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We consider the problem of strong existence and uniqueness of a Brownian motion forced to stay in the nonnegative quadrant by an electrostatic repulsion from the sides that works obliquely. When the direction of repulsion is normal, the question has previously been solved with the help of convex analysis. To construct the solution, we start from the normal case and then we use as main tool a comparison lemma. The results are reminiscent of the study of a Brownian motion with oblique reflection in a wedge. Actually, the same skew symmetry condition is involved when looking for a stationary distribution in product form. The terms of the product are now gamma distributions in place of exponential ones. An associated purely deterministic problem is also considered.

Introduction

In the late seventies the study of heavy traffic limits in open multi-station queueing networks has put the question of existence and properties of the Brownian motion obliquely reflected on the sides of a wedge and more generally on the faces of a polyhedron. In the following decade there was an extensive literary output on that topic, among which we mention the works of Harrison, Reiman, Williams and collaborators ( [START_REF] Harrison | The diffusion approximation for tandem queues in heavy traffic[END_REF], [START_REF] Harrison | Reflected Brownian motion in an orthant[END_REF], [START_REF] Varadhan | Brownian motion in a wedge with oblique reflection[END_REF], [START_REF] Williams | Reflected Brownian motion with skew symmetric data in a polyhedral domain[END_REF], [START_REF] Harrison | Brownian models of open queueing networks with homogeneous customer populations[END_REF], [START_REF] Dai | Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedra[END_REF], to cite a few of them). But there is another way than normal or oblique reflection to prevent Brownian motion from overstepping a linear barrier. We may add as drift term the gradient of a concave function that explodes in the neighborhood of the faces of the polyhedron. To be more specific, let n 1 , . . . , n k be unit vectors in R d and b 1 , . . . , b k be real numbers. The state space S is defined by S := {x ∈ R d : n r .x ≥ b r , r = 1, . . . , k} .

Let φ 1 , . . . , φ k be k convex C 1 functions on (0, ∞) with φ r (0+) = +∞ for any r = 1, . . . , k. The potential function Φ on S is defined by Φ(x) := k r=1 φ r (n r .xb r ) .

From the general existence and uniqueness theorem on multivalued stochastic differential systems established in [START_REF] Cépa | Equations différentielles stochastiques multivoques[END_REF] and [START_REF] Cépa | Problème de Skorohod multivoque[END_REF], completed with identification of the drift term as in Lemma 3.4 in [START_REF] Cépa | Diffusing particles with electrostatic repulsion[END_REF], we know there exists a unique strong solution living in S to the equation [START_REF] Cépa | Equations différentielles stochastiques multivoques[END_REF] dX t = dB t -∇Φ(X t )dt X 0 ∈ S where B is a Brownian motion in R d . As was proved in Proposition 4.1 of [START_REF] Lépingle | Boundary behavior of a constrained Brownian motion between reflecting-repelling walls[END_REF], the hypotheses φ r (0+) = +∞ for any r = 1, . . . , k entail that there is no additional boundary process of local time type in the r.h.s. of (1) since the repulsion forces are sufficiently strong. As

-∇Φ(x) = - k r=1 φ ′ r (n r .x -b r )n r ,
the repulsion from the faces F r = {x ∈ S : n r .x = b r } points in a normal direction into the interior of S. We now introduce vectors q 1 , . . . , q k with q r .n r = 0 for r = 1, . . . , k and consider a new drift function

(2) - k r=1 φ ′ r (n r .x -b r )(n r + q r ) .
This is a singular drift and convex analysis cannot be used as in [START_REF] Cépa | Equations différentielles stochastiques multivoques[END_REF] or [START_REF] Cépa | Problème de Skorohod multivoque[END_REF] to get strong existence and uniqueness of the associated stochastic differential system.

In this paper we will concentrate on the nonnegative quadrant in R 2 as state space and a drift term that derives from electrostatic repulsive forces. We obtain strong existence and uniqueness for a large set of parameters. Our results are reminiscent of the thorough study in [START_REF] Varadhan | Brownian motion in a wedge with oblique reflection[END_REF] of the oblique reflection in a wedge. However a key tool in this work was an appropriate harmonic function that made a weak approach possible and fruitful. Thus full results were obtained, while our strong approach merely provides a partial answer to the crucial question of hitting the corner.

