, h0), for all

eigenpair (λ, ψ) such that λ ≤ ν(z0) + C0h, we have:
∫
e2ε0(|z|+|t|)|ψ|2 dzdt ≤ C‖ψ‖2.

Proof. This is a consequence of Persson’s theorem (see [80]). �

6.5. Agmon Estimates. We are now led to prove some localization behavior of the eigen-

functions associated with eigenvalues λ such that: |λ− ν(z0)| ≤ C0h.

Proposition 6.4. There exist ε0, h0, C > 0 such that for all eigenpair (λ, ψ) such that |λ −
ν(z0)| ≤ C0h, we have: ∫

e2ε0h
−1/2|z||ψ|2 dx ≤ C‖ψ‖2.

and: ∥∥∥h∂z
(
eε0h

−1/2|z|ψ
)∥∥∥

2

≤ Ch‖ψ‖2.

Proof. Let us write an estimate of Agmon:

Qh(e
h−1/2ε0|z|ψ) − hε2

0‖eh
−1/2ε0|z|ψ‖2 = λ‖eh−1/2ε0|z|ψ‖2 ≤ (ν(z0) + C0h)‖eh

−1/2ε0|z|ψ‖2.

But we notice that:

Qh(e
h−1/2ε0|z|ψ) ≥

∫
h2
∣∣∣∂z
(
eh

−1/2ε0|z|ψ
)∣∣∣

2

+ ν(z)
∣∣∣
(
eh

−1/2ε0|z|ψ
)∣∣∣

2

dx

This implies the inequality:
∫

(ν(z) − ν(z0) − C0h− ε2
0h)
∣∣∣
(
eh

−1/2ε0|z|ψ
)∣∣∣

2

dx ≤ 0.

We leave the conclusion as an exercise. �

6.6. Projection Method. As we have observed, it can be more convenient to study H̃(h)
instead of H(h). Let us introduce the Feshbach-Grushin projection (see [46]) on vz0:

Π0ψ = 〈ψ, vz0〉tvz0(t).
We want to estimate the projection of the eigenfunctions associated with eigenvalues λ such

that: |λ− ν(z0)| ≤ C0h. For that purpose, let us introduce the quadratic form:

q0(ψ) =

∫
|∂tψ|2 + P (t, z0)|ψ|2 dudt.

This quadratic form is associated with the operator: Idu ⊗ A(z0) whereas Π0 is the projection

on its first eigenspace.

Proposition 6.5. There exist C, h0 > 0 such that, for h ∈ (0, h0), for all eigenpair (λ, ψ) of

H̃(h) such that λ ≤ ν(z0) + C0h:

0 ≤ q0(ψ) − ν(z0)‖ψ‖2 ≤ Ch1/2‖ψ‖2.
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Moreover, we have:

‖ψ − Π0ψ‖ + ‖∂t(ψ − Π0ψ)‖ ≤ Ch1/4‖ψ‖.

Proof. The proof is rather easy. We write:

h‖∂uψ‖2 + ‖∂tψ‖2 +

∫
P (t, z0 + h1/2u)|ψ|2 dzdt ≤ (λ+ C0h)‖ψ‖2.

Using the fact that P is a polynomial and the fact that, for k, n ∈ N:∫
|t|n|u|k|ψ|2 dudt ≤ C‖ψ‖2,

we get the first estimate. For the second one, we notice that:

q0(ψ) − ν(z0)‖ψ‖2 = q0(ψ − Π0ψ) − ν(z0)‖ψ − Π0ψ‖2,

due to the fact that Π0ψ belongs to the kernel of Idu ⊗A(z0) − ν(z0)Id. We observe then that:

q0(ψ − Π0ψ) − ν(z0)‖ψ − Π0ψ‖2 ≥
∫

u

∫

t

|∂t(ψ − Π0ψ)|2 + P (t, z0)|(ψ − Π0ψ)|2 dt du.

Since for each u, we have: 〈ψ−Π0ψ, vz0〉t = 0, we have the lower bound (min-max principle):

q0(ψ − Π0ψ) − ν(z0)‖ψ − Π0ψ‖2 ≥
∫

u

(ν2(z0) − ν(z0))

∫

t

|ψ − Π0ψ|2 dt du.

�

Proposition 6.6. There exist C, h0 > 0 such that, for h ∈ (0, h0), for all eigenpair (λ, ψ) of

H̃(h) such that λ ≤ ν(z0) + C0h:

0 ≤ q0(uψ) − ν(z0)‖uψ‖2 ≤ Ch1/2‖ψ‖2

and

0 ≤ q0(∂uψ) − ν(z0)‖∂uψ‖2 ≤ Ch1/4‖ψ‖2

Moreover, we have:

‖uψ − uΠ0ψ‖ + ‖u∂t(ψ − uΠ0ψ)‖ ≤ Ch1/4‖ψ‖
and

‖∂u(ψ − Π0ψ)‖ + ‖∂u(∂t(ψ − Π0ψ))‖ ≤ Ch1/8‖ψ‖.

Proof. Using the “IMS” formula, we get:

qh(uψ) = λ‖uψ‖2 + h‖ψ‖2 ≤ (ν(z0) + C0h)‖uψ‖2 + h‖ψ‖2.

Using the estimates of Agmon, we find:

q0(uψ) − ν(z0)‖uψ‖2 ≤ Ch1/2‖ψ‖2.

Let us analyze the estimate with ∂u. We take the derivative with respect to u in the eigenvalue

equation:

(6.1)
(
hD2

u +D2
t + P (t, z0 + h1/2u)

)
∂uψ = λ∂uψ + [P (t, z0 + h1/2u), ∂u]ψ.

Taking the scalar product with ∂uψ, we find (exercise):

(6.2) qh(∂uψ) ≤ (ν(z0) + C0h)‖ψ‖2 + Ch1/2‖ψ‖2
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and:

q0(∂uψ) − ν(z0)‖∂uψ‖2 ≤ Ch1/4‖ψ‖2,

where we have used: ‖∂2
uψ‖ ≤ Ch−1/4‖ψ‖ which is a consequence of (6.2). �

We can now use our approximation results to reduce the investigation to a 1D model oper-

ator.

6.7. Accurate lower bound. For all N ≥ 1, let us consider the L2-normalized eigenpairs

(λn(h), ψn,h)1≤n≤N such that 〈ψn,h, ψm,h〉 = 0 when n 6= m. We consider the N dimensional

space defined by:

EN(h) = span
1≤n≤N

ψn,h.

It is rather easy to observe that, for ψ ∈ EN(h):

qh(ψ) ≤ λN(h)‖ψ‖2.

We are going to prove a lower bound of qh on EN(h). We notice that:

qh(ψ) ≥
∫
h|∂uψ|2 + ν(z0 + h1/2u)|ψ|2 du dt.

We have:∫
h|∂uψ|2 + ν(z0 + h1/2u)|ψ|2 du dt

=

∫

|uh1/2|≤ε0
h|∂uψ|2 + ν(z0 + h1/2u)|ψ|2 du dt+

∫

|uh1/2|≥ε0
h|∂uψ|2 + ν(z0 + h1/2u)|ψ|2 du dt.

With the Taylor formula, we can write:
∫

|uh1/2|≤ε0
h|∂uψ|2 + ν(z0 + h1/2u)|ψ|2 du dt

≥
∫

|uh1/2|≤ε0
h|∂uψ|2 + ν(z0) + h

ν ′′(z0)

2
u2|ψ|2 du dt− Ch3/2

∫

|uh1/2|≤ε0
|u|3|ψ|2 dudt.

The estimates of Agmon give:
∫

|uh1/2|≤ε0
h|∂uψ|2 + ν(z0 + h1/2u)|ψ|2 du dt

≥
∫

|uh1/2|≤ε0
h|∂uψ|2 + ν(z0)|ψ|2 + h

ν ′′(z0)

2
u2|ψ|2 du dt− Ch3/2‖ψ‖2.

Moreover, we have:
∫

|uh1/2|≥ε0
h|∂uψ|2+ν(z0|ψ|2+h1/2u)|ψ|2 du dt ≥ (ν(z0)+η0)

∫

|uh1/2|≥ε0
|ψ|2 du dt = O(h∞)‖ψ‖2.

We observe that:∫

|uh1/2|≥ε0
h|∂uψ|2 + ν(z0)|ψ|2 + h

ν ′′(z0)

2
u2|ψ|2 du dt = O(h∞)‖ψ‖2.
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It follows that:

qh(ψ) ≥
∫
h|∂uψ|2 + ν(z0)|ψ|2 + h

ν ′′(z0)

2
u2|ψ|2 du dt− Ch3/2‖ψ‖2.

We can now use the approximation result and we infer (exercise):

λN(h)‖ψ‖2 ≥ qh(ψ) ≥ ν(z0)‖ψ‖2 +

∫
h|∂uΠ0ψ|2 + h

ν ′′(z0)

2
u2|Π0ψ|2 du dt+ o(h)‖ψ‖2.

This becomes:∫
h|∂u〈ψ, vz0〉|2 + h

ν ′′(z0)

2
u2|〈ψ, vz0〉|2 du ≤ (λN(h) − ν(z0) + o(h))‖〈ψ, vz0〉‖2

L2(du).

By the min-max principle, we deduce:

λN(h) ≥ ν(z0) + (2N − 1)h

(
ν ′′(z0)

2

)1/2

+ o(h).

6.8. Examples and exercises. Let us now give examples which can be treated as exercises.

• Helffer-Lu-Pan/de Gennes operator. Our first example (which comes from [10] and [85])

is the Neumann realization of the operator acting on L2(R2
+, dξdt):

h2D2
ξ +D2

t + (t− ξ)2,

where R
2
+ = {t > 0}.

• Montgomery operator. The second example (which is the core of [30]) is the self-adjoint

realization on L2(dξdt) of:

h2D2
ξ +D2

t +
(
ξ − t2

)2
.

• Popoff operator. Our last example (which comes from [82]) corresponds to the Neumann

realization on L2(Eα, dξdzdt) of:

h2D2
ξ +D2

t +D2
z + (t− ξ)2.

The next two sections provide detailed examples of the philosophy explained in this course.
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7. FROM THE MAGNETIC LAPLACIAN TO THE ELECTRIC LAPLACIAN: A

REGULAR CASE IN 2D

7.1. Motivation. We consider a vector potential A ∈ C∞(R2,R2) and we consider the self-

adjoint operator defined by:

Lh,A = (−ih∇ + A)2.

In order Lh,A to have compact resolvent, we will assume that:

(7.1) β(x) →
|x|→+∞

+∞.

As in [79, 48], we will investigate the case when β cancels along a closed and smooth curve

Γ in R
2. Let us notice that Assumption 7.1 could clearly be relaxed so that one could also

consider a smooth, bounded and simply connected domain of R
2 with Dirichlet or Neumann

condition on the boundary as far as the magnetic field does not vanish near the boundary. Nev-

ertheless we do not strive for maximum generality the present “generic” case giving enough

information when the magnetic field “nicely” cancels (one could also make it to cancel at an

higher order as in [48]). We let:

Γ = {γ(s), s ∈ R}.
We assume that β is non positive inside Γ and non negative outside. We introduce the standard

tubular coordinates (s, t) near Γ:

Φ(s, t) = γ(s) + tν(s),

where ν(s) denotes the inward pointing normal to Γ at γ(s). We let:

β̃(s, t) = β(Φ(s, t))

so that:

β̃(s, 0) = 0.

We consider the normal derivative of β on Γ, i.e. the function δ : s 7→ ∂tβ̃(s, 0). We will

assume that:

(7.2) δ admits a unique, non-degenerate and positive minimum at x0.

We let δ0 = δ(0) and assume without loss of generality that x0 = (0, 0). Let us state the main

result of this section:

Theorem 7.1. We assume Assumptions 7.1 and 7.2. For all n ≥ 1, there exist a sequence

(θnj )j≥0 and h0 > 0 such that for h ∈ (0, h0), we have:

λn(h) ∼ h4/3
∑

j≥0

θnj h
j/6

where:

θn0 = δ
2/3
0 ν1(η0), θn1 = 0, θn2 = δ

2/3
0 C0 + δ

2/3
0 (2n− 1)

(
αν(η0)ν

′′(η0)

3

)1/2

,

where we have let:

(7.3) α =
1

2
δ−1
0 δ′′(0) > 0
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and:

C0 = 〈Luη0 , uη0〉τ̂ ,(7.4)

where:

L = 2κ(0)δ
−4/3
0

(
τ̂ 2

2
− η0

)
τ̂ 3 + 2τ̂ δ

−1/3
0 k(0)

(
−η0 +

τ̂ 2

2

)2

,

and:

κ(0) =
1

6
∂2
t β̃(0, 0) − k(0)

3
δ0.

7.2. Normal Form. We can write (exercise !) the operator near the cancellation line in the

coordinates (s, t):

L̃h,A = h2(1 − tk(s))−1Dt(1 − tk(s))Dt + (1 − tk(s))−1P̃ (1 − tk(s))−1P̃ ,

where

P̃ = ih∂s + Ã(s, t)

with:

Ã(s, t) =

∫ t

0

(1 − k(s)t′)β̃(s, t′)dt′.

In terms of the quadratic form, we can write:

Q̃h,A(ψ) =

∫ (
|hDtψ|2 + (1 − tk(s))−2|P̃ψ|2

)
m(s, t)dsdt,

with:

m(s, t) = (1 − tk(s)).

We consider the following operator on L2(dsdt) which is unitarily equivalent to L̃h,A (see [63,

Theorem 18.5.9 and below])4:

Lnew
h,A = m1/2L̃h,Am−1/2 = P 2

1 + P 2
2 − h2k(s)2

4m2
,

with P1 = m−1/2(−hDs + Ã(s, t))m−1/2 and P2 = hDt.

We wish to use a system of coordinates more adapted to the magnetic situation. Let us

perform a Taylor expansion near t = 0. We have:

β̃(s, t) = δ(s)t+ ∂2
t β̃(s, 0)

t2

2
+O(t3).

This provides:

Ã(s, t) =
δ(s)

2
t2 + κ(s)t3 +O(t4),

with:

κ(s) =
1

6
∂2
t β̃(s, 0) − k(s)

3
δ(s)

This suggests, as for the model operator, to introduce the new magnetic coordinates in a fixed

neighborhood of (0, 0):
τ = δ(s)1/3t, σ = s.

4Such a conjugation is standard in the universe of waveguides, see [32].
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We can notice that it is a “scaling” depending on s. The change of coordinates for the deriva-

tives is given by:

Dt = δ(σ)1/3Dτ , Ds = Dσ +
1

3
δ′δ−1τDτ .

The space L2(dsdt) becomes L2(δ(σ)−1/3dσdτ). In the same way as previously, we shall

conjugate Lnew
h,A . We introduce the self-adjoint operator on L2(dσdτ):

Ľh,A = δ−1/6Lnew
h,Aδ

1/6.

We deduce:

Ľh,A = h2δ(σ)2/3D2
τ + P̌ 2,

where:

P̌ = δ−1/6m̌−1/2

(
−hDσ + Ǎ(σ, τ) − h

1

3
δ′δ−1τDτ

)
m̌−1/2δ1/6,

with:

Ǎ(σ, τ) = Ã(σ, δ(σ)−1/3τ).