For theoretical as well as practical reasons, a great deal of interest was taken in the question of existence and computation of the invariant measure of the Brownian motion with a constant drift vector and oblique reflection ( [START_REF] Harrison | Reflected Brownian motion in an orthant[END_REF], [START_REF] Williams | Reflected Brownian motion with skew symmetric data in a polyhedral domain[END_REF], [START_REF] Harrison | Brownian models of open queueing networks with homogeneous customer populations[END_REF]). Under the assumption that the directions of reflection satisfy a skew symmetry condition, it was proved that the invariant measure has exponential product form density. Motivated by the so-called Atlas model of equity markets presented in [START_REF] Fernholz | Stochastic portfolio theory[END_REF], some authors ( [START_REF] Pal | One-dimensional Brownian particle systems with rank-dependent drifts[END_REF], [START_REF] Ichiba | On collisions of Brownian particles[END_REF], [START_REF] Ichiba | Hybrid Atlas models[END_REF]) have recently studied Brownian motions on the line with rank dependent local characteristics. This model is strongly related to Brownian motion reflected in polyhedral domains. The invariant probability density has an explicit exponential product form when the volatility is constant [START_REF] Pal | One-dimensional Brownian particle systems with rank-dependent drifts[END_REF] and a sum of products of exponentials form when the volatility coefficients depend on the rank ( [START_REF] Ichiba | Hybrid Atlas models[END_REF], [START_REF] Ichiba | Diffusions with rank-based characteristics and values in the nonnegative quadrant[END_REF]). This last kind of density was previously obtained in [START_REF] Dieker | Reflected Brownian motion in a wedge: sum-of-exponential stationary densities[END_REF] for a Brownian motion in a wedge with oblique reflection.

A neighboring way has been recently explored in [START_REF] O'connell | Product-form invariant measures for Brownian motion with drift satisfying a skew-symmetry type condition[END_REF]. Here the process is a Brownian motion with a drift term that is continuous and depends obliquely, via a regular potential function, on the position of the process relative to a polyhedral domain. Under the same skew symmetry condition as in [START_REF] Harrison | Brownian models of open queueing networks with homogeneous customer populations[END_REF], the invariant density has an explicit product form again. In Section 5, we consider a Brownian motion with a constant drift living in the nonnegative quadrant with oblique electrostatic repulsion from the sides. Under the skew symmetry condition, there is still an invariant measure in product form. Now the terms of the product are two gamma distributions with explicit parameters.

In the last section we consider the same model of oblique electrostatic repulsion, this time without Brownian term. We are interested in the question of existence and uniqueness of this deterministic differential system when the starting point is the corner. There is a trivial solution and the proofs of uniqueness of the previous stochasting setting are still in force in this simpler case. Taking advantage of the explicit form of this solution, we can obtain weaker conditions for uniqueness.

The setting

The general state space is the nonnegative quadrant S = R + × R + . The corner 0 = (0, 0) will play a crucial role and in some cases it will be necessary to restrict the state space to the punctured nonnegative quadrant S 0 = S \ {0}.

Let (B t , C t ) be a Brownian motion in the plane starting from 0, adapted to a filtration F = (F t ) with usual conditions. Let α, β, γ, δ be four real constants with α > 0, δ > 0. We say that an F-adapted continuous process (X, Y ) with values in S is a Brownian motion with electrostatic oblique repulsion from the sides if for any t ≥ 0 (3)

X t = X 0 + B t + α t 0 ds Xs + β t 0 ds Ys ≥ 0 Y t = Y 0 + C t + γ t 0 ds Xs + δ t 0 ds Ys ≥ 0
where X 0 and Y 0 are non-negative F 0 -measurable random variables. Each coordinate X t or Y t may vanish, so to make sense we must have a.s. for any t ≥ 0

t 0 1 {Xs=0} ds = 0 t 0 1 {Ys=0} ds = 0 t 0 1 {Xs>0} ds Xs < ∞ t 0 1 {Ys>0} ds Ys < ∞ . The drift in (3) is of type (2) with d = k = 2 and φ 1 (x) = -α log(x) φ 2 (y) = -δ log(y) b 1 = 0 b 2 = 0 n 1 = (1, 0) n 2 = (0, 1) q 1 = (0, γ α ) q 2 = ( β δ , 0)
The case with β = γ = 0 is a particular case of (1). In the sequel, we will note (U, V ) the solution of the system (4)

U t = X 0 + B t + α t 0 ds Us ≥ 0 V t = Y 0 + C t + δ t 0 ds Vs ≥ 0 .
The processes U and V are independent Bessel processes (if X 0 and Y 0 are independent variables). Actually, U is a Bessel process with index α- 1 2 , and the point 0 is intanstaneously reflecting for U if α < 1 2 and polar if α ≥ 1 2 . Moreover, U 2 + V 2 is the square of a Bessel process with index α + δ, and so the corner 0 is polar for (U, V ) in any case.

Comparison between X and U , Y and V will play a key role in the construction of the solution (X, Y ) and the study of its behavior near the sides of the quadrant. The following simple lemma will be of constant use. Lemma 1. For T > 0, α > 0, let x 1 and x 2 be nonnegative continuous solutions on [0, T ] of the equations

x 1 (t) = v 1 (t) + α t 0 ds x 1 (s) x 2 (t) = v 2 (t) + α t 0 ds x 2 (s) where v 1 , v 2 are continuous functions such that 0 ≤ v 1 (0) ≤ v 2 (0), and v 2 -v 1 is nondecreas- ing. Then x 1 (t) ≤ x 2 (t) on [0, T ]. Proof. Assume there exists t ∈ (0, T ] such that x 2 (t) < x 1 (t). Set τ := max{s ≤ t : x 1 (s) ≤ x 2 (s)} . Then, x 2 (t) -x 1 (t) = x 2 (τ ) -x 1 (τ ) + (v 2 (t) -v 1 (t)) -(v 2 (τ ) -v 1 (τ )) + α t τ ( 1 x 2 (s) -1 x 1 (s) )ds ≥ 0 , a contradiction.
We will also need the following consequence of the results in [START_REF] Cépa | Equations différentielles stochastiques multivoques[END_REF] or [START_REF] Cépa | Problème de Skorohod multivoque[END_REF] on multivalued stochastic differential systems, completed with the method used in [START_REF] Lépingle | Boundary behavior of a constrained Brownian motion between reflecting-repelling walls[END_REF] to check the lack of additional boundary process.

Proposition 2. Let α > 0, δ ≥ 0, σ = (σ i j ; i, j = 1, 2) a 2 × 2-matrix, (B 1 , B 2 )
a Brownian motion in the plane, b 1 and b 2 two Lipschitz functions on R 2 , Z 1 0 and Z 2 0 two F 0 -measurable nonnegative random variables. There exists a unique solution (Z 1 , Z 2 ) to the system

(5) Z 1 t = Z 1 0 + σ 1 1 B 1 t + σ 1 2 B 2 t + α t 0 ds Z 1 s + t 0 b 1 (Z 1 s , Z 2 s )ds Z 2 t = Z 2 0 + σ 2 1 B 1 t + σ 2 2 B 2 t + δ t 0 ds Z 2 s + t 0 b 2 (Z 1 s , Z 2 s )ds with the conditions Z 1 t ≥ 0 if δ = 0 and Z 1 t ≥ 0, Z 2 t ≥ 0 if δ > 0.
It is worth noticing that the solutions to (3) enjoy the Brownian scaling property. It means that if (X, Y ) is a solution to (3) starting from (X 0 , Y 0 ) with driving Brownian motion (B t , C t ), then for any c > 0 the process (

X ′ t := c -1 X c 2 t , Y ′ t := c -1 Y c 2 t ; t ≥ 0) is a solution to (3) starting from (c -1 X 0 , c -1 Y 0 ) with driving Brownian motion (c -1 B c 2 t , c -1 C c 2 t ).

Avoiding the corner

We shall see in the next section that existence and uniqueness of the solution to (3) are easily obtained as soon as the solution process keeps away from the corner. Thus the question of attaining the corner in finite time is of great interest.

Theorem 3. Let (X, Y ) be a solution to (3) in the interval [0, τ ] ∩ [0, ∞) where τ is a F-stopping time. We set τ 0 := inf{t ∈ (0, τ ] ∩ (0, ∞) : (X t , Y t ) = 0} with the usual convention inf ∅ = ∞. Then P(τ 0 < ∞) = 0 if one of the following conditions is satisfied: (1) C 1 : β ≥ 0 and γ ≥ 0 (2) C 2a : α ≥ 1 2 and β ≥ 0 (3) C 2b : δ ≥ 1
2 and γ ≥ 0 (4) C 3 : There exist λ > 0 and µ > 0 such that

• λα + µγ ≥ 0 • λβ + µδ ≥ 0 • λ(λα + µγ) + µ(λβ + µδ) -1 2 (λ 2 + µ 2 ) ≥ -2 λµ(λβ + µδ)(λα + µγ). Proof. Assume τ = ∞ a.s. for simplicity of notation. Condition C 1 . From Lemma 1 we get X t ≥ U t , Y t ≥ V t ,
where (U, V ) is the solution to (4), and we know that 0 is polar for (U, V ).

Condition C 2a (resp. C 2b ). From Lemma 1 we get X t ≥ U t (resp. Y t ≥ V t ) and in this case 0 is polar for U (resp. V), so U t > 0 (resp. V t > 0) for t > 0. Condition C 3 . For ǫ > 0 let σ ǫ = 1 {(X 0 ,Y 0 )=0} inf{t > 0 : X t + Y t ≥ ǫ} τ 0,ǫ = inf{t > σ ǫ : (X t , Y t ) = 0} .
As ǫ ↓ 0, σ ǫ ↓ 0 and τ 0,ǫ ↓ τ 0 . We set S t = λX t + µY t for t ≥ 0, λ > 0 and µ > 0. From Ito formula we get for t ∈ [σ ǫ , τ 0,ǫ )

log S t = log S σ ǫ + t σ ǫ λdBs+µdCs Ss + (λα + µγ) t σ ǫ ds XsSs + (λβ + µδ) t σ ǫ ds YsSs -1 2 (λ 2 + µ 2 ) t σ ǫ ds S 2 s = log S σ ǫ + M t + t σ ǫ P (Xs,Ys) XsYsS 2 s ds
where M is a continuous local martingale and P (x, y) is the second degree homogeneous polynomial

P (x, y) = λ(λβ + µδ)x 2 + µ(λα + µγ)y 2 + (λ(λα + µγ) + µ(λβ + µδ) - 1 2 (λ 2 + µ 2 ))xy .
Condition C 3 is exactly the condition for P being nonnegative in S. Therefore

0 ≤ t σ ǫ P (X s , Y s ) X s Y s S 2 s ds < ∞ and so 0 ≤ τ 0,ǫ σ ǫ P (X s , Y s ) X s Y s S 2 s ds ≤ ∞ .
As t → τ 0,ǫ , the continuous local martingale M either converges to a finite limit or oscillates between +∞ and -∞. It cannot converge to -∞ and thus S τ 0,ǫ > 0 on {τ 0,ǫ < ∞}, proving that P(τ 0,ǫ < ∞) = 0 and finally P(τ 0 < ∞) = 0.