A straight forward computation provides:

P̌ = m̌−1/2

(
−hDσ + Ǎ(σ, τ) − h

1

6
δ′δ−1(τDτ +Dττ)

)
m̌−1/2,

where we make the generator of dilations τDτ + Dττ to appear (and which is related to the

virial theorem, see [84, 85] where this theorem is often used). Up to a change of gauge, we

can replace P̌ by:

m̌−1/2

(
−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h

1

6
δ′δ−1(τDτ +Dττ)

)
m̌−1/2.

• Normal form Ľ(h). Therefore, the operator takes the form “à la Hörmander”:

(7.5) Ľ(h) = P1(h)
2 + P2(h)

2 − h2k(σ)2

4m(σ, δ(σ)1/3τ)2
,

where:

P1(h) = m̌−1/2

(
−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h

1

6
δ′δ−1(τDτ +Dττ)

)
m̌−1/2,

P2(h) = hδ(σ)1/3Dτ .

Computing a commutator, we can rewrite P1(h):

P1(h) = m̌−1

(
−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h

1

6
δ′δ−1(τDτ +Dττ)

)
+ Ch,(7.6)

where:

Ch = −hm̌−1/2(Dσm̌
−1/2) − hδ′δ−1

3
τm̌−1/2(Dτm̌

−1/2).

Notation 7.2. The quadratic form corresponding to Ľ(h) will be denoted by Q̌.

7.3. Quasimodes. We shall now construct quasimodes using the classical recipe.
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7.3.1. The homogenized operator L̂. We perform the scaling:

τ = h1/3τ̂ , σ = h1/6σ̂.(7.7)

Notation 7.3. The operator h−4/3Ľ will be denoted by L̂ in these new coordinates.

We expand the new operator in powers of h1/6 in the sense of formal power series:

δ
−2/3
0 L̂(h) ∼

∑

j≥0

Ljhj/6,

with

L0 = D2
τ̂ +

(
−η0 +

1

2
τ̂ 2

)2

,

L1 = −2Dσ̂

(
−η0 +

1

2
τ̂ 2

)
,

L2 = D2
σ̂ +

2

3
ασ̂2L0 + L,

where α = 1
2
δ−1
0 δ′′(0) > 0 and:

L = 2κ(0)δ(0)−4/3

(
τ̂ 2

2
− η0

)
τ̂ 3 + 2τ̂ δ(0)−1/3k(0)

(
−η0 +

τ̂ 2

2

)2

.

We look for quasi eigenpairs in the form:

λ ∼ h4/3
∑

j≥0

θjh
j/6,

ψ ∼
∑

j≥0

ψjh
j/6

so that, in the sense of formal power series:

(7.8) L̂(h)ψ ∼ λψ.

7.3.2. Solving the formal system. Considering (7.8), we are led to solve an infinite formal

system of PDE’s which we will solve thanks a compatibility condition known as the Fredholm

alternative.

• Term in h0. We solve the equation:

L0ψ0 = θ0ψ0.

This provides:

θ0 = ν1(η0)

and

ψ0(σ̂, τ̂) = g0(σ̂)uη0(τ̂).
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• Term in h1/6. We solve the equation:

(L0 − θ0)ψ1 = (θ1 − L1)ψ0.

Using the Feynman-Hellmann formulas, we have:

(L0 − θ0)(ψ1 +Dσ̂g0(σ̂)vη0(τ̂)) = θ1ψ0.

The Fredholm alternative (the r. h. s. is orthogonal to uη0 for each σ̂) implies:

θ1 = 0

and:

ψ1 +Dσ̂g0(σ̂)vη0(τ̂) = g1(σ̂)uη0(τ̂),

where g1 shall be determined in a next step.

• Term in h2/6. We solve the equation:

(7.9) (L0 − θ0)ψ2 = (θ2 − L2)ψ0 − L1ψ1.

Using the Feynman-Hellmann formulas, this equation rewrites:

(L0 − θ0)
(
ψ2 +Dσ̂g1vη0 −D2

σ̂g0
wη0
2

)

=

(
θ2g0 −

ν ′′(η0)

2
D2
σ̂g0 −

2

3
αν1(η0)σ̂

2g0 − g0L(τ̂ , ∂τ̂ )

)
uη0 .

The Fredholm condition implies that, for all σ̂:

(H + C0)g0 = θ2g0,

where C0 is defined in (7.4) and where H denotes the effective harmonic oscillator (we recall

(7.3) and that ν ′′1 (η0) > 0 by (3.5)):

(7.10) H =
ν ′′(η0)

2
D2
σ̂ +

2

3
ασ̂2.

If we denote by (µn)n≥1 the increasing sequence of the eigenvalues of H, we have by scaling:

µn = (2n− 1)

(
αν ′′1 (η0)

3

)1/2

.

Anyway we choose

θ2 = µn + C0

and for g0, we take g(n) a corresponding L2-normalized eigenfunction. With theses choices,

we determine a unique function ψ⊥
2 which is solution of (7.9) and satisfying 〈ψ⊥

2 , uη0〉τ̂ = 0 so

that ψ2 can be written as:

ψ2 = ψ⊥
2 −Dσ̂g1vη0 +D2

σ̂g0
wη0
2

+ g2(σ̂)uη0(τ̂),

where g2 has to be determined in a next step.

• Further terms (“Grushin procedure”). We leave the next step to the reader.
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7.4. A rough estimate. Thanks to the “IMS” formula and a partition of unity, we may prove

the following proposition (exercise: use Lemma 2.9).

Proposition 7.4. For all n ≥ 1, there exist h0 > 0 and C > 0 such that, for h ∈ (0, h0):

λn(h) ≥ δ
2/3
0 ν1(η0)h

4/3 − Ch4/3+2/15.

7.5. Agmon Estimates. Two kinds of Agmon’s estimates can be proved using the stand par-

tition of unity arguments. We leave their proofs to the reader.

Proposition 7.5. Let (λ, ψ) be an eigenpair of Lh,A. There exist h0 > 0, C > 0 and ε0 > 0
such that, for h ∈ (0, h0):

(7.11)

∫
e2ε0|t(x)|h

−1/3|ψ|2 dx ≤ C‖ψ‖2

and:

(7.12) Qh,A(eε0|t(x)|h
−1/3

ψ) ≤ Ch4/3‖ψ‖2.

Proposition 7.6. Let (λ, ψ) be an eigenpair of Lh,A. There exist h0 > 0, C > 0 and ε0 > 0
such that, for h ∈ (0, h0):

(7.13)

∫
e2χ(t(x))|s(x)|h−1/15 |ψ|2 dx ≤ C‖ψ‖2

and:

(7.14) Qh,A(eχ(t(x))|s(x)|h−1/15

ψ) ≤ Ch4/3‖ψ‖2,

where χ is a fixed smooth cutoff function being 1 near 0.

• Introduction of cutoff functions. From Propositions 7.5 and 7.6, we are led to introduce a

cutoff function living near x0. We take γ > 0 and we let:

χh,γ(x) = χ
(
h−1/3+γt(x)

)
χ
(
h−1/15+γs(x)

)
.

where χ is a fixed smooth cutoff function supported near 0.

Notation 7.7. We will denote by ψ̌ the function χh,γ(x)ψ(x) in the coordinates (σ, τ).

7.6. Refined Estimates. From the normal estimates of Agmon, we deduce the proposition:

Proposition 7.8. For all n ≥ 1, there exist h0 > 0 and C > 0 s. t., for h ∈ (0, h0):

λn(h) ≥ δ
2/3
0 ν1(η0)h

4/3 − Ch5/3.

We provide the proof of this proposition to understand the main idea of the lower bound.

Proof. We consider an eigenpair (λn(h), ψn,h) and we use the IMS formula:

Q̌(ψ̌n,h) = λn(h)‖ψ̌n,h‖2 +O(h∞)‖ψ̌n,h‖2.
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We have (cf. (8.2)):

Q̌(ψ̌n,h) ≥
∫
m̌−2

∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + Ǎ− h

6
δ′δ−1(τDτ +Dττ) + Ch

)
ψ̌n,h

∣∣∣∣
2

dσdτ

+ h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 − Ch2‖ψ̌n,h‖2.

Let us deal with the terms involving Ch in the double product produced by the expansion of

the square. We have to estimate:

h
∣∣ℜ〈m̌−2δ′δ−1(τDτ +Dττ)ψ̌n,h, Chψ̌n,h〉

∣∣

We have :

‖Chψ̌n,h‖ = o(h)‖ψ̌n,h‖
and, with the estimates of Agmon (and the fact that 0 is a critical point of δ):

‖δ′δ−1(τDτ +Dττ)ψ̌n,h‖ = o(1)‖ψ̌n,h‖.
Moreover, we have in the same way:

h
∣∣ℜ〈Ǎψ̌n,h, Chψ̌n,h〉

∣∣ = o(h5/3)‖ψ̌n,h‖2.

Then, we have the control:

h
∣∣ℜ〈hDσψ̌n,h, Chψ̌n,h〉

∣∣ = o(h5/3)‖ψ̌n,h‖2,

where we have used the rough estimate:

‖hDσψ̌n,h‖ ≤ Ch2/3‖ψ̌n,h‖.
We have:

Q̌(ψ̌n,h) ≥(7.15)
∫
m̌−2

∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + Ǎ− h

6
δ′δ−1(τDτ +Dττ)

)
ψ̌n,h

∣∣∣∣
2

dσdτ

+ h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 + o(h5/3)‖ψ̌n,h‖2.

We now deal with the term involving τDτ +Dττ . With the estimates of Agmon, we have:

h
∣∣ℜ〈m̌−2δ′δ−1(τDτ +Dττ)ψ̌n,h, (−hDσ − η0δ

1/3h2/3 + Ǎ)ψ̌n,h〉
∣∣ = o(h5/3)‖ψ̌n,h‖2.

This implies:

Q̌(ψ̌n,h) ≥δ2/3
0 h2‖Dτ ψ̌n,h‖2 +

∫
m̌−2

∣∣(−hDσ − η0δ
1/3h2/3 + Ǎ

)
ψ̌n,h

∣∣2 dσdτ

+ o(h5/3)‖ψ̌n,h‖2.

With the same kind of arguments, it follows:

Q̌(ψ̌n,h) ≥h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 +

∫
m̌−2

∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + δ1/3 τ
2

2

)
ψ̌n,h

∣∣∣∣
2

dσdτ

(7.16)

+O(h5/3)‖ψ̌n,h‖2
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and

Q̌(ψ̌n,h) ≥h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 +

∫ ∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + δ1/3 τ
2

2

)
ψ̌n,h

∣∣∣∣
2

dσdτ(7.17)

+O(h5/3)‖ψ̌n,h‖2.

We get:

Q̌(ψ̌n,h) ≥h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 +

∫
δ
2/3
0

∣∣∣∣
(
−hδ−1/3Dσ − η0h

2/3 +
τ 2

2

)
ψ̌n,h

∣∣∣∣
2

dσdτ

+O(h5/3)‖ψ̌n,h‖2.

Then, we write:

δ−1/3Dσ = δ−1/6Dσδ
−1/6 + iδ−1/6(δ−1/6)′

and deduce (by estimating the double product involved by iδ−1/6(δ−1/6)′):

Q̌(ψ̌n,h) ≥h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 +

∫
δ
2/3
0

∣∣∣∣
(
−hδ−1/6Dσδ

−1/6 − η0h
2/3 +

τ 2

2

)
ψ̌n,h

∣∣∣∣
2

dσdτ

+ o(h5/3)‖ψ̌n,h‖2.

We can apply the functional calculus to the self-adjoint operator δ−1/6Dσδ
−1/6 and the follow-

ing lower bound follows:

Q̌(ψ̌n,h) ≥h4/3δ
2/3
0 ν1(η0) +O(h5/3)‖ψ̌n,h‖2.

�

Exercise. Let δ be a smooth and bounded (so as its derivatives) and positive function on R.

Find a unitary transform which diagonalizes the self-adjoint realization of δDσδ on L2(R, dσ).
Notice that such a transform exists by the spectral theorem.

• Introduction of the space generated by the truncated eigenfunctions. For all N ≥ 1, let us

consider L2-normalized eigenpairs (λn(h), ψn,h)1≤n≤N such that 〈ψn,h, ψm,h〉 = 0 if n 6= m.

We consider the N dimensional space defined by:

EN(h) = span
1≤n≤N

ψ̌n,h.

The next two propositions provide control with respect to σ and Dσ. We leave the proof to the

reader and refer to [30] and also to the spirit of the proof of Proposition 7.8.

Proposition 7.9. There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and for all ψ̌ ∈ EN(h):

‖σψ̌‖ ≤ Ch1/6‖ψ̌‖.
Proposition 7.10. There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and for all ψ̌ ∈ EN(h):

‖Dσψ̌‖ ≤ Ch−1/6‖ψ̌‖.

With Proposition 7.9, we have a better lower bound for the quadratic form.



SEMICLASSICAL MAGNETIC LAPLACIAN 45

Proposition 7.11. There exists h0 > 0 such that for h ∈ (0, h0) and ψ̌ ∈ EN(h):

Q̌(ψ̌) ≥δ2/3
0

∫
(1 + 2k0τδ

−1/3
0 )|(δ−1/6ih∂σδ

−1/6 + η0h
2/3 +

τ 2

2
+ δ

−4/3
0 κ(0)τ 3)ψ̌|2 dσdτ

+

∫
δ
2/3
0 |hDτ ψ̌|2 dσdτ +

2

3
δ
2/3
0 αν1(η0)h

4/3‖σψ̌‖2 + o(h5/3)‖ψ̌‖2.

7.7. Projection Method. We can now prove an approximation result for the eigenfunctions.

Let us recall the rescaled coordinates (see (8.3)):

(7.18) σ = h1/6σ̂, τ = h1/3τ̂ .

Notation 7.12. L̂(h) denotes h−4/3Ľ(h) in the coordinates (σ̂, τ̂). The corresponding qua-

dratic form will be denoted by Q̂. We will use the notation ÊN(h) to denote EN(h) after

rescaling.

We introduce the Feshbach-Grushin projection:

Π0φ = 〈φ, uη0〉τ̂uη0(τ̂).

We will need to consider the quadratic form:

Q̂0(φ) = δ
2/3
0

∫
|Dτ̂φ|2 +

∣∣∣∣
(
−η0 +

τ̂ 2

2

)
φ

∣∣∣∣
2

dσ̂dτ̂ .

The fundamental approximation result is given in the following proposition.

Proposition 7.13. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and ψ̂ ∈ ÊN(h):

0 ≤ Q̂0(ψ̂) − δ
2/3
0 ν1(η0)‖ψ̂‖2 ≤ Ch1/6‖ψ̂‖2(7.19)

and:

‖Π0ψ̂ − ψ̂‖ ≤ Ch1/12‖ψ̂‖(7.20)

‖Dτ̂ (Π0ψ̂ − ψ̂)‖ ≤ Ch1/12‖ψ̂‖,
‖τ̂ 2(Π0ψ̂ − ψ̂)‖ ≤ Ch1/12‖ψ̂‖.