Example. When α = δ and |β| = |γ|, condition C 3 is satisfied (with λ = µ) if (6) • β 2 ≤ α -1 4 when β = -γ • -β ≤ α -1 4 when β = γ < 0 .
We may also be interested in hitting a single side. Then we set [START_REF] Harrison | The diffusion approximation for tandem queues in heavy traffic[END_REF] τ 0 X := inf{t > 0 :

X t = 0} τ 0 Y := inf{t > 0 : Y t = 0} .
We already know that P(τ 0

X < ∞) = 0 if α ≥ 1
2 and β ≥ 0. Conversely we can prove that

P(τ 0 X < ∞) = 1 if α < 1 2 and β ≤ 0.
If we know that the corner is not hit and α ≥ 1 2 , we can get rid of the nonnegativity assumption on β.

Proposition 4. Assume P(τ 0 < ∞) = 0. If α ≥ 1 2 , then P(τ 0 X < ∞) = 0. Proof. For η > 0 let θ η X = 1 {X 0 =0} inf{t > 0 : X t ≥ η} τ 0,η X = inf{t > θ η X : X t = 0} . As η ↓ 0, θ η X ↓ 0 and τ 0,η X ↓ τ 0 X . For t ∈ [θ η X , τ 0,η X ), (8) log X t = log X θ η X + t θ η X dBs Xs + (α -1 2 ) t θ η X ds X 2 s + β t θ η X ds
XsYs .

Since P(τ 0 < ∞) = 0, we have Y τ 0,η X > 0 on {τ 0,η X < ∞}. On this set,

τ 0,η X θ η X ds X s < ∞ , τ 0,η X θ η X ds Y s < ∞ and X s > 0 on [θ η X , τ 0,η X ), which proves that β τ 0,η X θ η X ds X s Y s > -∞ .
As t → τ 0,η X , the local martingale in the r.h.s. of (8) cannot converge to -∞. This entails that P(τ 0,η X < ∞) = 0 and therefore P(τ 0

X < ∞) = 0.
We may use again the method in Theorem 3 and Proposition 4 to learn more about hitting the sides of the quadrant.

Proposition 5. Assume α ≥ 1 2 and δ ≥ 1 2 . Then P(τ 0 X < ∞) = P(τ 0 Y < ∞) = 0 if one of the following conditions is satisfied: (1) β > 0 (2) γ > 0 (3) βγ ≤ (α -1 2 )(δ -1 2 ). Proof. For ǫ > 0 let ρ ǫ = 1 {X 0 Y 0 =0} inf{t > 0 : X t Y t ≥ ǫ} ρ 0,ǫ = inf{t > ρ ǫ : X t Y t = 0} .
For λ > 0 and µ > 0 we set

R t = λ log X t + µ log Y t . From Ito formula we get for t ∈ [ρ ǫ , ρ 0,ǫ ) R t = R ρ ǫ + t ρ ǫ ( λ Xs dB s + µ Ys dC s ) + t ρ ǫ [ λ(α-1 2 ) X 2 s + µ(δ-1 2 ) Y 2 s + (λβ+µγ) XsYs ]ds = R ρ ǫ + N t + t ρ ǫ Q(Xs,Ys) X 2 s Y 2 s ds
where N is a continuous local martingale and Q(x, y) is the second degreee homogeneous polynomial

Q(x, y) = µ(δ - 1 2 )x 2 + λ(α - 1 2 
)y 2 + (λβ + µγ)xy.

If we obtain that Q is nonnegative on S, then the proof will terminate as in Theorem 3 under condition C 3 . If β > 0 or γ > 0, we easily find λ > 0 and µ > 0 such that λβ + µγ ≥ 0, and then

Q is nonnegative on R 2 . If now β ≤ 0, γ ≤ 0 and βγ ≤ (α -1 2 )(δ - 1 
2 ), we may take λ = -γ, µ = -β and we check that Q(x, y) remains nonnegative on R 2 as well.

Existence and uniqueness

We now proceed to the question of existence and uniqueness of a global solution to (3). We consider separately the three cases: β ≥ 0 and γ ≥ 0, then β > 0 and γ < 0, then β ≤ 0 and γ < 0. 4.1. Case β ≥ 0 and γ ≥ 0. This is exactly condition C 1 . Theorem 6. Assume β ≥ 0 and γ ≥ 0.

(1) There is a unique solution to (3) in S 0 .

(2) There is a solution to (3) in S starting from 0.

(3) If αδ ≥ βγ, there is a unique solution to (3) in S.