This permits to simplify the lower bound (see (7.4)).

Proposition 7.14. There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈ EN(h):

Q̌(ψ̌) ≥
∫
δ
2/3
0

(
|hDτ ψ̌|2 + |(δ−1/6ih∂σδ

−1/6 − η0h
2/3 +

τ 2

2
)ψ̌|2

)
dσdτ

+
2

3
δ
2/3
0 αν1(η0)h

4/3‖σψ̌‖2 + C0h
5/3‖ψ̌‖2 + o(h5/3)‖ψ̌‖2.

It remains to diagonalize δ−1/6i∂σδ
−1/6:
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Corollary 7.15. There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈ EN(h):

Q̌(ψ̌) ≥
∫
δ
2/3
0

(
|hDτ φ̌|2 + |(−hµ− η0h

2/3 +
τ 2

2
)φ̌|2

)
dµdτ

+
2

3
δ
2/3
0 αν1(η0)h

4/3‖Dµφ̌‖2 + C0h
5/3‖φ̌‖2 + o(h5/3)‖φ̌‖2,

with φ̌ = Fδψ̌.

Let us introduce the operator on L2(R2, dµdτ):

(7.21)
2

3
δ
2/3
0 αν1(η0)h

4/3D2
µ + δ

2/3
0

(
h2D2

τ +

(
−hµ− η0h

2/3 +
τ 2

2

)2
)

+ C0h
5/3.

Exercise. Determine the asymptotic expansion of the lowest eigenvalues of this operator

thanks to the Born-Oppenheimer theory and prove Theorem 7.1.
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8. FROM THE MAGNETIC LAPLACIAN TO THE ELECTRIC LAPLACIAN: A NON

REGULAR CASE IN 3D

8.1. Motivation. In this section we investigate the Neumann realization of the magnetic Lapla-

cian Lh,A = (−ih∇ + A)2 on Ω when Ω has the shape of a symmetric lens (with edge E, see

Figures 5 and 6) and when the magnetic field is perpendicular to the symmetry plane of the

sample. This model is a non smooth version of the paper of Helffer and Morame [60] where

they apply their analysis to an ellipsoid. This is also somehow a generalization of the work of

V. Bonnaillie-Noël in dimension 3.

−→
β

FIGURE 5. Lens with constant aperture in constant magnetic field.

⊙s

Γ

z

t α

FIGURE 6. Lens with aperture α.

In this section we will assume that opening angle of the lens is variable.

As usual, one will be led to compare different models operators: in the interior of Ω, on the

smooth boundary and on E. To catch the phenomenon due to the presence of the edge, we will

make the following assumption. In particular, this will involve the reduction to a problem near

the non smooth boundary.

Assumption 8.1.

(8.1) inf
x∈E

ν(α(x)) < inf
x∈∂Ω\E

σ(θ(x)).
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8.2. Normal Form. This is standard that the condition (8.1) leads to localization properties of

the eigenfunctions near the edge E and more precisely near the points of the edge where E ∋
x 7→ ν(α(x)) is minimal (that is where α is maximal). We can introduce, near each x0 ∈ E, a

local change of variables which transforms a neighborhood of x0 in Ω in a ε0-neighborhood of

(0, 0, 0) of Eα(x0), denoted by Eα(x0),ε0 . For the convenience of the reader, let us describe below

the shape of the magnetic Laplacian in the new (local) coordinates (š, ť, ž). The magnetic

Laplacian Lh is given by the Laplace-Beltrami expression (on L2(|Ǧ|1/2dšdťdž)):

(8.2) |Ǧ|−1/2∇̌h|Ǧ|1/2Ǧ−1∇̌h

with boundary conditions:

|Ǧ|1/2Ǧ−1∇̌hψ̌ ·



−τ ′(š)ť
−τ(š)
±1


 = 0 on ∂NeuEα(x0),ε0

ψ̌ = 0 on ∂DirEα(x0),ε0

and where:

∇̌h =



hDš

hDť

hDž


+



−ť− h τ

′

2τ
(žDž +Dž ž) + Ř1(š, ť, ž)

0
0


 .

We refer to [82] where the forms of the Taylor expansions of Ř1 and Ǧ−1 are analysed. Let us

just mention that š is the curvilinear coordinate along E and

τ(š) = tan

(
α(š)

2

)
,

where š 7→ α(š) is the variable opening angle along the edge.

Assumption 8.2. α : E → (0, π) admits a unique and non-degenerate maximum at x0 denoted

by α0.

Notation 8.3. In order to shorten the notation we will denote by η0 the number η(α0) and by

uη0 the function uα0,η(α0). See Notation 3.5.

Theorem 8.4. We assume Assumptions 3.8, 8.1 and 8.2. For all n ≥ 1 there exist a sequence

(µj,n)j≥0 such that:

λn(h) ∼
h→0

h
∑

j≥0

µj,nh
j/4.

Moreover, we have:

µ0,n = ν(α0, η0), µ1,n = 0, µ2,n = C0 + (2n− 1)
√
κτ−1

0 ‖Dẑuη0‖2∂2
ην(α0, η0),

where C0 is a constant independent from n.
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8.3. Quasimodes. Before starting the analysis, we use the following scaling:

(8.3) š = h1/4ŝ, ť = h1/2t̂, ž = h1/2ẑ

so that we denote by L̂(h) and T̂ (h) the operators h−1LNormal(h) and h−1/2T Normal(h) in the

coordinates (ŝ, t̂, ẑ). We can write in the sense of formal power series:

L̂(h) ∼
h→0

∑

j≥0

Ljhj/4

and

T̂ (h) ∼
h→0

∑

j≥0

Tjhj/4,

where the first Lj and Tj are given by:

L0 = D2
t̂ +D2

ẑ + (t̂− η0)
2,(8.4)

L1 = −2(t̂− η0)Dŝ,(8.5)

L2 = D2
ŝ + 2κτ−1

0 ŝ2D2
ẑ + L2,(8.6)

where

(8.7) P̂ =



η0 − t̂
Dt̂

Dẑ


 , L2 = 2(η0 − t̂)r̂1 −

l̂

2
P̂ P̂ + P̂

l̂

2
P̂ + P̂ L̂P̂ .

and:

T0 = (−t̂+ η0, Dt̂, Dẑ),

T1 = (Dŝ, 0, 0),

T2 = (0, 0, κτ−1
0 ŝ2Dẑ) +

l̂

2
P̂ + L̂P̂ ,

where κ = − τ ′′(0)
2

> 0. We have used the notation

r̂1(t̂, ẑ) = h−1ř1(h
1/2t̂, h1/2ẑ),(8.8)

l̂(t̂, ẑ) = h−1/2ľ(h−1/2t̂, h−1/2ẑ),(8.9)

L̂(t̂, ẑ) = h−1/2Ľ(h−1/2t̂, h−1/2ẑ).(8.10)

We will also use an asymptotic expansion of the normal n̂:

n̂ ∼
h→0

∑

j≥0

njh
j/4,

with:

(8.11) n0 = (0,−τ0,±1), n1 = (0, 0, 0), n2 = (0, κŝ2, 0).

We look for (λ̂(h), ψ̂(h)) in the form:

λ̂(h) ∼
h→0

∑

j≥0

λjh
j/4,
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ψ̂(h) ∼
h→0

∑

j≥0

ψjh
j/4,

which satisfies, in the sense of formal series:

L̂(h)ψ̂(h) ∼
h→0

λ̂(h)ψ̂(h).

This provides an infinite system of PDE’s.

• Terms in h0. We solve the equation:

L0ψ0 = λ0ψ0, n0 · T0ψ0 = 0, on ∂NeuEα0
.

We notice that the boundary condition is exactly the Neumann condition. We are led to choose

λ0 = ν(α0, η0) and ψ0(ŝ, t̂, ẑ) = uη0(t̂, ẑ)f0(ŝ).

• Terms in h1/4. Collecting the terms of size h1/4, we find the equation:

(L0 − λ0)ψ1 = (λ1 − L1)ψ0, n0 · T0ψ0 = 0, on ∂NeuEα0
.

As in the previous step, the boundary condition is just the Neumann condition. We deduce

with the Feynman-Hellmann formulas:

(L0 − λ0)(ψ1 + vα,η0(t̂, ẑ)Dŝf0(ŝ)) = λ1ψ0, n0 · T0ψ1 = 0, on ∂NeuEα0
.

Taking the scalar product of the r.h.s. of the first equation with uα,η0 with respect to (t̂, ẑ) we

find: λ1 = 0. This leads to choose:

ψ1(ŝ, t̂, ẑ) = −vα,η0(t̂, ẑ)Dŝf0(ŝ) + f1(ŝ)uα,η0(t̂, ẑ),

where f1 will be determined in a next step.

• Terms in h1/2. Let us now deal with the terms of order h1/2:

(L0 − λ0)ψ2 = (λ2 − L2)ψ0 − L1ψ1, n0 · T0ψ2 = −n0 · T2ψ0 − n2 · T0ψ0, on ∂NeuEα0
.

We analyze the boundary condition:

n0 · T2ψ0 + n2 · T0ψ0 = ±κτ−1
0 ŝ2Dẑψ0 + κŝ2Dt̂ψ0 + n0 ·

l̂

2
P̂ψ0 + n0 · L̂P̂ψ0

= κŝ2τ−1
0 (±Dẑ + τ0Dt̂)ψ0 + n0 ·

l̂

2
P̂ψ0 + n0 · L̂P̂ψ0

= ±2κŝ2τ−1
0 Dẑψ0 + n0 ·

l̂

2
P̂ψ0 + n0 · L̂P̂ψ0.

Then, we use the Feynman-Hellmann formulas to get:

(8.12)

(L0−λ0)(ψ2 +vα,η0Dŝf1−wα,η0D2
ŝf0) = λ2ψ0−

∂2
ην(α0, η0)

2
D2
ŝψ0−2κτ−1

0 ŝ2D2
ẑψ0−L2ψ0,

with boundary condition:

n0 · T0ψ2 = ∓2κŝ2τ−1
0 Dẑψ0 − n0 ·

l̂

2
P̂ψ0 − n0 · L̂P̂ψ0, on ∂S0.
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We use the Fredholm condition by taking the scalar product of the r.h.s. of (8.12) with uα0,η0

with respect to (t̂, ẑ). Integrating by parts (the boundary terms cancel), this provides the equa-

tion:

Hf0 = (λ2 − C0)f0,

with:

H =
∂2
ην(α0, η0)

2
D2
ŝ + 2κτ−1

0 ‖Dẑuα0,η0‖2ŝ2

and:

(8.13) C0 = 〈2(η0 − t̂)r̂1uη0 , uη0〉 − ν(η0)

∫
l̂

2
u2
η0

+

∫
l̂

2
P̂ uη0P̂ uη0 +

∫
L̂P̂ uη0P̂ uη0 .

Therefore for λ2 we take:

λ2 = C0 + (2n− 1)
√
κτ−1

0 c0∂2
ην(α0, η0)

and for f0 the corresponding eigenfunction. With this choice we deduce the existence of ψ⊥
2

such that:

(8.14) (L0 − λ0)ψ
⊥
2 = λ2ψ0 −

∂2
ην(α0, η0)

2
D2
ŝψ0 − 2κτ−1

0 ŝ2D2
ẑψ0, and 〈ψ⊥

2 , uα0,η0〉t̂,ẑ = 0.

We can write ψ2 in the form:

ψ2 = ψ⊥
2 − vα,η0Dŝf1 + wα,η0D

2
ŝf0 + f2(ŝ)uα0,η0 ,

where f2 has to be determined in a next step.

• Further terms. The construction can be continued (exercise).

8.4. Agmon Estimates. Thanks to a standard partition of unity, we can establish the follow-

ing estimate for the eigenvalues.

Proposition 8.5. There exist C and h0 > 0 such that, for h ∈ (0, h0) :

λn(h) ≥ ν(α0)h− Ch5/4.

From Proposition 8.5, we infer a localization near E.

Proposition 8.6. There exist ε0 > 0, h0 > 0 and C > 0 such that for all h ∈ (0, h0):
∫
e2ε0h

−1/2d(x,E)|ψ|2 dx ≤ C‖ψ‖2,

Qh(e
ε0h−1/2d(x,E)ψ) ≤ Ch‖ψ‖2.

As a consequence, we get:

Proposition 8.7. For all n ≥ 1, there exists h0 > 0 such that for h ∈ (0, h0), we have:

λn(h) = ν(α0, η0)h+O(h3/2).
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Proof. We have:

Q̌h(ψ̌) = 〈Ǧ−1∇̌hψ̌, ∇̌hψ̌〉L2(dšdťdž).

With the Taylor expansion of Ǧ−1 and |Ǧ| and the estimates of Agmon with respect to ť and

ž, we infer:

Q̌h(ψ̌) ≥ Qflat,h(ψ̌) − Ch3/2‖ψ̌‖2.

where:

Q̌flat
h (ψ̌) = ‖hDťψ̌‖2 + ‖hτ0τ(š)−1Džψ̌‖2 + ‖(hDš + η0h

1/2 − ť)ψ̌‖2.

Moreover, we have:

Q̌flat
h (ψ̌) ≥ ‖hDťψ̌‖2 + ‖hDžψ̌‖2 + ‖(hDš + η0h

1/2 − ť)ψ̌‖2 ≥ ν(α0, η0)h.

�

A rough localization estimate is given by the following proposition.

Proposition 8.8. There exist ε0 > 0, h0 > 0 and C > 0 such that for all h ∈ (0, h0):
∫
eχ(x)h−1/8|s(x)||ψ|2 dx ≤ C‖ψ‖2,

Qh(e
χ(x)h−1/8|s(x)|ψ) ≤ Ch‖ψ‖2,

where χ is a smooth cutoff function supported in a fixed neighborhood of E.

We use a cutoff function χh(x) near x0 such that:

χh(x) = χ0(h
1/8−γ š(x))χ0(h

1/2−γ ť(x))χ0(h
1/2−γ ž(x)).

• Space of the eigenfunctions. For all N ≥ 1, let us consider L2-normalized eigenpairs

(λn(h), ψn,h)1≤n≤N such that 〈ψn,h, ψm,h〉 = 0 when n 6= m. We consider the N dimensional

space defined by:

EN(h) = span
1≤n≤N

ψ̃n,h, where ψ̃n,h = χhψn,h.

Notation 8.9. We will denote by ψ̃(= χhψ) the elements of EN(h).

8.5. Refined Estimates. Let us state a proposition providing the localization of the eigen-

functions with respect to Dš (the proof is left to the reader as an exercise).

Proposition 8.10. There exist h0 > 0 and C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈ ĚN(h),
we have:

‖Dšψ̌‖ ≤ Ch−1/4‖ψ̌‖.
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8.6. Projection Method. The result of Proposition 8.10 implies an approximation result for

the eigenfunctions. Let us recall the scaling defined in (8.3):

(8.15) š = h1/4ŝ, ť = h1/2t̂, ž = h1/2ẑ.

Notation 8.11. We will denote by ÊN(h) the set of the rescaled elements of ĚN(h). The

elements of ÊN(h) will be denoted by ψ̂. Moreover we will denote by L̂h the operator h−1Ľh
in the rescaled coordinates. The corresponding quadratic form will be denoted by Q̂h.

Lemma 8.12. There exist h0 > 0 and C > 0 such that, for h ∈ (0, h0) and ψ̂ ∈ ÊN(h), we

have:

‖ψ̂ − Π0ψ̂‖ + ‖Dt̂(ψ̂ − Π0ψ̂)‖ + ‖Dẑ(ψ̂ − Π0ψ̂)‖ ≤ Ch1/8‖ψ̂‖(8.16)

‖ŝ(ψ̂ − Π0ψ̂)‖ + ‖ŝDt̂(ψ̂ − Π0ψ̂)‖ + ‖ŝDẑ(ψ̂ − Π0ψ̂)‖ ≤ Ch1/8−γ(‖ψ̂‖ + (‖ŝψ̂‖),(8.17)

where Π0 is the projection on uη0:

Π0ψ̂ = 〈ψ̂, uη0〉t̂,ẑuη0 .

This approximation result allows us to catch the behavior of the eigenfunction with respect

to š. In fact, this is the core of the dimension reduction process of the next proposition. Indeed

ŝ2D2
ẑ is not an elliptic operator, but, once projected on uη0 , it becomes elliptic.

Proposition 8.13. There exist h0 > 0 and C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈ ĚN(h),
we have:

‖šψ̌‖ ≤ Ch1/4‖ψ̌‖.

Proof. It is equivalent to prove that:

‖ŝψ̂‖ ≤ C‖ψ̂‖.
The proof of Proposition 8.7 provides the inequality:

‖Dt̂ψ̂‖2 + ‖τ0τ(h1/4ŝ)−1Dẑψ̂‖2 + ‖(h1/4Dŝ + η0 − t̂)ψ̂‖2 ≤ (ν(η0) + Ch1/2)‖ψ̂‖2.

From the non-degeneracy of the maximum of α, we deduce the existence of c > 0 such that:

‖τ0τ(h1/4ŝ)−1Dẑψ̂‖2 ≥ ‖Dẑψ̂‖2 + ch1/2‖ŝDẑψ̂‖2

so that we have:

ch1/2‖ŝDẑψ̂‖2 ≤ Ch1/2‖ψ̂‖2

and:

‖ŝDẑψ̂‖ ≤ C̃‖ψ̂‖.
It remains to use Lemma 8.12 and especially (8.17). In particular, we have:

‖ŝDẑ(ψ̂ − Π0ψ̂)‖ ≤ Ch1/8−γ(‖ψ̂‖ + (‖ŝψ̂‖).
We infer:

‖ŝDẑΠ0ψ̂‖ ≤ C̃‖ψ̂‖ + Ch1/8−γ(‖ψ̂‖ + (‖ŝψ̂‖).
Let us write

Π0ψ̂ = fh(ŝ)uη0(t̂, ẑ).
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We have:

‖ŝDẑΠ0ψ̂‖ = ‖Dẑuη0‖‖ŝfh‖L2(dŝ) = ‖Dẑuη0‖‖ŝfhuη0‖ = ‖Dẑuη0‖‖ŝΠ0ψ̂‖.
We use again Lemma 8.12 to get:

‖ŝDẑΠ0ψ̂‖ = ‖Dẑuη0‖‖ŝψ̂‖ +O(h1/8−γ)(‖ψ̂‖ + ‖ŝψ̂‖).
We deduce:

‖Dẑuη0‖‖ŝψ̂‖ ≤ C̃‖ψ̂‖ + 2Ch1/8−γ(‖ψ̂‖ + (‖ŝψ̂‖)
and the conclusion follows. �

Proposition 8.14. There exists h0 > 0 such that for h ∈ (0, h0) and ψ̂ ∈ ÊN(h), we have:

Q̂h(ψ̂) ≥‖Dt̂ψ̂‖2 + ‖Dẑψ̂‖2 + ‖(h1/4Dŝ − t̂+ η0)ψ̂‖2 + h1/2τ−1
0 κ‖Dẑuη0‖2ŝ2 + C̃0h

1/2‖ψ̂‖2

+ o(h1/2)‖ψ̂‖2,

with:

(8.18) C̃0 = 〈(2(η0 − t̂)r̂1uη0 , uη0〉L2(dt̂dẑ) +

∫
l̂

2
P̂ uη0P̂ uη0 dt̂dẑ +

∫
L̂P̂ uη0P̂ uη0 dt̂dẑ,

where P̂ , l̂, L̂ and r̂j are homogeneous polynomials defined in (8.7) and (8.8).

Let us introduce the operator:

(8.19) D2
t̂ +D2

ẑ + (h1/4Dŝ − t̂+ η0)
2 + h1/2τ−1

0 κ‖Dẑuη0‖2ŝ2 + C0h
1/2.

After Fourier transform with respect to ŝ, the operator (8.19) becomes:

(8.20) D2
t̂ +D2

ẑ + (h1/4ξ − t̂+ η0)
2 + h1/2τ−1

0 κ‖Dẑuη0‖2D2
ξ + C0h

1/2.

Exercise. Use the Born-Oppenheimer approximation to estimate the lowest eigenvalues of this

last operator and deduce Theorem 8.4.
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9. ANOTHER APPROACH: THE SEMICLASSICAL BIRKHOFF NORMAL FORM

The aim of this section is to enlighten in a geometrical way the phenomenon of Sections 7

and 8: In each case we have reduced the analysis to the “Born-Oppenheimer” framework.

For the background of symplectic geometry that we need, we refer to the classical references

[73] and [4]. For the elements of pseudo-differential calculus that we will need, we refer to

[90, 29, 72].

We study the magnetic Laplacian Lh,A = (−ih∇− A)2 on R
2. Its symbol is given by

H(q, p) = ‖p− A(q1, q2)‖2 = (p1 − A1(q1, q2))
2 + (p2 − A2(q1, q2))

2.

The operator Lh,A is gauge invariant so that its spectrum only depends on β = ∇× A and so

that we can assume that A1 = A2(0, 0) = 0. We let :

ω0 = dp ∧ dq = dp1 ∧ dq1 + dp2 ∧ dq2.

We consider the zero set of the Hamiltonian function H:

Σ = {(q, p) ∈ R
4 : H(q, p) = 0} = {(q, p) ∈ R

4 : p1 = 0, p2 = A2(q1, q2)}.
With our choice of gauge, we have: (0, 0, 0, 0) ∈ Σ. For simplicity, we assume that the

magnetic field is at least 1.

9.1. Symplectic Magnetic Geometry.

Lemma 9.1. Σ is a symplectic submanifold of R
4. In other words, the 2-form ω0|Σ is non

degenerate. In fact, we have:

ω0|Σ = β(q1, q2)dq1 ∧ dq2 6= 0.

Proof. We have:

dpi = ∂q1Ai dq1 + ∂q2Ai dq2

and we infer:

ω0|Σ = (∂q1A2 − ∂q2A1)dq1 ∧ dq2.
�

Lemma 9.2. There exists a change of coordinates Φ̂−1 defined in a neighborhood V of (0, 0, 0, 0)

which sends V ∩ Σ on x̂1 = ξ̂1 = 0 and so that (x̂2, ξ̂2) is a parametrization of Σ and:

Φ̂∗ω0 = ω0 +O(x̂2
1).

Proof. The application

ϕ : (q1, q2) 7→ (q1, q2, 0, A2(q1, q2))

is a parametrization of Σ. We have (see Lemma 9.1):

ω0(∂q1ϕ, ∂q2ϕ) = β(q1, q2).

Let us change the parametrization of Σ. We let:

x̃2 = −
∫ q1

0

β(q, q2) dq = −A2(q1, q2), ξ̃2 = q2.
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The inverse change of variables is given by:

q1 = f(x̃2, ξ̃2), q2 = ξ̃2.

We deduce the new parametrization of Σ:

ϕ̃ : (x̃2, ξ̃2) 7→ (f(x̃2, ξ̃2), ξ̃2, 0, A2(f(x̃2, ξ̃2), ξ̃2)).

Computations provide:

u2(x̃2, ξ̃2) = ∂x̃2
ϕ̃ = (−β−1, 0, 0,−1)

v2(x̃2, ξ̃2) = ∂ξ̃2ϕ̃ = (−β−1∂2A2, 1, 0, 0).

We get:

ω0(u2, v2) = −1.

Let us complete (u2, v2) in a symplectic basis.

The form ω0 being non degenerate this is clear that the symplectic orthogonal of Tϕ̃(x̃2,ξ̃2)Σ
is 2-dimensional. We can write the equations of this orthogonal:

ω0(v, u2) = ω0(v, v2) = 0.

We let:

u1 = (0, β−1, 1, β−1∂2A2)(9.1)

v1 = (−1, 0, 0, 0).(9.2)

The vectors u1 and v1 form a basis of the symplectic orthogonal and satisfy:

ω0(u1, v1) = −1.

This leads to introduce the following application:

(9.3) Φ̃ : (x̃1, x̃2, ξ̃1, ξ̃2) 7→ ϕ̃(x̃2, ξ̃2) + x̃1u1 + ξ̃1v1.

The Jacobian admits the form:

[u1, u2 + x̃1∂x̃2
u1, v1, v2 + x̃1∂ξ̃2u1].

This matrix is invertible at (0, 0, 0, 0) so that Φ̃ defines a local diffeomorphism. The surface Σ

locally becomes x̃1 = ξ̃1 = 0. Moreover, on x̃1 = 0, the Jacobian is a symplectic matrix.

In fact we can describe how the symplectic form transforms itself:

Φ̃∗ω0 = ω0

+ x̃1ω0(u1, ∂x̃2
u1)dx̃1 ∧ dx̃2 + x̃1ω0(u1, ∂ξ̃2u1)dx̃1 ∧ dξ̃2 + x̃2

1ω0(∂x̃2
u1, ∂ξ̃2u1)dx̃2 ∧ dξ̃2.

We infer:

Φ̃∗ω0 = dξ̃1 ∧ dx̃1 + dξ̃2 ∧ dx̃2 + a(x̃2, ξ̃2)x̃1dx̃1 ∧ dx̃2 + b(x̃2, ξ̃2)x̃1dx̃1 ∧ dξ̃2 +O(x̃2
1).

We get:

Φ̃∗ω0 = dξ̃1 ∧ dx̃1 + (dξ̃2 + a(x̃2, ξ̃2)x̃1dx̃1) ∧ (dx̃2 − b(x̃2, ξ̃2)x̃1dx̃1) +O(x̃2
1).
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We introduce the change of variables ψ̂−1:

(9.4) x̂1 = x̃1, ξ̂1 = ξ̃1, x̂2 = x̃2 − b(x̃2, ξ̃2)
x̃2

1

2
, ξ̂2 = ξ̃2 + a(x̃2, ξ̃2)

x̃2
1

2

We have:

ψ̂∗Φ̃∗ω0 = dξ̂1 ∧ dx̂1 + dξ̂2 ∧ dx̂2 +O(x̂2
1).

�

Lemma 9.3. Let us consider ω0 and ω1 two 2-forms on R
4 which are closed and non degen-

erate. Let us assume that ω1|x̂1=0 = ω0|x̂1=0. There exist a neighborhood of (0, 0, 0, 0) and a

change of coordinates ψ1 such that:

ψ∗
1ω1 = ω0 and ψ1|x̂1=0 = Id|x̂1=0.

Proof. The proof is rather standard but we recall it for completeness (see [73, p. 92]).

• Poincaré’s Lemma. Let us begin to prove that we can find a 1-form σ defined in a neigh-

borhood of (0, 0, 0, 0) such that:

τ := ω1 − ω0 = dσ and σ|x̂1=0 = 0.

We introduce the family of diffeomorphisms (φt)0<t≤1 defined by:

φt(x̂1, x̂2, ξ̂1, ξ̂2) = (tx̂1, x̂2, ξ̂1, ξ̂2)

and we let:

φ0(x̂1, x̂2, ξ̂1, ξ̂2) = (0, x̂2, ξ̂1, ξ̂2).

We have:

φ∗
0τ = 0 and φ∗

1τ = τ.

Let us denote by Xt the vector field associated with ψt:

Xt =
dφt
dt

(φ−1
t ) = (t−1x1, 0, 0, 0).

Let us compute the Lie derivative of τ along Xt:

d

dt
φ∗
t τ = φ∗

tLXtτ.

From the Cartan formula, we have:

LXt = ι(Xt)dτ + d(ι(Xt)τ).

Since τ is closed on R
4, we have dτ = 0. Therefore it follows:

d

dt
φ∗
t τ = d(φ∗

t ι(Xt)τ).

We consider the 1-form σt := φ∗
t ι(Xt)τ which vanishes on x̃1 = 0. We denote σ =

∫ 1

0
σt dt

and we have:
d

dt
φ∗
t τ = dσt and τ = dσ.
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• Conclusion. We use Moser’s argument. We let: ωt = ω0 + t(ω1 − ω0). The 2-form ωt is

closed and non degenerate (up to choose a neighborhood of (0, 0, 0, 0) small enough). We look

for ψt such that:

ψ∗
tωt = ω0.

For that purpose, let us determine a vector field Xt such that:

d

dt
ψt = Xt(ψt).

By using again the Cartan formula, we get:

0 =
d

dt
ψ∗
tωt = ψ∗

t

(
d

dt
ωt + ι(Xt)dωt + d(ι(Xt)ωt)

)
.

This becomes:

ω0 − ω1 = d(ι(Xt)ωt).

We are led to solve:

ι(Xt)ωt = −σ.
By non degeneracy of ωt, this determines Xt. Choosing a neighborhood of (0, 0, 0, 0) small

enough, we infer that ψt exists until the time t = 1 and that it satisfies ψ∗
tωt = ω0 (so that

this is a diffeomorphism). Since σ|x̂1=0 = 0, we get ψt = Id|x̂1=0. More precisely we get:

ψ1 = Id +O(x2
1).

�

Proposition 9.4. There exists a symplectic change of coordinates Φ−1 defined in a neighbor-

hood V of (0, 0, 0, 0) which sends V∩Σ on x1 = ξ1 = 0 and so that (x2, ξ2) is a parametrization

of Σ.

Proof. We have just to apply Lemma 9.3 to the 2-form defined in Lemma 9.2 by ω1 = Φ̂∗ω0.

We have Φ = Φ̂ ◦ ψ1. �

9.2. A Reduction of the Magnetic Symbol. Let us now analyze the form taken by the Hamil-

tonian in the normal symplectic coordinates.

Proposition 9.5. We let: H = H ◦ Φ. We have:

H(z1, z2) = Hquad
z2

(z1) +O(|z1|3),
where:

Hquad
z2

(z1) = β̃(x2, ξ2)
2x2

1 + ξ2
1 .