Proof. 1. Let a > 0, ǫ > 0 and define for (x,

z) ∈ R + × R ψ ǫ (x, z) := 1 max(γx + z, αǫ) .
This is a Lipschitz function. From Proposition 2 we know that the system (9)

X ǫ t = X 0 + B t + α t 0 ds X ǫ s + αβ t 0 ψ ǫ (X ǫ s , Z ǫ s )ds ≥ 0 Z ǫ t = -γX 0 + α(Y 0 + 1 {Y 0 =0} a) -γB t + αC t + α(αδ -βγ) t 0 ψ ǫ (X ǫ s , Z ǫ s )ds has a unique solution. Let τ ǫ Y := inf{t > 0 : γX ǫ t + Z ǫ t < αǫ} . If 0 < η < ǫ < a we deduce from the uniqueness that (X ǫ , Z ǫ ) and (X η , Z η ) are identical on [0, τ ǫ Y ]
. Patching together we can set

X t := lim ǫ→0 X ǫ t Y t := lim ǫ→0 1 α (γX ǫ t + Z ǫ t ) on {Y 0 > 0} × [0, τ 0 Y )
, where τ 0 Y := lim ǫ→0 τ ǫ Y . On this set, (X, Y ) is the unique solution to (3). As we noted in the proof of Theorem 3 with condition C 1 , we have X t ≥ U t and Y t ≥ V t . Therefore, on {Y 0 > 0} ∩ {τ 0 Y < ∞},

τ 0 Y 0 ds Xs ≤ τ 0 Y 0 ds Us < ∞ and τ 0 Y 0 ds Ys ≤ τ 0 Y 0 ds
Vs < ∞ and we can define [START_REF] Ichiba | On collisions of Brownian particles[END_REF] X τ 0

Y := lim t→τ 0 Y X t = X 0 + B τ 0 Y + α τ 0 Y 0 ds Xs + β τ 0 Y 0 ds Ys Y τ 0 Y := lim t→τ 0 Y Y t = Y 0 + C τ 0 Y + γ τ 0 Y 0 ds Xs + δ τ 0 Y 0 ds
Ys . We have Y τ 0 Y = 0 and as 0 is polar for (U, V ), then X τ 0 Y > 0. In exactly the same way we can construct a solution on {Y 0 > 0} in the interval [T 1 , T 2 ], where

T 1 = τ 0 Y , T 2 = inf{t > T 1 : X t = 0}. Iterating, we get a solution on {Y 0 > 0} × [0, lim n→∞ T n ) where T 2p := inf{t > T 2p-1 : X t = 0} T 2p+1 := inf{t > T 2p : Y t = 0} .
On {Y 0 > 0} ∩ {lim n→∞ T n < ∞} we set X limn→∞ Tn := lim p→∞ X T 2p = 0 and Y limn→∞ Tn := lim p→∞ Y T 2p+1 = 0. The polarity of 0 entails this is not possible in finite time and thus lim n→∞ T n = ∞. So we have obtained a unique global solution on {Y 0 > 0}. In the same way we obtain a unique global solution on {X 0 > 0} and as P((X 0 , Y 0 ) = 0) = 0 the proof is complete.

2. Assume now X 0 = Y 0 = 0. Let (y n ) n≥1 be a sequence of real numbers (strictly) decreasing to 0. From the above paragraph it follows there exists for any n ≥ 1 a unique solution (X n , Y n ) with values in S 0 to the system 

X n t = B t + α t 0 ds X n s + β t 0 ds Y n s Y n t = y n + C t + γ t 0 ds X n s + δ t 0 ds Y n s . Let τ := inf{t > 0 : X n+1 t < X n t } . Using Lemma 1 we obtain Y n+1 t ≤ Y n t on [0, τ ]. We note that (X n τ , Y n τ ) ∈ S 0 on {τ < ∞}. On {Y n+1 τ = Y n τ } ∩ {τ < ∞}, since X n+1 τ = X n
X t := lim n→∞ ↑ X n t Y t := lim n→∞ ↓ Y n t .
As Y n t ≥ V t where (U, V ) is the solution to (4) with X 0 = Y 0 = 0, we have

X t = B t + α lim n→∞ t 0 ds X n s + β lim n→∞ t 0 ds Y n s = B t + α t 0 ds Xs + β t 0 ds Ys < ∞
and also

Y t = lim n→∞ y n + C t + γ lim n→∞ t 0 ds X n s + δ lim n→∞ t 0 ds Y n s = C t + γ t 0 ds Xs + δ t 0 ds Ys < ∞ .
3. Assume finally αδβγ ≥ 0. As the conclusion holds true if β = γ = 0, we may also assume β > 0. Let (X, Y ) be the solution to [START_REF] Cépa | Diffusing particles with electrostatic repulsion[END_REF] with X 0 = Y 0 = 0 obtained in the previous paragraph and let (X ′ , Y ′ ) be another solution. Considering (X n , Y n ) again and replacing (X n+1 , Y n+1 ) with (X ′ , Y ′ ), the previous proof works and we finally obtain

X ′ t ≥ X t and Y ′ t ≤ Y t . Then, ( 11 
) (δ(X t -X ′ t ) -β(Y t -Y ′ t )) 2 = 2 t 0 (δ(X s -X ′ s ) -β(Y s -Y ′ s ))(αδ -βγ)( 1 Xs -1 X ′ s )ds ≤ 0
and thus X ′ t = X t and Y ′ t = Y t , proving uniqueness. Replacing (δ, β) with (γ, α) in equation ( 11) we obtain the same conclusion if γ > 0.