Proof. We can notice that the differential of H vanishes on Σ so that the differential of H
vanishes on z1 = 0. From the definition of H and Σ, we have: DΦ(0,x2,0,ξ2)H = 0. We infer

that:

D2
Φ(0,x2,0,ξ2)H(∂x2

Φ, ∂x2
Φ) = 0, D2

Φ(0,x2,0,ξ2)H(∂x2
Φ, ∂ξ2Φ) = 0,

D2
Φ(0,x2,0,ξ2)H(∂ξ2Φ, ∂ξ2Φ) = 0, D2

Φ(0,x2,0,ξ2)H(∂x1
Φ, ∂x2

Φ) = 0,

D2
Φ(0,x2,0,ξ2)H(∂x1

Φ, ∂ξ2Φ) = 0, D2
Φ(0,x2,0,ξ2)H(∂ξ1Φ, ∂ξ2Φ) = 0.
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Using the explicit expression of D2
Φ(0,x2,0,ξ2)H:

(9.5)




2β2 2β∂2A2 0 −2β
2β∂2A2 2(∂2A2)

2 0 −2∂2A2

0 0 2 0
−2β −2∂2A2 0 2




and the fact that, on Σ, we have ∂x1
Φ = ∂x̃1

Φ̃ = u1 and ∂ξ1Φ = ∂ξ̃1Φ̃ = v1, we deduce:

(9.6)

[
D2

Φ(0,x2,0,ξ2)H(∂x1
Φ, ∂x1

Φ) D2
Φ(0,x2,0,ξ2)H(∂x1

Φ, ∂ξ1Φ)

D2
Φ(0,x2,0,ξ2)H(∂x1

Φ, ∂ξ1Φ) D2
Φ(0,x2,0,ξ2)H(∂ξ1Φ, ∂ξ1Φ)

]
=

[
2β2 0
0 2

]
.

�

Let us now analyze the quadratic form Hquad
z2

.

Lemma 9.6. There exist local symplectic coordinates near (0, 0, 0, 0) denoted by (x̂1, x̂2, ξ̂1, ξ̂2)
such that:

Hquad
z2

(z1) = Ĥquad
ẑ2

(ẑ1) +O(|ẑ1|3),
where:

Ĥquad
ẑ2

(ẑ1) = β̃(x̂2, ξ̂2)
(
x̂2

1 + ξ̂2
1

)
.

Proof. The proof is divided into two main steps.

• An almost symplectic transform. We let:

f = β̃1/2 and g = ln f.

We introduce the change of coordinates (x̌1, x̌2, ξ̌1, ξ̌2) = C1(x1, x2, ξ1, ξ2) define by:




x̌1 = fx1,
ξ̌1 = f−1ξ1,

x̌2 = x2 + ∂g
∂ξ2
x1ξ1,

ξ̌2 = ξ2 − ∂g
∂x2
x1ξ1,

We want to know at which point this transformation is symplectic. Therefore we shall compute

dξ̌1 ∧ dx̌1 + dξ̌2 ∧ dx̌2. We have:

dξ̌1 ∧ dx̌1 = (ξ1d(f
−1) + f−1dξ1) ∧ (x1df + ddx1)

= dξ1 ∧ dx1 + (ξ1dx1 + x1dξ1) ∧
df

f

= dξ1 ∧ dx1 + dP ∧ dg,
where P = x1ξ1. Moreover, we get:

dξ̌2 ∧ dx̌2 = d

(
ξ2 −

∂g

∂x2

P

)
∧ d
(
x2 +

∂g

∂ξ2
P

)

= dξ2 ∧ dx2 + dg ∧ dP + R,
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where

R = −Pd
(
∂g

∂x2

)
∧ dx2 − Pd

(
∂g

∂ξ2

)
∧ dξ2 − d

(
∂g

∂x2

P

)
∧ d
(
∂g

∂ξ2
P

)

= −Pd(dg) − d

(
∂g

∂x2

P

)
∧ d
(
∂g

∂ξ2
P

)

= −d
(
∂g

∂x2

P

)
∧ d
(
∂g

∂ξ2
P

)
.

Then, this is clear that R = O(|x1ξ1|). We infer:

dξ̌1 ∧ dx̌1 + dξ̌2 ∧ dx̌2 = dξ1 ∧ dx1 + dξ2 ∧ dx2 +O(|x1ξ1|).
In other words, we have:

C∗
1ω0 = ω0 +O(|x1ξ1|).

Let us write Hquad
z2

in these new coordinates. We notice that:





x1 = f−1
(
x̌2 − ∂g

∂ξ2
x̌1ξ̌1, ξ̌2 + ∂g

∂x2
x̌1ξ̌1

)
x̌1,

ξ̌1 = f−1
(
x̌2 − ∂g

∂ξ2
x̌1ξ̌1, ξ̌2 + ∂g

∂x2
x̌1ξ̌1

)
ξ1,

x2 = x̌2 − ∂g
∂ξ2
x̌1ξ̌1,

ξ2 = ξ̌2 + ∂g
∂x2
x̌1ξ̌1,

Using a Taylor formula with respect to z1, we find:

Hquad
z2

(z1) = Ȟquad
ž2 (ž1) +O(|ž1|4),

where:

Ȟquad
ž2 (ž1) = β̃(x̌2, ξ̌2)

(
x̌2

1 + ξ̌2
1

)
.

• How to make C1 become symplectic. We let ω1 = C∗
1ω0. The 2-forms ω0 and ω1 coincide

on x̌1 = 0, they are closed and non degenerate. We let τ = ω1 − ω0. We can use exactly

the same argument as in the proof of Lemma 9.3 and we find σ such that τ = dσ with a σ
vanishing on x̌1 = 0 and satisfying even σ = O(|x̌1ξ̌1|). It remains to use Moser’s argument

as in Lemma 9.3 and we deduce the existence of a local diffeomorphism C2 such that:

C∗
2ω1 = ω0

and (x̂1, x̂2, ξ̂1, ξ̂2) = C2(x̌1, x̌2, ξ̌1, ξ̌2) = (x̌1, x̌2, ξ̌1, ξ̌2) + O(|x̌1ξ̌1|). The change of coordi-

nates C1C2 satisfies:

(C1C2)
∗ω0 = ω0.

In these coordinates, we can write:

Ȟquad
ž2 (ž1) = Ĥquad

ẑ2
(ẑ1) +O(|ẑ1|3).

�
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9.3. The Normal Form. The procedure of last subsection, known as the Birkhoff normal

form, can be continued at any order with respect to |ẑ1|2.

Let us consider the space of the formal power series in x̂1, ξ̂1, h with coefficients smoothly

depending on (x̂2, ξ̂2) : E = Rx̂2,ξ̂2
[x̂1, ξ̂1, h]. We refer to [21, Section 2] for details.

Notation 9.7. The degree of x̂α1 ξ̂
β
1h

l is α+ β + 2l. DN denotes the space of the monomials of

degree N . ON is the space of formal series with valuation at least N .

Notation 9.8. We denote by σ(L) the Taylor series of the symbol L with respect to (x̂1, ξ̂1, h)
at (0, 0, 0).

Notation 9.9. We let:

adA = [A, ·],
where the bracket between two formal series is the formal power series obtained through the

composition of pseudo-differential operators in the Weyl quantization.

Let us fix a symbol L such that σ(L) ∈ O3.

Proposition 9.10. There exist formal power series τ, κ ∈ O3 such that:

eih
−1adτ (H2 + σ(L)) = H2 + κ,

with: [κ,H2] = 0.

Proof. Let N ≥ 1. Assume that we have, for N ≥ 1 and τN ∈ O3:

eih
−1adτN (H2 + σ(L)) = H2 +K3 + · · · +KN+1 +RN+2 + ON+3,

where Ki ∈ Di commutes with |ẑ1|2 and where RN+2 ∈ DN+2.

Let τ ′ ∈ DN+2. A computation provides:

eih
−1adτN +τ ′ (H2 + σ(L)) = H2 +K3 + · · · +KN+1 +KN+2 + ON+3,

with:

KN+2 = RN+2 + β̃(ẑ2)ih
−1adτ ′|ẑ1|2 = RN+2 − β̃(ẑ2)ih

−1ad|ẑ1|2τ
′.

We can write:

RN+2 = KN+2 + β̃(ẑ2)ih
−1ad|ẑ1|2τ

′.

Since β̃(ẑ2) 6= 0, we deduce the existence of τ ′ and KN+2 such that KN+2 commutes with

|ẑ1|2. Note that ih−1ad|ẑ1|2 = {|ẑ1|2, ·}. �

9.4. Localization and Micro-Localization Estimates. We must now justify that the eigen-

functions are micro-localized near Σ to make the formal construction of the previous subsec-

tion less formal.
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9.4.1. Space localization. We begin by proving a space localization.

Proposition 9.11. Let us assume that:

(9.7) β(x) ≥ C1 > 0 for |x| ≥ ε0.

Let us fix 0 < C0 < C1 and α ∈ (0, 1/2). There exist C, h0 > 0 such that for all eigenpair

(λ, ψ) such that λ ≤ C0h, we have:
∫

|eχ(x)h−α|x|ψ|2 dx ≤ C‖ψ‖2,

where χ is zero for |x| ≤ ε0 and 1 for |x| ≥ 2ε0. Moreover, we also have the H1 estimate:
∫

|eχ(x)h−α|x|h∇ψ|2 dx ≤ Ch‖ψ‖2.

9.4.2. Microlocalization of the eigenfunctions near Σ. In the following, we will use the Weyl

quantization of a symbol a(x, ξ) ∈ S(Rn,Rn) defined by the expression:

Opwh (a)u(x) = (2π)−n
∫

ξ∈Rn

∫

y∈Rn

a

(
x+ y

2
, ξ

)
eih

−1(x−y)ξu(y) dydξ.

We refer to [29] and [72] where the basic properties of this quantization are discussed.

We now investigate the microlocalization properties of the eigenfunctions.

Proposition 9.12. Let (λ, ψ) be an eigenpair with λ ≤ C0h. Let us consider δ ∈
(
0, 1

2

)
. Then,

we have:

ψ = Opwh

(
χ0(x1, x2)χ1

(
ξ2
1 + (ξ2 − A2)

2

h2δ

))
ψ +O(h∞),

where χ0 is a smooth cutoff function supported in a neighborhood of (0, 0) of size 4ε0 and χ1

a smooth cutoff function being 1 near 0.

Proof. We start by proving that:

(9.8) χ

( L
h2δ

)
(χ0(x)ψ) = O(h∞),

where χ is zero near 0. By the space localization, we have:

L(χ0(x)ψ) = λχ0(x)ψ +O(h∞)‖ψ‖.
Then, we get:

χ

( L
h2δ

)
L(χ0(x)ψ) = λχ

( L
h2δ

)
(χ0(x)ψ) +O(h∞)‖ψ‖.

We have:

h2δ‖L(χ0(x)ψ)‖2 ≤ Q (L(χ0(x)ψ)) ≤ C0h‖L(χ0(x)ψ)‖2 +O(h∞)‖ψ‖2.

Since δ ∈
(
0, 1

2

)
, we deduce (9.8). We can also notice that:

χ0(x)χ

( L
h2δ

)
ψ = 0.
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Using the h-pseudo-differential calculus, with parameter ε = hδ (with δ ∈
(
0, 1

2

)
), it can be

shown that:

ψ = Opwh

(
χ0(x1, x2)χ1

(
ξ2
1 + (ξ2 − A2)

2

ε2

))
ψ +O(h∞).

�

9.5. Application to the Spectral Theory. Without going into the details (see [37]), let us

describe the philosophy. The main ingredient is the theorem of Egorov (see [72, Theorems

5.5.5 and 5.5.9]). Associated with the change of coordinates Φ̂ defined in Lemma 9.6, there

exists a Fourier integral operatorUh (depending on h) such that the pseudo-differential operator

U−1
h HUh admits as principal symbol H ◦ Φ̂ which has Taylor expansion H2 + O(|ẑ1|3). In

terms of power series at 0, we can write the symbol of U−1
h HUh as:

H2 + σ(L),

where σ(L) ∈ O3. We now use Proposition 9.10. Thanks to a Borel argument, we can find

a bounded operator A whose symbol is τ . By Egorov’s theorem (see [72, Theorem 5.5.5]),

eih
−1AU−1

h HUhe
−ih−1A is a pseudo-differential operator and its formal power series at 0 is

H2 + κ. We have used the formula (see for instance [21, p. 482]):

eih
−1AQe−ih

−1A = eadih−1AQ.

In conclusion, the bottom of the spectrum of Lh,A can be described by the one of:

β̃(ẑ2)|ẑ1|2 + (γ(ẑ2)|z1|4 + ch2) + · · ·
Remark 9.13. If one has some micro-localization with respect to ẑ2 (thanks to a non degenerate

minimum of the magnetic field for instance), we are reduced to the study of:

|ẑ1|2(1 + c0|ẑ2|2) + c̃h2 + · · ·
which reminds the Born-Oppenheimer structure.

The next sections introduce to problems related to the Dirichlet Laplacian on triangles and

waveguides.
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10. A RELATED TOPICS: SEMICLASSICAL TRIANGLES

Let us explain how we can be led to study the so-called “semiclassical triangles”. As we will

see, this topics is closely related to “broken waveguides” or “waveguides with corners” (see

Section 11). In fact, from a heuristic point of view, we are led to investigate such waveguides

when analyzing the spectral behavior of Lθ defined in Subsection 3.4 when θ → 0 (see [10]

and [27]). Indeed the potential Vθ creates an effective broken waveguide whose corner can be

described by a triangle with Dirichlet conditions (see Section 11).

10.1. A Brief State of the Art. This subject is already dealt with in [41, Theorem 1] where

four-term asymptotics is proved for the lowest eigenvalue, whereas a three-term asymptotics

for the second eigenvalue is provided in [41, Section 2]. We can mention the papers [42, 43]

whose results provide two-term asymptotics for the thin rhombi and also [14] which deals with

a regular case (thin ellipse for instance), see also [15]. We also invite the reader to take a look

to [62].

Let us finally mention the case of the cones studied in [77].

10.2. Main result. Let us define the isosceles triangle in which we are interested:

(10.1) Triθ =
{

(x1, x2) ∈ R− × R : x1 tan θ < |x2| <
(
x1 +

π

sin θ

)
tan θ

}
.

We will use the coordinates

(10.2) x = x1

√
2 sin θ, y = x2

√
2 cos θ,

which transform Triθ into Triπ/4. The operator becomes:

DTri(h) = 2 sin2θ ∂2
x − 2 cos2θ ∂2

y ,

with Dirichlet condition on the boundary of Tri. We let h = tan θ ; after a division by 2 cos2 θ,

we get the new operator:

(10.3) LTri(h) = −h2∂2
x − ∂2

y .

We state the result for the scaled operator LTri(h).

Theorem 10.1. The eigenvalues of LTri(h), denoted by λTri,n(h), admit the expansions:

λTri,n(h) ∼
h→0

∑

j≥0

βj,nh
j/3 with β0,n =

1

8
, β1,n = 0, and β2,n = (4π

√
2)−2/3zA(n),

the terms of odd rank being zero for j ≤ 8. The corresponding eigenvectors have expansions

in powers of h1/3 with both scales x/h2/3 and x/h.
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10.3. Born-Oppenheimer Approximation. Let us introduce the Dirichlet realization on the

space L2((−π
√

2, 0)) of:

(10.4) HBO,Tri(h) = −h2∂2
x +

π2

4(x+ π
√

2)2
.

This operator is the Born-Oppenheimer approximation of the operator LTri(h) on the triangle

Tri.

Theorem 10.2. The eigenvalues of HBO,Tri(h), denoted by λBO,Tri,n(h), admit the expansions:

λBO,Tri,n(h) ∼
h→0

∑

j≥0

β̂j,nh
2j/3, with β̂0,n =

1

8
and β̂1,n = (4π

√
2)−2/3zA(n).

10.4. When the triangle becomes a rectangle... We first perform a change of variables to

transform the triangle into a rectangle:

(10.5) u = x ∈ (−π
√

2, 0), t =
y

x+ π
√

2
∈ (−1, 1).

so that Tri is transformed into

(10.6) Rec = (−π
√

2, 0) × (−1, 1).

The operator LTri(h) becomes:

(10.7) LRec(h)(u, t; ∂u, ∂t) = −h2
(
∂u −

t

u+ π
√

2
∂t

)2

− 1

(u+ π
√

2)2
∂2
t ,

with Dirichlet boundary conditions on ∂Rec. The equation LTri(h)ψh = βhψh is transformed

into the equation

LRec(h)ψ̂h = βhψ̂h with ψ̂h(u, t) = ψh(x, y).

10.5. Quasimodes and boundary layer. We want to construct quasimodes (βh, ψh) for the

operator LTri(h)(∂x, ∂y). It will be more convenient to work on the rectangle Rec with the

operator LRec(h)(u, t; ∂u, ∂t). We introduce the new scales

(10.8) s = h−2/3u and σ = h−1u,

and we look quasimodes (βh, ψ̂h) in the form of series

(10.9) βh ∼
∑

j≥0

βjh
j/3 and ψ̂h(u, t) ∼

∑

j≥0

(
Ψj(s, t) + Φj(σ, t)

)
hj/3

in order to solve LRec(h)ψ̂h = βhψ̂h in the sense of formal series. As will be seen hereafter, an

Ansatz containing the scale h−2/3u alone (like for the Born-Oppenheimer operator HBO,Tri(h))
is not sufficient to construct quasimodes for LRec(h). Expanding the operator in powers of h2/3,

we obtain the formal series:

(10.10) LRec(h)(h
2/3s, t;h−2/3∂s, ∂t) ∼

∑

j≥0

L2jh
2j/3 with leading term L0 = − 1

2π2
∂2
t
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and in powers of h:

(10.11) LRec(h)(hσ, t;h
−1∂σ, ∂t) ∼

∑

j≥0

N3jh
j with leading term N0 = −∂2

σ −
1

2π2
∂2
t .

In what follows, in order to finally ensure the Dirichlet conditions on the triangle Tri, we will

require for our Ansatz the boundary conditions, for any j ∈ N:

Ψj(0, t) + Φj(0, t) = 0, −1 ≤ t ≤ 1(10.12)

Ψj(s,±1) = 0, s < 0 and Φj(σ,±1) = 0, σ ≤ 0.(10.13)

More specifically, we are interested in the ground energy λ = 1
8

of the Dirichlet problem for

L0 on the interval (−1, 1). Thus we have to solve Dirichlet problems for the operators N0 − 1
8

and L0 − 1
8

on the half-strip

(10.14) Hst = R− × (−1, 1),

and look for exponentially decreasing solutions. The situation is similar to that encountered in

thin structure asymptotics with Neumann boundary conditions. The following lemma shares

common features with the Saint-Venant principle, see for example [24, §2].

Lemma 10.3. We denote the first normalized eigenvector of L0 on H1
0 ((−1, 1)) by c0:

c0(t) = cos

(
πt

2

)
.

Let F = F (σ, t) be a function in L2(Hst) with exponential decay with respect to σ and let

G ∈ H3/2((−1, 1)) be a function of t with G(±1) = 0. Then there exists a unique γ ∈ R such

that the problem
(
N0 −

1

8

)
Φ = F in Hst, Φ(σ,±1) = 0, Φ(0, t) = G(t) + γc0(t),

admits a (unique) solution in H2(Hst) with exponential decay. There holds

γ = −
∫ 0

−∞

∫ 1

−1

F (σ, t)σc0(t) dσdt−
∫ 1

−1

G(t) c0(t) dt.

The following two lemmas are consequences of the Fredholm alternative.

Lemma 10.4. Let F = F (s, t) be a function in L2(Hst) with exponential decay with respect

to s. Then, there exist solution(s) Ψ such that:
(
L0 −

1

8

)
Ψ = F in Hst, Ψ(s,±1) = 0

if and only if
〈
F (s, ·), c0

〉
t

= 0 for all s < 0. In this case, Ψ(s, t) = Ψ⊥(s, t) + g(s)c0(t)

where Ψ⊥ satisfies
〈
Ψ(s, ·), c0

〉
t
≡ 0 and has also an exponential decay.

Lemma 10.5. Let n ≥ 1. We recall that zA(n) is the n-th zero of the reverse Airy function, and

we denote by

g(n) = A
(
(4π

√
2)−1/3s+ zA(n)

)
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the eigenvector of the operator −∂2
s − (4π

√
2)−1s with Dirichlet condition on R− associated

with the eigenvalue (4π
√

2)−2/3zA(n). Let f = f(s) be a function in L2(R−) with exponential

decay and let c ∈ R. Then there exists a unique β ∈ R such that the problem:

(
−∂2

s −
s

4π
√

2
− (4π

√
2)−2/3zA(n)

)
g = f + βg(n) in R−, with g(0) = c,

has a solution in H2(R−) with exponential decay.

Now we can start the construction of the terms of our Ansatz (10.9).

• Terms in h0. The equations provided by the constant terms are:

L0Ψ0 = β0Ψ0(s, t), N0Φ0 = β0Φ0(s, t)

with boundary conditions (10.12)-(10.13) for j = 0, so that we choose β0 = 1
8

and Ψ0(s, t) =
g0(s)c0(t). The boundary condition (10.12) provides: Φ0(0, t) = −g0(0)c0(t) so that, with

Lemma 10.3, we get g0(0) = 0 and Φ0 = 0. The function g0(s) will be determined later.

• Terms in h1/3. Collecting the terms of order h1/3, we are led to:

(L0 − β0)Ψ1 = β1Ψ0 − L1Ψ1 = β1Ψ0, (N0 − β0)Φ1 = β1Φ0 −N1Φ1 = 0

with boundary conditions (10.12)-(10.13) for j = 1. Using Lemma 10.4, we find β1 = 0,

Ψ1(s, t) = g1(s)c0(t), g1(0) = 0 and Φ1 = 0.

• Terms in h2/3. We get:

(L0 − β0)Ψ2 = β2Ψ0 − L2Ψ0, (N0 − β0)Φ2 = 0,

where L2 = −∂2
s + s

π3
√

2
∂2
t and with boundary conditions (10.12)-(10.13) for j = 2. Lemma

10.4 provides the equation in s variable

〈
(β2Ψ0 − L2Ψ0(s, ·)), c0

〉
t
= 0, s < 0.

Taking the formula Ψ0 = g0(s)c0(t) into account this becomes

β2g0(s) =

(
−∂2

s −
s

4π
√

2

)
g0(s).

This equation leads to take β2 = (4π
√

2)−2/3zA(n) and for g0 the corresponding eigenfunction

g(n). We deduce (L0 − β0)Ψ2 = 0, then get Ψ2(s, t) = g2(s)c0(t) with g2(0) = 0 and Φ2 = 0.

• Terms in h3/3. We get:

(L0 − β0)Ψ3 = β3Ψ0 + β2Ψ1 − L2Ψ1, (N0 − β0)Φ3 = 0,

with boundary conditions (10.12)-(10.13) for j = 3. The scalar product with c0 (Lemma 10.4)

and then the scalar product with g0 (Lemma 10.5) provide β3 = 0 and g1 = 0. We deduce:

Ψ3(s, t) = g3(s)c0(t), and g3(0) = 0, Φ3 = 0.
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• Terms in h4/3. We get:

(L0 − β0)Ψ4 = β4Ψ0 + β2Ψ2 − L4Ψ0 − L2Ψ2, (N0 − β0)Φ4 = 0,

where

L4 =

√
2

π
t∂t∂s −

3

4π4
s2∂2

t ,

and with boundary conditions (10.12)-(10.13) for j = 4. The scalar product with c0 provides

an equation for g2 and the scalar product with g0 determines β4. By Lemma 10.4 this step

determines Ψ4 = Ψ⊥
4 + c0(t)g4(s) with a non-zero Ψ⊥

4 and g4(0) = 0. Since by construction〈
Ψ⊥

4 (0, ·), c0
〉
t

= 0, Lemma 10.3 yields a solution Φ4 with exponential decay. Note that it

also satisfies
〈
Φ4(σ, ·), c0

〉
t
= 0 for all σ < 0.

• Further terms. We leave the obtention of the other terms as an exercise.

10.6. Agmon Estimates. Let us provide the estimates of Agmon which can be proved.

Proposition 10.6. Let Γ0 > 0. There exist h0 > 0, C0 > 0 and η0 > 0 such that for h ∈ (0, h0)
and all eigenpair (λ, ψ) of LTri(h) satisfying |λ− 1

8
| ≤ Γ0h

2/3, we have:
∫

Tri

eη0h
−1|x|3/2

(
|ψ|2 + |h2/3∂xψ|2

)
dxdy ≤ C0‖ψ‖2.

Proposition 10.7. Let Γ0 > 0. There exist h0 > 0, C0 > 0 and ρ0 > 0 such that for h ∈ (0, h0)
and all eigenpair (λ, ψ) of LTri(h) satisfying |λ− 1

8
| ≤ Γ0h

2/3, we have:
∫

Tri

(x+ π
√

2)−ρ0/h
(
|ψ|2 + |h ∂xψ|2

)
dxdy ≤ C0‖ψ‖2.

10.7. Projection Method. Let us consider the first N0 eigenvalues of ŁRec(h) (shortly de-

noted by λn). In each corresponding eigenspace, we choose a normalized eigenfunction ψ̂n so

that 〈ψ̂n, ψ̂m〉 = 0 if n 6= m. We introduce:

EN0
(h) = span(ψ̂1, . . . , ψ̂N0

).

Let us define Q0
Rec the following quadratic form:

Q0
Rec(ψ̂) =

∫

Rec

(
1

2π2
|∂tψ̂|2 −

1

8
|ψ̂|2

)
(u+ π

√
2) dudt,

associated with the operator L0
Rec = Idu ⊗

(
− 1

2π2∂
2
t − 1

8

)
on L2(Rec, (u + π

√
2)dudt). We

consider the projection on the eigenspace associated with the eigenvalue 0 of − 1
2π2∂

2
t − 1

8
:

(10.15) Π0ψ̂(u, t) =
〈
ψ̂(u, ·), c0

〉
t
c0(t),

where we recall that c0(t) = cos
(
π
2
t
)
. We can now state a first approximation result:

Proposition 10.8. There exist h0 > 0 andC > 0 such that for h ∈ (0, h0) and all ψ̂ ∈ EN0
(h):

0 ≤ Q0
Rec(ψ̂) ≤ Ch2/3‖ψ̂‖2

and

‖(Id − Π0)ψ̂‖ + ‖∂t(Id − Π0)ψ̂‖ ≤ Ch1/3‖ψ̂‖.
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Moreover, Π0 : EN0
(h) → Π0(EN0

(h)) is an isomorphism.

Let us consider an eigenpair (λ, ψ) of LTri(h). We let ψ̂(u, t) = ψ(x, y). Then, (λ, ψ̂)
satisfies:

−h2

(
∂2
u −

2t∂u∂t

u+ π
√

2
+

2t∂t

(u+ π
√

2)2
+

t2∂2
t

(u+ π
√

2)2

)
ψ̂ − 1

(u+ π
√

2)2
∂2
t ψ̂ = λψ̂.

The main idea is to determine the (differential) equation satisfied by Π0ψ̂. In other words we

will compute and control the commutator between the operator and the projection Π0.

Proposition 10.9. Let Γ0 > 0. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all

eigenpair (λ, ψ) of LTri(h) satisfying |λ− 1
8
| ≤ Γ0h

2/3, we have:
∥∥∥∥
(
−h2∂2

u +
π2

4(u+ π
√

2)2
− λ

)
Π0ψ̂

∥∥∥∥ ≤ Ch‖Π0ψ̂‖.

This is then enough to deduce Theorem 10.1.
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11. ANOTHER RELATED TOPICS: SEMICLASSICAL WAVEGUIDES

We refer to our review [87].

11.1. Discrete Spectrum of Waveguides: The Result of Duclos-Exner. Quantum waveg-

uides refer to meso- or nanoscale wires (or thin sheets) inside electronic devices. They can

be modelled by one-electron Schrödinger operators with potentials having high contrast in

their values. In many situations, such Schrödinger operators can be approximated by a simple

Laplace operator with Dirichlet conditions on the boundary of the wires [32]. The presence of

bound states is an undesirable effect which is nevertheless frequent and useful to predict. The

same Laplace-Dirichlet problems arise for TE modes in electromagnetic waveguides [18].

This is a well-known fact, from the papers [34, 32, 19, 22], that curvature makes discrete

spectrum to appear in waveguides. Moreover the analysis of this spectrum can be accurately

performed in the thin tube limit (in dimension 2 and 3, see [32, Section 5]).

Curvature inducing discrete spectrum, this is then a natural question to ask what happens

in dimension 2 when there is corner (infinite curvature): does discrete spectrum always ex-

ist? This question is investigated with the L-shape waveguide in [35] where the existence of

discrete spectrum is proved. For an arbitrary angle too, this existence is proved in [5] and an

asymptotic study of the ground energy is done when θ goes to π
2

(where θ is the semi-opening

of the waveguide). Another question which arises is the estimate of the lowest eigenvalues in

the regime θ → 0. This problem is analyzed in [18] through matched asymptotic expansions

and electromagnetic experiments. We also refer to our work [26, 27].

For the case of dimension 3, we can cite the paper [36] which deals with the Dirichlet

Laplacian in a conical layer (see also [76]).

• 0

FIGURE 7. Curved guide

• 0

FIGURE 8. Broken guide

11.2. Broken Waveguides. Let us denote by (x1, x2) the Cartesian coordinates of the plane

and by 0 = (0, 0) the origin. The positive Laplace operator is given by −∂2
1 −∂2

2 . The domains

of interest are the “broken waveguides” which are infinite V-shaped open sets: For any angle

θ ∈
(
0, π

2

)
we introduce

(11.1) Ωθ =
{

(x1, x2) ∈ R
2 : x1 tan θ < |x2| <

(
x1 +

π

sin θ

)
tan θ

}
.
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Note that its width is independent from θ, normalized to π, and θ represents the (half) opening

of the V, see Fig. 9. The limit case where θ = π
2

corresponds to the straight strip (−π, 0) × R.

The aim of this paper is the investigation of the lowest eigenvalues of the positive Dirichlet

Laplacian ∆Dir
Ωθ

in the small angle limit θ → 0.

x1

x2

(− π
sin θ

, 0)

Ωθ

ϕ
θ

ρ

•
0

FIGURE 9. The broken guide Ωθ (here θ = π
6
). Cartesian and polar coordinates.