4.2. Case β > 0 and γ < 0.

Theorem 7. Assume β > 0, γ < 0 and one of the conditions C 2a or C 3 is satisfied. Then, there exists a unique solution to [START_REF] Cépa | Diffusing particles with electrostatic repulsion[END_REF] 

in S 0 .
Proof. The proof is similar to the proof of 1 in Theorem 6. The only change is that now

Y t ≤ V t . Therefore, on {Y 0 > 0} ∩ {τ 0 Y < ∞}, δ τ 0 Y 0 ds Y s ≤ V τ 0 Y -Y 0 -C τ 0 Y -γ τ 0 Y 0 ds U s < ∞
and we can define X τ 0

Y

and Y τ 0 Y as previously done.

4.3.

Case β ≤ 0 and γ < 0. In this case we can give a full answer to the question of existence and uniqueness. Our condition of existence is exactly the condition found in [START_REF] Williams | Reflected Brownian motion in a wedge: semimartingale property[END_REF] for the reflected Brownian in a wedge being a semimartingale, i.e. there is a convex combination of the directions of reflection that points into the wedge from the corner.

Theorem 8. Assume β ≤ 0 and γ < 0.

(1) If αδ > βγ, there exists a unique solution to (3) in S.

(2) If αδ ≤ βγ, there does not exist any solution.

Proof. 1. Assume first αδ > βγ. a) Existence. Let (h n , n ≥ 1) be a (strictly) increasing sequence of bounded positive nonincreasing Lipschitz functions converging to 1/x on (0, ∞) and to +∞ on (-∞, 0]. For instance we can take

h n (x) = (1 -1 n ) 1 x on [ 1 n , ∞) = n -1 on (-∞, 1 n ] . We consider for each n ≥ 1 the system (12) X n t = X 0 + B t + α t 0 ds X n s + β t 0 h n (Y n s )ds Y n t = Y 0 + C t + γ t 0 h n (X n s )ds + δ t 0 ds Y n s .
From Proposition 2 it follows there exists a unique solution to this system. We set

τ := inf{s > 0 : X n+1 s > X n s } . We have h n+1 (X n+1 t ) ≥ h n (X n t ) on [0, τ ]. A first application of Lemma 1 shows that Y n+1 t ≤ Y n t on [0, τ ]. Since h n+1 (Y n+1 τ ) > h n (Y n τ )
on {τ < ∞}, we deduce from the continuity of solutions that there exists ρ > 0 such that h n+1 (Y n+1 t

) ≥ h n (Y n t ) on [τ, τ + ρ]. A second application of Lemma 1 shows that X n+1 t ≤ X n t on [τ, τ + ρ], a contradiction to the definition of τ . Thus P(τ = ∞) = 1 proving that on the whole [0, ∞) we have X n+1 t ≤ X n t and Y n+1 t ≤ Y n t .
Then we can set for any t ∈ [0, ∞)

X t := lim n→∞ X n t and Y t := lim n→∞ Y n t .
If αδ > βγ, there is a convex combination of the directions of repulsion that points into the positive quadrant, i.e. there exist λ > 0 and µ > 0 such that λα + µγ > 0 and µδ + λβ > 0.

For n ≥ 1 and t ≥ 0, (13)

λU t + µV t ≥ λX n t + µY n t ≥ λX 0 + µY 0 + λB t + µC t + (λα + µγ) t 0 ds X n s + (µδ + λβ) t 0 ds Y n s .
Letting n → ∞ in ( 13) we obtain

t 0 ds X s < ∞ and t 0 ds Y s < ∞ .
Then we may let n go to ∞ in [START_REF] Ichiba | Hybrid Atlas models[END_REF] proving that (X, Y ) is a solution to (3). b) Uniqueness. Let (X ′ , Y ′ ) be another solution to [START_REF] Cépa | Diffusing particles with electrostatic repulsion[END_REF]. Replacing (X n+1 , Y n+1 ) with (X ′ , Y ′ ) we follow the above proof to obtain for t ∈ [0, ∞) and n ≥ 1

X ′ t ≤ X n t and Y ′ t ≤ Y n t
Letting n → ∞ we conclude

X ′ t ≤ X t and Y ′ t ≤ Y t .
With the same λ > 0 and µ > 0 as above,

(λ(X t -X ′ t ) + µ(Y t -Y ′ t )) 2 = 2 t 0 (λ(X s -X ′ s ) + µ(Y s -Y ′ s )) [(λα + µγ)( 1 Xs -1 X ′ s ) + (µδ + λβ)( 1 Ys -1 Y ′ s )]ds ≤ 0 and therefore X ′ t = X t , Y ′ t = Y t . 2.
If αδ ≤ βγ there exist λ > 0 and µ > 0 such that λα + µγ ≤ 0 and µδ + λβ ≤ 0. Thus, if (X, Y ) is a solution to (3), 0 ≤ λX t + µY t ≤ λX 0 + µY 0 + λB t + µC t . This is not possible since the paths of the Brownian motion (λ 2 + µ 2 ) -1/2 (λB t + µC t ) are not bounded below. So there is no global solution.

In the following pictures, we display the x-repulsion direction vector r x = (α, γ) and the y-repulsion direction vector r y = (β, δ) in three illustrative instances. We introduce an additional constant drift (-µ, -ν) in the nonnegative quadrant and consider the system ( 14)

• E T I £ £ £ £ £ £ £ £ # r x r y x y β > 0, γ > 0, αδ > βγ • E T x y I f f f f w
X t = X 0 + B t + α t 0 ds Xs + β t 0 ds Ys -µt Y t = Y 0 + C t + γ t 0 ds Xs + δ t 0 ds Ys -νt with the conditions X t ≥ 0, Y t ≥ 0. If now (15) U t = X 0 + B t + α t 0 ds Us -µt V t = Y 0 + C t + δ t 0
ds Vsνt with U t ≥ 0, V t ≥ 0, we can check that 0 is still polar for (U, V ) (as well, 0 is polar for U if α ≥ 1 2 and for V if δ ≥ 1 2 ). Therefore the results of the previous sections are still valid for the solution to [START_REF] O'connell | Product-form invariant measures for Brownian motion with drift satisfying a skew-symmetry type condition[END_REF]. We are now looking for conditions on the set of parameters in order to obtain a stationary distribution for the Markov process (X, Y ) in the form of a product of two gamma distributions. Theorem 9. Assume there exists a unique solution to [START_REF] O'connell | Product-form invariant measures for Brownian motion with drift satisfying a skew-symmetry type condition[END_REF] in S 0 or in S. This process has an invariant distribution in the form Γ(a, c) ⊗ Γ(b, d) if and only if

• αβ + γδ = 0 (skew symmetry) • a = 2α + 1, b = 2δ + 1 • c = 2δ µα+νγ αδ-βγ , d = 2α µβ+νδ αδ-βγ • µα + νγ > 0, µβ + νδ > 0 .
Proof. Let ρ(x, y) = x a-1 e -cx y b-1 e -dy for x ≥ 0, y ≥ 0 . The infinitesimal generator of the diffusion ( 14) is given by

L = 1 2 ( ∂ 2 ∂x 2 + ∂ 2 ∂y 2 ) + ( α x + β y -µ) ∂ ∂x + ( γ x + δ y -ν) ∂ ∂y .
By a density argument, to prove that ρ is an invariant density, it is enough to check that ∞ 0 ∞ 0 Lf (x, y)ρ(x, y) dxdy = 0 for any f (x, y) = g(x)h(y) with g, h ∈ C 2 c ((0, ∞)) (compactly supported twice continuously differentiable functions on (0, ∞)). Integrating by parts, we get

∞ 0 ∞ 0 L(gh)(x, y)ρ(x, y) dxdy = ∞ 0 ∞ 0 g(x)h(y)J(x, y) dxdy where J(x, y) = ρ(x, y) [A + Bx -1 + Cx -2 + Dy -1 + Ey -2 + F x -1 y -1 ] with A = 1 2 c 2 + 1 2 d 2 -µc -νd B = -(a -1)c + µ(a -1) + αc + γd C = 1 2 (a -1)(a -2) -α(a -2) D = -(b -1)d + ν(b -1) + βc + δd E = 1 2 (b -1)(b -2) -δ(b -2) F = β(a -1) + γ(b -1) . Letting A = B = C = D = E = F =
0 we obtain the specified values for a, b, c, d and the skew symmetry condition αβ + γδ = 0, which means that r x and r y are orthogonal. The last condition in the statement of the theorem is written out so that the invariant density ρ is integrable on S. It is satisfied if (µ, ν) points into the interior of the quadrant designed by r x and r y .

Remark. With the same proof, we may check that under the skew symmetry condition, when µ = ν = 0, the function ρ(x, y) = x 2α y 2δ is a non-integrable invariant density that does not depend on the obliqueness parameter β.

A singular differential system

In this last section we give up the stochastic setting and consider the integral system [START_REF] Varadhan | Brownian motion in a wedge with oblique reflection[END_REF] x(t) = α An explicit solution is easily obtained.

Theorem 10. If max{β, γ} ≥ 0 or if βγ < αδ, there is a solution to [START_REF] Varadhan | Brownian motion in a wedge with oblique reflection[END_REF] given by

x(t) = c √ t y(t) = d √ t where c = (2α + β δ (β -γ + (β -γ) 2 + 4αδ)) 1/2 d = (2δ + γ α (γ -β + (β -γ) 2 + 4αδ)) 1/2 .
There is no solution if β < 0, γ < 0 and αδ ≤ βγ. 