The operator ∆Dir
Ωθ

is a positive unbounded self-adjoint operator with domain

Dom(∆Dir
Ωθ

) = {ψ ∈ H1
0 (Ωθ) : ∆ψ ∈ L2(Ωθ)}.

When θ ∈
(
0, π

2

)
, the boundary of Ωθ is not smooth, it is polygonal. The presence of the

non-convex corner with vertex 0 is the reason for the space Dom(∆Dir
Ωθ

) to be distinct from

H2 ∩ H1
0 (Ωθ). Nevertheless this domain can be precisely characterized as follows. Let us

introduce polar coordinates (ρ, ϕ) centered at the origin, with ϕ = 0 coinciding with the upper

part x2 = x1 tan θ of the boundary of Ωθ. Let χ be a smooth radial cutoff function with support

in the region x1 tan θ < |x2| and χ ≡ 1 in a neighborhood of the origin. We introduce the

explicit singular function

(11.2) ψθsing(x1, x2) = χ(ρ) ρπ/ω sin
πϕ

ω
, with ω = 2(π − θ).

Then there holds, see the classical references [67, 45]:

(11.3) Dom(∆Dir
Ωθ

) =
(
H2 ∩H1

0 (Ωθ)
)
⊕ [ψθsing]

where [ψθsing] denotes the space generated by ψθsing.

When θ = π
2
, we simply have Dom(∆Dir

Ωθ
) = H2 ∩H1

0 (Ωθ).

We gather in the following statement several important preliminary properties for the spec-

trum of ∆Dir
Ωθ

. All these results are proved in the literature.

Proposition 11.1. (i) If θ = π
2
, ∆Dir

Ωθ
has no discrete spectrum. Its essential spectrum is the

closed interval [1,+∞).

(ii) For any θ in the open interval (0, π
2
) the essential spectrum of ∆Dir

Ωθ
coincides with

[1,+∞).

(iii) For any θ ∈ (0, π
2
), the discrete spectrum of ∆Dir

Ωθ
is nonempty and finite. In other words,

∆Dir
Ωθ

has at least one eigenvalue below 1, but a finite number of them.
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(iv) For any θ ∈ (0, π
2
) and any eigenvalue in the discrete spectrum of ∆Dir

Ωθ
, the associated

eigenvectors ψ are even with respect to the horizontal axis: ψ(x1,−x2) = ψ(x1, x2).

(v) For any θ ∈ (0, π
2
), let µGui,n(θ), n = 1, . . ., be the n-th Rayleigh quotient of ∆Dir

Ωθ
. Then,

for any n ≥ 1, the function θ 7→ µGui,n(θ) is continuous and increasing.

11.2.1. The half-guide. As a consequence of the parity properties of the eigenvectors of ∆Dir
Ωθ

,

cf. point (iv) of Proposition 11.1, we can reduce the spectral problem to the half-guide

(11.4) Ω+
θ = {(x1, x2) ∈ Ωθ : x2 > 0} .

We define the Dirichlet part of the boundary by ∂DirΩ
+
θ = ∂Ωθ ∩ ∂Ω+

θ , and the corresponding

variational space (the form domain)

H1
Mix(Ω

+
θ ) =

{
ψ ∈ H1(Ω+

θ ) : ψ = 0 on ∂DirΩ
+
θ

}
.

Then the new operator of interest, denoted by ∆Mix

Ω+

θ

, is the Laplacian with mixed Dirichlet-

Neumann conditions on Ω+
θ . Its domain is:

Dom(∆Mix

Ω+

θ
) =

{
ψ ∈ H1

Mix(Ω
+
θ ) : ∆ψ ∈ L2(Ω+

θ ) and ∂2ψ = 0 on x2 = 0
}
.

Then the operators ∆Dir
Ωθ

and ∆Mix

Ω+

θ

have the same eigenvalues below 1 and the eigenvectors of

the latter are the restriction to Ω+
θ of the former.

11.2.2. Rescaling of the half-guide. In order to analyze the asymptotics θ → 0, it is useful

to rescale the integration domain and transfer the dependence on θ into the coefficients of the

operator. For this reason, let us perform the following linear change of coordinates:

(11.5) x = x1

√
2 sin θ, y = x2

√
2 cos θ,

which maps Ω+
θ onto Ω+

π/4 which will serve as reference domain, see Fig. 10. That is why we

set for simplicity

(11.6) Ω := Ω+
π/4 , ∂DirΩ = ∂DirΩ

+
π/4 , and H1

Mix(Ω) =
{
ψ ∈ H1(Ω) : ψ = 0 on ∂DirΩ

}
.

θ

Ωθ

π
4

Ω

Neumann Neumann

FIGURE 10. The half-guide Ω+
θ for θ = π

6
and the reference domain Ω.

Then, ∆Mix

Ω+

θ

is unitarily equivalent to the operator defined on Ω by:

(11.7) DGui(θ) := −2 sin2θ ∂2
x − 2 cos2θ ∂2

y ,
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with Neumann condition on y = 0 and Dirichlet everywhere else on the boundary of Ω. We

let h = tan θ ; after a division by 2 cos2 θ, we get the new operator:

(11.8) LGui(h) = −h2∂2
x − ∂2

y ,

with domain:

Dom(LGui(h)) =
{
ψ ∈ H1

Mix(Ω) : LGui(h)ψ ∈ L2(Ω) and ∂yψ = 0 on y = 0
}
.

11.3. A finite number of eigenvalues. In this subsection, we provide the proof of the follow-

ing proposition (see [26]).

Proposition 11.2. For any θ ∈ (0, π
2
), the number of eigenvalues of ∆Dir

Ωθ
below 1, denoted by

N (∆Dir
Ωθ
, 1), is finite.

Thus in any case ∆Dir
Ωθ

has a nonzero finite number of eigenvalues under its essential spec-

trum.

Proof. For the proof of Proposition 11.2 we use a similar method as [75, Theorem 2.1].

Instead we introduce the open set Ω̃θ isometric to Ω+
θ , see Figure 11,

Ω̃θ =
{

(x̃, ỹ) ∈
(
− π

tan θ
,+∞

)
× (0, π) : ỹ < x̃ tan θ + π if x̃ ∈

(
− π

tan θ
, 0
)}

.

y = 0

y = π
(0, π)

(−π, 0)x

y

FIGURE 11. The reference half-guide Ω̃ := Ω̃π/4.

The part ∂DirΩ̃θ of the boundary carrying the Dirichlet condition is the union of its horizontal

parts. Let us now perform the change of variable:

x = x̃ tan θ, y = ỹ,

so that the new integration domain Ω̃ := Ω̃π/4 is independent of θ. The bilinear gradient form

b on Ω̃θ is transformed into the anisotropic form bθ on the fixed set Ω̃:

(11.9) bθ(ψ, ψ
′) =

∫

eΩ

tan2θ (∂xψ ∂xψ
′) + (∂yψ ∂yψ

′) dxdy,

with associated form domain

(11.10) V := {ψ ∈ H1(Ω̃) : ψ = 0 on ∂DirΩ̃}
independent of θ.
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The opening θ being fixed, we drop the index θ in the notation of quadratic forms and write

simply as Q the quadratic form associated with bθ:

Q(ψ) = bθ(ψ, ψ) =

∫

eΩ

tan2θ |∂xφ|2 + |∂yφ|2 dxdy.

We recall that the form domain V is the subspace of ψ ∈ H1(Ω̃) which satisfy the Dirichlet

condition on ∂DirΩ̃. We want to prove that

N (Q, 1) is finite.

We consider a partition of unity (χ0, χ1) such that

χ0(x)
2 + χ1(x)

2 = 1

with χ0(x) = 1 for x < 1 and χ0(x) = 0 for x > 2. For R > 0 and ℓ ∈ {0, 1}, we introduce:

χℓ,R(x) = χℓ(R
−1x).

Thanks to the IMS formula, we can split the quadratic form as:

(11.11) Q(ψ) = Q(χ0,Rψ) +Q(χ1,Rψ) − ‖χ′
0,Rψ‖2

eΩ
− ‖χ′

1,Rψ‖2
eΩ
.

We can write

|χ′
0,R(x)|2 + |χ′

1,R(x)|2 = R−2WR(x) with WR(x) = |χ′
0(R

−1x)|2 + |χ′
1(R

−1x)|2 .
Then

‖χ′
0,Rψ‖2

eΩ
+ ‖χ′

1,Rψ‖2
eΩ

=

∫

eΩ

R−2WR(x)|ψ|2 dxdy

=

∫

eΩ

R−2WR(x)
(
|χ0,Rψ|2 + |χ1,Rψ|2

)
dxdy.(11.12)

Let us introduce the subsets of Ω̃:

O0,R = {(x, y) ∈ Ω̃ : x < 2R} and O1,R = {(x, y) ∈ Ω̃ : x > R}
and the associated form domains

V0 =
{
φ ∈ H1(O0,R) : φ = 0 on ∂DirΩ̃ ∩ ∂O0,R and on {2R} × (0, π)

}

V1 = H1
0(O1,R).

We define the two quadratic forms Q0,R and Q1,R by

(11.13)

Qℓ,R(φ) =

∫

Oℓ,R

tan2 θ|∂xφ|2 + |∂yφ|2 −R−2WR(x)|φ|2 dxdy for ψ ∈ Vℓ, ℓ = 0, 1.

As a consequence of (11.11) and (11.12) we find

(11.14) Q(ψ) = Q0,R(χ0,Rψ) +Q1,R(χ1,Rψ) ∀ψ ∈ V.

Let us prove

Lemma 11.3. We have:

N (Q, 1) ≤ N (Q0,R, 1) + N (Q1,R, 1).
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Proof. We recall the formula for the j-th Rayleigh quotient of Q:

λj = inf
E⊂V

dimE=j

sup
ψ∈E

Q(ψ)

‖ψ‖2
eΩ

.

The idea is now to give a lower bound for λj . Let us introduce:

J :

{
V → V0 × V1

ψ 7→ (χ0,Rψ , χ1,Rψ) .

As (χ0,R, χ1,R) is a partition of the unity, J is injective. In particular, we notice that J : V →
J (V ) is bijective so that we have:

λj = inf
F⊂J (V )
dimF=j

sup
ψ∈J−1(F )

Q(ψ)

‖ψ‖2
eΩ

= inf
F⊂J (V )
dimF=j

sup
ψ∈J−1(F )

Q0,R(χ0,Rψ) +Q1,R(χ1,Rψ)

‖χ0,Rψ‖2
eΩ

+ ‖χ1,Rψ‖2
eΩ

= inf
F⊂J (V )
dimF=j

sup
(ψ0,ψ1)∈F

Q0,R(ψ0) +Q1,R(ψ1)

‖ψ0‖2
O0,R

+ ‖ψ1‖2
O1,R

.

As J (V ) ⊂ V0 × V1, we deduce:

λj ≥ inf
F⊂V0×V1

dimF=j

sup
(ψ0,ψ1)∈F

Q0,R(ψ0) +Q1,R(ψ1)

‖ψ0‖2
O0,R

+ ‖ψ1‖2
O1,R

=: νj,(11.15)

Let Aℓ,R be the self-adjoint operator with domain Dom(Aℓ,R) associated with the coercive

bilinear form corresponding to the quadratic form Qℓ,R on Vℓ. We see that νj in (11.15) is the

j-th Rayleigh quotient of the diagonal self-adjoint operator AR
(
A0,R 0

0 A1,R

)
with domain Dom(A0,R) × Dom(A1,R) .

The Rayleigh quotients of Aℓ,R are associated with the quadratic form Qℓ,R for ℓ = 0, 1. Thus

νj is the j-th element of the ordered set

{λk(Q0,R), k ≥ 1} ∪ {λk(Q1,R), k ≥ 1}.
Lemma 11.3 follows. �

The operator A0,R is elliptic on a bounded open set, hence has a compact resolvent. There-

fore we get:

Lemma 11.4. For all R > 0, N (Q0,R, 1) is finite.

To achieve the proof of Proposition 11.2, it remains to establish the following lemma:

Lemma 11.5. There exists R0 > 0 such that, for R ≥ R0, N (Q1,R, 1) is finite.
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Proof. For all φ ∈ V1, we write:

φ = Π0φ+ Π1φ,

where

(11.16) Π0φ(x, y) = Φ(x) sin y with Φ(x) =

∫ π

0

φ(x, y) sin y dy

is the projection on the first eigenvector of −∂2
y on H1

0(0, π), and Π1 = Id − Π0. We have, for

all ε > 0:

Q1,R(φ) = Q1,R(Π0φ) +Q1,R(Π1φ) − 2

∫

O1,R

R−2WR(x)Π0φΠ1φ dxdy

≥ Q1,R(Π0φ) +Q1,R(Π1φ) − ε−1

∫

O1,R

R−2WR(x)|Π0φ|2 dxdy

− ε

∫

O1,R

R−2WR(x)|Π1φ|2 dxdy.(11.17)

Since the second eigenvalue of −∂2
y on H1

0(0, π) is 4, we have:
∫

O1,R

|∂yΠ1φ|2 dxdy ≥ 4‖Π1φ‖2
O1,R

.

Denoting by M the maximum of WR (which is independent of R), and using (11.13) we

deduce

Q1,R(Π1φ) ≥ (4 −MR−2)‖Π1φ‖2
O1,R

.

Combining this with (11.17) where we take ε = 1, and with the definition (11.16) of Π0, we

find

Q1,R(φ) ≥ qR(Φ) + (4 − 2MR−2)‖Π1φ‖2
O1,R

,

where

qR(Φ) =

∫ ∞

R

tan2 θ|∂xΦ|2 + |Φ|2 −R−2WR(x)|Φ|2 dx

≥
∫ ∞

R

tan2 θ|∂xΦ|2 + |Φ|2 −R−2M1[R,2R]|Φ|2 dx.

We choose R =
√
M so that (4 − 2MR−2) = 2, and then

(11.18) Q1,R(φ) ≥ q̃R(Φ) + 2‖Π1φ‖2
O1,R

,

where now

(11.19) q̃R(Φ) =

∫ ∞

R

tan2 θ|∂xΦ|2 + (1 − 1[R,2R])|Φ|2 dx.

Let ãR denote the 1D operator associated with the quadratic form q̃R. From (11.18)-(11.19),

we deduce that the j-th Rayleigh quotient of A1,R admits as lower bound the j-th Rayleigh

quotient of the diagonal operator: (
ãR 0
0 2 Id

)
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so that we find:

N (Q1,R, 1) ≤ N (q̃R, 1).

Finally, the eigenvalues< 1 of ãR can be computed explicitly and this is an elementary exercise

to deduce that N (q̃R, 1) is finite. �

This concludes the proof of Proposition 11.2. �

11.4. Main result. Let us now state the main results concerning the asymptotic expansion of

the eigenvalues of the broken waveguide.