C = 2α + β δ (β -γ + (β -γ) 2 + 4αδ) and D = 2δ + γ α (γ -β + (β -γ) 2 + 4αδ)
are positive. If β ≥ 0, C is clearly positive. This is also true if β < 0 and βγ < αδ since C may be written

C = 4α(αδ -βγ) 2αδ -βγ + β 2 -β 4(αδ -βγ) + (β + γ) 2 .
The proof for D is similar. Assume now β < 0, γ < 0, αδ ≤ βγ. As was noted in Section 4, there exist λ > 0 and µ > 0 such that λα + µγ ≤ 0 and µδ + λβ ≤ 0. If (x, y) is a solution to (16), then 0 ≤ λx(t) + µy(t) ≤ 0 and therefore x(t) = y(t) = 0 for any t ≥ 0, which is impossible.

We now take up the question of uniqueness.

Theorem 11. Let ε = min{β(βγ + (βγ) 2 + 4αδ), γ(γβ + (βγ) 2 + 4αδ)}. The solution to ( 16) is unique a) when β ≥ 0, γ ≥ 0, if βγ < 2αδ + ε 2 b) when β ≤ 0, γ ≤ 0, if βγ < αδ .

Proof. We may use Proposition 2 with σ i j = 0 for i, j = 1, 2 and consequently the proofs of Theorem 6 and Theorem 8 are still valid. a) Case β ≥ 0, γ ≥ 0. As in the proof of Theorem 6.3, there exist two extremal solutions (x 1 , y 1 ) and (x 2 , y 2 ) such that for any solution (x, y) and any t ≥ 0, x 2 (t) ≤ x(t) ≤ x 1 (t) y 1 (t) ≤ y(t) ≤ y 2 (t) .

Uniqueness for equation ( 16) follows as well if βγ ≤ αδ. We can improve the result by using the explicit form of the known solution and Gronwall lemma. Assume βγ > αδ. As in the proof of Theorem 6.2, we consider the unique solution (x n , y n ) to the system 

x

5 .

 5 Product form stationary distribution

  where x and y are continuous functions from [0, ∞) to [0, ∞) with the conditionst 0 1 {x(s)=0} ds = 0 t 0 1 {y(s)=0} ds = 0 t 0 1 {x(s)>0} ds x(s) < ∞ t 0 1 {y(s)>0} ds y(s) < ∞ for any t ≥ 0.Here α, β, γ, δ are again four real constants with α > 0, δ > 0 and the starting point is the corner of the nonnegative quadrant.

Proof.d

  Writing down x(t) = c √ t and y(t) = d √ t, we have to solve equations c Simple computations lead to the requested values. We have to check that

  Uniqueness follows if both conditions are satisfied. b) Case β ≤ 0, γ < 0. The proof is the same as for Theorem 8.1.Remark. The question of uniqueness for all β > 0, γ > 0 remains open. Let us notice that for α = δ = 0 uniqueness fails because the solutions are given byx(t) = C t β β+γ y(t) = β+γ C t γ β+γand depend on the positive parameter C.

  n (t) = ξ n + α ) is a sequence of decreasing numbers tending to 0. Remarking that for any t ≥ 0 we have c √ t ≤ x n (t) and d √ t ≥ y n (t), we set v where C(t) does not depend on ξ n . Therefore v n (t) → 0 when ξ n → 0 if βγ < 2αδ + β 2 (βγ + (βγ) 2 + 4αδ) .

		y n (t) = γ	t 0	t 0 x n (s) + δ ds x n (s) + β ds t 0 ds y n (s) t 0	ds y n (s) ≥ 0 ≥ 0
	where (ξ n n + 2	βγ -αδ cδ	0	ξ 2 n /c 2	v n (s) ξ n √ s	ds +	t ξ 2 n /c 2	v n (s) cs	ds .
	From Gronwall lemma, v n (t) ≤ δ 2 ξ 2 n exp 2 βγ-αδ cδ = C(t)ξ 2(1-2 βγ-αδ ) c 2 δ n	2 √ ξn ξ 2 n /c 2	+ 1 c log t -1 c log ξ 2 n c 2
	We conclude that		x 1 (t) = c √	t, y 1 (t) = d √	t .
	In a similar way,		x 2 (t) = c √	t, y 2 (t) = d √	t
	under the condition	βγ < 2αδ +	γ 2	(γ -β + (β -γ) 2 + 4αδ) .

n (t) = (δ(x n (t)c √ t)β(y n (t)d √ t)) 2 .

We develop

v n (t) = δ 2 ξ 2 n + 2 t 0 v n (s)(βγαδ)( 1 c √ s -1 x n (s) )ds = δ 2 ξ 2 n + 2 βγ-αδ c t 0 v n (s) x n (s)-c √ s √ sx n (s) ds ≤ δ 2 ξ 2 n + 2 βγ-αδ cδ t

0 vn(s)

√ sx n (s) ds .

From x n (t) ≥ ξ n and x n (t) ≥ c √ t it follows that for t ≥ ξ 2 n /c 2 v n (t) ≤ δ 2 ξ 2
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