Theorem 11.6. For all N0, there exists h0 > 0, such that for h ∈ (0, h0) the N0 first eigenval-

ues of LGui(h) exist. These eigenvalues, denoted by λGui,n(h), admit the expansions:

λGui,n(h) ∼
h→0

∑

j≥0

γj,nh
j/3 with γ0,n =

1

8
, γ1,n = 0, and γ2,n = (4π

√
2)−2/3zA(n)

and the term of order h is not zero. The corresponding eigenvectors have expansions in powers

of h1/3 with the scale x/h when x > 0, and both scales x/h2/3 and x/h when x < 0.

11.5. Born-Oppenheimer Approximation. The Born-Oppenheimer approximation is:

(11.20) HBO,Gui(h) = −h2∂2
x + V (x),

where

V (x) =





π2

4(x+ π
√

2)2
when x ∈ (−π

√
2, 0),

1

2
when x ≥ 0.
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FIGURE 12. The Born-Oppenheimer potential V and its left tangent at x = 0.

11.6. Quasimodes. As usual we shall introduce appropriate quasimodes. As we will see, we

will have to introduce the notion of Dirichlet-to-Neumann operators to analyze the transmis-

sion between the corner and the “guiding part” of the waveguide.
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11.6.1. Preliminaries.

• Ansatz, boundary and transmission conditions. In order to construct quasimodes for LGui(h)
of the form (γh, ψh), we use the coordinates (u, t) on the left and (u, τ) on the right and look

for quasimodes ψ̂h(u, t, τ) = ψh(x, y). Such quasimodes will have the form on the left:

(11.21) ψlef(u, t) ∼
∑

j≥0

hj/3
(
Ψlef,j(h

−2/3u, t) + Φlef,j(h
−1u, t)

)
,

and on the right:

(11.22) ψrig(u, τ) ∼
∑

j≥0

hj/3Φrig,j(h
−1u, τ)

associated with quasi-eigenvalues:

γh ∼
∑

j≥0

γjh
j/3.

We will denote s = h−2/3u and σ = h−1u. Since ψh has no jump across the line x = 0, we

find that ψlef and ψrig should satisfy two transmission conditions on the line u = 0:

ψlef(0, t) = ψrig(0, t) and

(
∂u −

t

π
√

2
∂t

)
ψlef(0, t) =

(
∂u −

∂τ

π
√

2

)
ψrig(0, t),

for all t ∈ (0, 1). For the Ansätze (11.21)-(11.22) these conditions write for all j ≥ 0

Ψlef,j(0, t) + Φlef,j(0, t) = Φrig,j(0, t)(11.23)

∂σΦlef,j(0, t) + ∂sΨlef,j−1(0, t) −
t∂t

π
√

2
Φlef,j−3(0, t) −

t∂t

π
√

2
Ψlef,j−3(0, t)(11.24)

= ∂σΦrig,j(0, t) −
∂τ

π
√

2
Φrig,j−3(0, t),

where we understand that the terms associated with a negative index are 0.

Notation 11.7. We still set s = h−2/3u and σ = h−1u. Like in the case of the triangle Tri, the

operators Llef
Gui and Lrig

Gui, written in variables (s, t) and (σ, t) expand in powers of h2/3 and h,

respectively. Now we have three operator series:

• Llef
Gui(h)(h

2/3s, t;h−2/3∂s, ∂t) ∼
∑

j≥0 L2jh
2j/3. The operators are the same as for Tri,

but they are defined now on the half-strip Hlef := (−∞, 0) × (0, 1).

• Llef
Gui(h)(hσ, t;h

−1∂σ, ∂t) ∼
∑

j≥0 N lef
3j h

j defined on Hlef.

• Lrig
Gui(h)(hσ, τ ;h

−1∂σ, ∂τ ) ∼
∑

j≥0 N rig
3j h

j defined on Hrig := (0,∞) × (0, 1).

We agree to incorporate the boundary conditions on the horizontal sides of Hlef in the defini-

tion of the operators Lj , N lef
j , and N rig

j :

• Neumann-Dirichlet ∂tΨ(s, 0) = 0 and Ψ(s, 1) = 0 (s < 0) for Lj ,
• Neumann-Dirichlet ∂tΦ(σ, 0) = 0 and Ψ(σ, 1) = 0 (σ < 0) for N lef

j ,

• Pure Dirichlet Φ(σ, 0) = 0 and Ψ(σ, 1) = 0 (σ > 0) for N rig
j .
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Note that

(11.25) N lef
0 = −∂2

σ −
1

2π2
∂2
t and N rig

0 = −∂2
σ −

1

2π2
∂2
τ .

• Dirichlet-to-Neumann operators. Here we introduce the Dirichlet-to-Neumann operators

T rig and T lef which we use to solve the problems in the variables (σ, t). We denote by I the

interface {0} × (0, 1) between Hrig and Hlef.

On the right, and with Notation 11.7, we consider the problem:
(
N rig

0 − 1

8

)
Φrig = 0 in Hrig and Φrig(0, t) = G(t)

where G ∈ H
1/2
00 (I). Since the first eigenvalue of the transverse part of N rig

0 − 1
8

is positive,

this problem has a unique exponentially decreasing solution Φrig. Its exterior normal derivative

−∂σΦrig on the line I is well defined in H−1/2(I). We define:

T rigG = ∂nΦrig = −∂σΦrig.

We have:

〈T rigG,G〉 = Qrig(Φrig) ≥ C‖G‖2

H
1/2

00
(I)
.

On the left, we consider the problem:
(
N lef

0 − 1

8

)
Φlef = 0 in Hlef and Φlef(0, t) = G(t)

where G ∈ H
1/2
00 (I).

For all G ∈ H
1/2
00 (I) such that Π0G = 0 (where Π0 is defined in (10.15)), this problem has a

unique exponentially decreasing solution Φlef . Its exterior normal derivative ∂σΦlef on the line

I is well defined in H−1/2(I). We define:

T lefG = ∂nΦlef = ∂σΦlef .

We have:

〈T lefG,G〉 = Qlef(Φlef) ≥ 0.

Proposition 11.8. The operator T rig + T lefΠ1 is coercive on H
1/2
00 (I) with Π1 = Id − Π0. In

particular, it is invertible from H
1/2
00 (I) onto H−1/2(I).

This proposition allows to prove the following lemma which is in the same spirit as Lemma

10.3, but now for transmission problems on Hlef ∪ Hrig (we recall that c0(t) = cos(π
2
t)):

Lemma 11.9. Let Flef = Flef(σ, t) and Frig = Frig(σ, τ) be real functions defined on Hlef

and Hrig, respectively, with exponential decay with respect to σ. Let G0 ∈ H
1/2
00 (I) and

H ∈ H−1/2(I) be data on the interface I = ∂Hlef ∩ ∂Hrig. Then there exists a unique

coefficient ζ ∈ R and a unique trace G ∈ H
1/2
00 (I) such that the transmission problem





(
N lef

0 − 1
8

)
Φlef = Flef in Hlef, Φlef(0, t) = G(t) +G0(t) + ζc0(t),(

N rig
0 − 1

8

)
Φrig = Frig in Hrig, Φrig(0, t) = G(t),

∂σΦlef(0, t) − ∂σΦrig(0, t) = H(t) on I,
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admits a (unique) solution (Φlef ,Φrig) with exponential decay.

Proof. Let (Φ0
lef , ζ0) be the solution provided by Lemma 10.3 for the data F = Flef and G = 0.

Let Φ0
rig be the unique exponentially decreasing solution of the problem

(
N rig

0 − 1

8

)
Φ0

rig = Frig in Hrig, Φ0
rig(0, t) = 0.

LetH0 be the jump ∂σΦ
0
rig(0, t)−∂σΦ0

lef(0, t). If we define the new unknowns Φ1
rig = Φrig−Φ0

rig

and Φ1
lef = Φlef − Φ0

lef , the problem we want to solve becomes
(
N lef

0 − 1

8

)
Φ1

lef = 0 in Hlef, Φ1
lef(0, t) = G(t) + (ζ − ζ0)c0(t),

(
N rig

0 − 1

8

)
Φ1

rig = 0 in Hrig, Φ1
rig(0, t) = G(t),

∂σΦ
1
rig(0, t) − ∂σΦ

1
lef(0, t) = H(t) −H0(t) on I.

Using Proposition 11.8 we can set G = (T rig + T lefΠ1)
−1(H −H0), which ensures the solv-

ability of the above problem. �

11.6.2. Construction of quasimodes.

• Terms of order h0. Let us write the “interior” equations:

lefs : L0Ψlef,0 = γ0Ψlef,0

lefσ : N lef
0 Φlef,0 = γ0Φlef,0

rig : N rig
0 Φrig,0 = γ0Φrig,0 .

The boundary conditions are:

Ψlef,0(0, t) + Φlef,0(0, t) = Φrig,0(0, t),

∂σΦlef,0(0, t) = ∂σΦrig,0(0, t).

We get:

γ0 =
1

8
, Ψlef,0 = g0(s)c0(t).

We now apply Lemma 11.9 with Flef = 0, Frig = 0, G0 = 0, H = 0 to get

G = 0 and ζ = 0.

We deduce: Φlef,0 = 0, Φrig,0 = 0 and, since ζ = −g0(0), g0(0) = 0. At this step, we do not

have determined g0 yet.

• Terms of order h1/3. The interior equations read:

lefs : L0Ψlef,1 = γ0Ψlef,1 + γ1Ψlef,0

lefσ : N lef
0 Φlef,1 = γ0Φlef,1 + γ1Φlef,0

rig : N rig
0 Φrig,1 = γ0Φrig,1 + γ1Φrig,0.

Using Lemma 10.4, the first equation implies:

γ1 = 0, Ψlef,1(s, t) = g1(s)c0(t).
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The boundary conditions are:

g1(0)c0(t) + Φlef,1(0, t) = Φrig,1(0, t),

g′0(0)c0(t) + ∂σΦlef,1(0, t) = ∂σΦrig,1(0, t).

The system becomes:

lefσ :
(
N lef

0 − 1

8

)
Φlef,1 = 0,

rig :
(
N rig

0 − 1

8

)
Φrig,1 = 0.

We apply Lemma 11.9 with Flef = 0, Frig = 0, G0 = 0, H = −g′0(0)c0(t) to get:

G = −g′0(0)(T rig + T lefΠ1)
−1c0.

Since G = Φrig,1 and ζ = −g1(0), this determines Φlef,1, Φrig,1 and g1(0).

• Terms of order h2/3. The interior equations write:

lefs : L2Ψlef,0 + L0Ψlef,2 =
∑

l+k=2

γlΨlef,k

lefσ : N lef
0 Φlef,2 =

∑

l+k=2

γlΦlef,k

rig : N rig
0 Φrig,2 =

1

8
Φrig,2,

with

L2Ψlef,0 = −g′′0(s)c0(t) +
1

π3
√

2
sg0(s)∂

2
t (c0).

Lemma 10.4 and then Lemma 10.5 imply:

(11.26) − g′′0 − 1

4π
√

2
sg0 = γ2g0.

Thus, γ2 is one of the eigenvalues of the Airy operator and g0 an associated eigenfunction. In

particular, this determines the unknown functions of the previous steps. We are led to take:

Ψlef,2(s, t) = Ψ⊥
lef,2 + g2(s)c0(t), with Ψ⊥

lef,2 = 0

and to the system:

lefσ :
(
N lef

0 − 1

8

)
Φlef,2 = 0

rig :
(
N rig

0 − 1

8

)
Φrig,2 = 0.

Using Lemma 11.9, we find

G = −g′1(0)(T rig + T lefΠ1)
−1c0.

This determines Φrig,2, Φlef,2 and g2(0). The function g1 is still unknown at this step.

• Further terms. The next steps are left to the reader.
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11.7. Reduction to Triangles. In this last subsection, we prove Theorem 11.6. For that pur-

pose, we first state Agmon estimates to show that the first eigenfunctions are essentially living

in the triangle Tri so that we can compare the problem in the whole guide with the triangle.

Proposition 11.10. Let (λ, ψ) be an eigenpair of LGui(h) such that |λ − 1
8
| ≤ Ch2/3. There

exist α > 0, h0 > 0 and C > 0 such that for all h ∈ (0, h0), we have:
∫

x≥0

eαh
−1x
(
|ψ|2 + |h∂xψ|2

)
dxdy ≤ C‖ψ‖2.

Proof. The proof is left to the reader, the main ingredients being the IMS formula and the

fact that HBO,Gui is a lower bound of LGui(h) in the sense of quadratic forms. See also [26,

Proposition 6.1] for a more direct method. �

• Proof of Theorem 11.6. Let ψhn be an eigenfunction associated with λGui,n(h) and assume

that the ψhn are orthogonal in L2(Ω), and thus for the bilinear form BGui,h associated with the

operator LGui(h).

We choose ε ∈ (0, 1
3
) and introduce a smooth cutoff χhat the scale h1−ε for positive x

χh(x) = χ(xhε−1) with χ ≡ 1 if x ≤ 1
2
, χ ≡ 0 if x ≥ 1

and we consider the functions χhψhn. We denote:

EN0
(h) = span(χhψh1 , . . . , χ

hψhN0
).

We have:

QGui,h(ψ
h
n) = λGui,n(h)‖ψhn‖2

and deduce by the Agmon estimates of Proposition 11.10:

QGui,h(χ
hψhn) =

(
λGui,n(h) +O(h∞)

)
‖χhψhn‖2.

In the same way, we get the ”almost”-orthogonality, for n 6= m:

BGui,h(χ
hψhn, χ

hψhm) = O(h∞).

We deduce, for all v ∈ EN0
(h):

QGui,h(v) ≤
(
λGui,N0

(h) +O(h∞)
)
‖v‖2.

We can extend the elements of EN0
(h) by zero so that QGui,h(v) = QTriε,h

(v) for v ∈ EN0
(h)

where Triε,h is the triangle with vertices (−π
√

2, 0), (h1−ε, 0) and (h1−ε, h1−ε + π
√

2). A

dilation reduces us to: (
1 +

h1−ε

π
√

2

)−2

(−h2∂2
x̃ − ∂2

ỹ)

on the triangle Tri. The lowest eigenvalues of this new operator admits the lower bounds
1
8

+ zA(n)h2/3 − Ch1−ε ; in particular, we deduce:

λGui,N0
(h) ≥ 1

8
+ zA(N0)h

2/3 − Ch1−ε.
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11.8. Numerical simulations. Below we provide numerical simulations of the first eigen-

function (see [26] for more numerical simulations). In particular, we can observe the jump of

the potential which creates a wall for the eigenfunctions in the semiclassical regime.

θ = 0.1482 ∗ π/2 θ = 0.1032 ∗ π/2 θ = 0.0701 ∗ π/2
λcpt

1 (θ) = 0.56209 λcpt
1 (θ) = 0.48754 λcpt

1 (θ) = 0.42763

FIGURE 13. Computations for small angles. Plots in the computational do-

main Ω.

θ = 0.0416 ∗ π/2 θ = 0.0270 ∗ π/2 θ = 0.0112 ∗ π/2
λcpt

1 (θ) = 0.37085 λcpt
1 (θ) = 0.33845 λcpt

1 (θ) = 0.29766

FIGURE 14. Computations for very small angles. Plots in the computational

domain Ω.
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